00 Publication number: PATENT APPLICATION EUROPEAN. (S) int. a.*: F 25 B 41/04

Size: px
Start display at page:

Download "00 Publication number: PATENT APPLICATION EUROPEAN. (S) int. a.*: F 25 B 41/04"

Transcription

1 J ) Europaisches Patentamt European Patent Office Office europeen des brevets 00 Publication number: A1 EUROPEAN PATENT APPLICATION Application number: (S) int. a.*: F 25 B Date of filing: Priority: US Date of publication of application: Bulletin 89/52 Designated Contracting States: DE ES FR GB IT Applicant: CARRIER RPORATION Carrier Tower 6304 Carrier Parkway P.O. Box 4800 Syracuse New York Inventor: Beckhusen, Gary F. 371 South Grove Street East Aurora New York Representative: Schmitz, Jean-Marie etal OFFICE DENNEMEYER S.a.r.l. P.O. Box 1502 L-1015 Luxembourg Quench expansion valve refrigeration circuit. (57) A refrigeration circuit (10) is provided with a guench line (56) connecting the liquid line (18) and the suction line (26) and containing a quench expansion valve (32). The quench expansion valve (32) is controlled responsive to the superheat of the refrigerant supplied to the compressor (12). By injecting liquid refrigerant downstream of the suction modulation valve (28) and the sensor for the thermal expansion valve (20), the system can be operated at low capacity without overheating the compressor oil. 3 CL HI Bundesdruckerei Berlin

2 Description EP A1 QUENCH EXPANSION VALVE REFRIGERATION CIRCUIT Background Of The Invention Some refrigeration applications, including trans- 5 port refrigeration, require operation at reduced capacity to hold product within a very narrow temperature range. In some cases suction modulation is used to reduce and regulate capacity. This affects suction and discharge temperatures. When 10 suction modulation occurs at high ambient temperatures, the refrigerant supplied to the compressor may be too hot, absent some correcting measures, and this results in compressor discharge temperatures that are too high. If discharge temperatures are 15 not kept from getting too hot, the compressor lubricant can break down and ultimately cause failure of the compressor. Liquid refrigerant is often used to lower the discharge temperature by feeding it into the suction 20 side of the compressor. One approach is to operate a solenoid valve responsive to the suction modulation valve. This approach is not responsive to ambient or any other temperature reference and can provide unwanted quench as at low ambient and low 25 discharge temperature. Too much liquid refrigerant can also result in liquid slugging or floodback to the compressor and can ultimately cause failure of the compressor. 30 Summary Of The Invention A quench expansion valve, QEV, is placed in the refrigerant circuit between the liquid and the suction lines. A QEV is a thermostatic expansion valve, TXV, applied in a different way. The sensing bulb for the 35 QEV is located on the suction line near the compressor inlet. The QEV has a superheat setting which is higher than the setting of the main expansion valve so that the QEV does not perform any quenching prior to suction modulation and 40 thereby does not affect the maximum capacity of the unit when needed. The QEV lowers the compressor discharge "temperatures by controlling the compressor inlet conditions. It is an object of the invention to provide a varying 45 amount of quench which is supplied responsive to need. It is an additional object of this invention to protect against excessive compressor discharge temperatures. so It is another object of this invention to avoid supplying too much liquid refrigerant to the compressor. It is an additional object of this invention to provide a QEV which has a range of positions. These 55 objects, and others as well become apparent hereinafter, are accomplished by the present invention. Basically, refrigeration circuit is provided with a quench expansion valve. The quench expansion 60 valve is responsive to the suction temperature and controls to a predetermined, settable superheat which is set to a superheat above that of the TXV which is set for maximum capacity. Brief Description Of The Drawings For a fuller understanding of the present invention, reference should now be made to the following detailed description thereof taken in conjunction with the accompanying drawing wherein; The Figure is a schematic representation of a refrigeration circuit with the quench expansion valve of the present invention. Description Of The Preferred Embodiments In the Figure, the numeral 10 generally designates a refrigeration circuit. Refrigerant circuit 10 includes a compressor 12 which compresses suction gas to a higher temperature and pressure and delivers it via discharge line 14 to condenser 16. In the condenser 16, the hot refrigerant gas gives up heat to the condenser air thereby cooling the compressed gas and changing the state of the refrigerant from a gas to a liquid. Liquid refrigerant flows from condenser 16 via liquid line 18 to thermostatic expansion valve, TXV, 20. As the liquid refrigerant passes through the orifice of TXV 20, some of the liquid refrigerant vaporizes into a gas (flash gas). The mixture of liquid and gaseous refrigerant passes via distributor tubes 22 to the evaporator 24. Heat is absorbed by the refrigerant from the evaporator air by the balance of the liquid refrigerant causing it to vaporize in the coil of the evaporator 24. The vaporized refrigerant then flows via suction line 26 to compressor 12 to complete the fluid circuit. A suction modulation valve 28 is located in suction line 26 to control the amount of refrigerant delivered to the compressor 10 by controlling the flow in the suction line 26. The sensing bulb 21 of TXV 20 is located on suction line 26 between evaporator 24 and suction modulation valve 28 so that TXV 20 regulates the amount of refrigerant delivered to the evaporator 24 to establish a given superheat at the outlet of evaporator 24. The refrigerant circuit described so far is conventional. The present invention adds a quench line 30 connecting liquid line 18 and suction line 26 at a point between the suction modulation valve 28 and compressor 12. QEV 32 is located in the quench line 30 and has a sensing bulb 33 located on suction line 26 between th intersection of lines 30 and 26 and compressor 12. In operation, TXV 20 is controlled responsive to the temperature in the suction line 26 sensed by bulb 21 so as to control the amount of refrigerant entering evaporator 24, and the superheat of the refrigerant leaving evaporator 24. QEV 32 is closed as long as the superheat sensed in line 26 by bulb 33 is less than a settable predetermined value of superheat which is higher than the superheat setting of TXV 20. If the superheat sensed by bulb 33 is higher than the set valve, QEV 32 is opened to allow liquid refrigerant to pass from liquid line 18 to suction line 26. Because quench line 30 is connected to liquid line 18 upstream of TXV 20 and is connected to suction line

3 EP A1 26 downstream of bulb 21 and suction modulation valve 28, the opening of QEV 32 does not upset the operation of TXV 20 or suction modulation valve 28. Also, because bulb 33 is located on suction line 26 downstream of the connection between quench line 30 and suction line 26, bulb 33 senses the suction gas as tempered by liquid injection and controls QEV 32 to reduce the superheat at the predetermined setting, when required. The QEV 32 and TXV 20 can be the same type of valve but used in a different way. A QEV suitable for this purpose is available from Sporlan Valve Company as Thermostatic Expansion Valve IV-1-1/2-L2. Where suction modulation valve 28 is capable of complete closure, in the fully modulated condition, the only refrigerant supplied to compressor 12 will be the liquid refrigerant supplied via quench line 30 under the control of QEV 32. Although a preferred embodiment of the present invention has been illustrated and described, other changes will occur to those skilled in the art. It is therefore intended that the scope of the present invention is to be limited only by the sope of the appended claims. Claims 1. A closed refrigeration circuit containing refrigerant and serially including a compressor, a discharge line, a condenser, a liquid line, a thermal expansion valve, at least one distributor tube, an evaporator and a suction line connected to the compressor and containing suction modulation valve means; said thermal expansion valve having sensing means for sensing superheat in said suction line upstream of said suction modulation valve means and for controlling said thermal expansion valve means responsive thereto; a quench line connecting said liquid line to said suction line at a pont in said suction line downstream of said suction modulation valve means; a quench expansion valve in said quench line for controlling the flow of liquid refrigerant directly from said liquid line to said suction line. 2. The circuit of claim 1 further including sensing means for sensing superheat in said suction line downstream of the point of connection of said quench line to said suction line whereby said quench expansion valve is controlled responsive to superheat in said suction line as supplied to said compressor. 3. The circuit of claim 2 wherein said sensing means for sensing superheat in said suction line downstream of the point of connection of said quench line to said suction line controls said quench expansion valve to limit said refrigerant supplied to said compressor via said suction line to a predetermined settable superheat. 4. The circuit of claim 1 wherein said suction modulation valve means is capable of full closure whereby said quench line supplies the only refrigerant to said compressor when said compressor is fully modulated

4 EP A

5 3 European Patent Office EUROPEAN SEARCH REPORT Application Number EP DOCUMENTS NSIDERED TO BE RELEVANT,., Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE fateg r> of relevant passages to claim APPLICATION (Int. Cl. 4) X GB-A (CARRIER) 1 * Page 1, line 88 - page 4, line 48; figures 1-3 * Y 2,3 Y US-A (WEIS) 2,3 * Column 3, line 53 - column 5, line 19; figures * X US-A (WATERFILL) 1-3 * Page 1, left-hand column, line 41 - page 2, right-hand column, line 34; figures * A US-A (LOWES) 1-3 * Column 5, line 40 - column 18, line 24; figures 1-12 * c h,, lb D B 4im,1/n. A US-A (CAWLEY) 1-3 * Column 2, line 66 - column 6, line 32; figures 1-3 * ilchnk ai. hixds SEARCHED (Int. C1.4) A US-A (CRUMLEY) 1-3 * Column 3, line 18 - column 6, line F 25 B 56; figures 1-4 * ' A US-A (SCHEDEL) 4 * Column 2, line 64 - column 3, line 2; column 4, line 27 - column 9, line 48; figures 1-4 * A US-A (JACYNO) A US-A (BRACKEN) A US-A (POND) The present search report has been drawn up for all claims Place of search Datr of completion of the search Examiner THE HAGUE BOETS A.F.J. CATEGORY OF CITED DOCUMENTS T theory or principle underlying the invention E : earlier patent document, but published on, or X particularly relevant if taken alone after the filing date Y : particularly relevant if combined with another D : document cited in the application document of the same category L : document cited for other reasons A : technological background 0 : nun-written disclosure & : member of the same patent family, corresponding P : intermediate document document

EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2010/52

EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2010/52 (19) (12) EUROPEAN PATENT APPLICATION (11) EP 2 267 391 A2 (43) Date of publication: 29.12.2010 Bulletin 2010/52 (51) Int Cl.: F28D 9/00 (2006.01) F28F 3/04 (2006.01) (21) Application number: 10167552.8

More information

EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2012/50

EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2012/50 (19) (12) EUROPEAN PATENT APPLICATION (11) EP 2 32 983 A2 (43) Date of publication: 12.12.12 Bulletin 12/0 (21) Application number: 1216990.2 (1) Int Cl.: F24H 4/04 (06.01) F2B /02 (06.01) F2B 47/02 (06.01)

More information

TEPZZ 9Z5549A T EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: F24F 1/06 ( ) F24F 1/46 (2011.

TEPZZ 9Z5549A T EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: F24F 1/06 ( ) F24F 1/46 (2011. (19) TEPZZ 9Z5549A T (11) EP 2 905 549 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 12.08.2015 Bulletin 2015/33 (51) Int Cl.: F24F 1/06 (2011.01) F24F 1/46 (2011.01) (21) Application number:

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 (19) United States US 20040206110A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0206110 A1 Lifson et al. (43) Pub. Date: (54) VAPOR COMPRESSION SYSTEM WITH BYPASS/ECONOMIZER CIRCUITS (76)

More information

(12) United States Patent

(12) United States Patent US008011 196B2 (12) United States Patent Eber et al. (54) REFRIGERANT CONTROL OF A HEATRECOVERY CHILLER (75) Inventors: Alan Hv Eber, La Crosse, WI (US); Steven J. Pitts, LaCrescent, MN (US); Brian T.

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Kuroki et al. USOO6467288B2 (10) Patent No.: (45) Date of Patent: Oct. 22, 2002 (54) HEAT-PUMP WATER HEATER (75) Inventors: Jyouji Kuroki, Kariya (JP); Hisayoshi Sakakibara, Nishio

More information

EUROPEAN PATENT APPLICATION

EUROPEAN PATENT APPLICATION A Europaisches Patentamt European Patent Office Office europeen des brevets (fi) Publication number : 0 461 089 A2 EUROPEAN PATENT APPLICATION (2?) Application number: 91830242.3 @ Date of filing : 05.06.91

More information

TEPZZ 87_ 6A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

TEPZZ 87_ 6A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ 87_ 6A_T (11) EP 2 871 336 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 13.0.1 Bulletin 1/ (21) Application number: 1319173.3 (1) Int Cl.: F01K 13/02 (06.01) F22B 3/00 (06.01)

More information

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2006/21

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2006/21 (19) Europäisches Patentamt European Patent Office Office européen des brevets (12) EUROPEAN PATENT APPLICATION (11) EP 1 659 040 A1 (43) Date of publication: 24.05.2006 Bulletin 2006/21 (51) Int Cl.:

More information

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2010/17

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2010/17 (19) (12) EUROPEAN PATENT APPLICATION (11) EP 2 179 656 A1 (43) Date of publication: 28.04.2010 Bulletin 2010/17 (51) Int Cl.: A22C 7/00 (2006.01) (21) Application number: 09013444.6 (22) Date of filing:

More information

TEPZZ _87768A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2017/27

TEPZZ _87768A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2017/27 (19) TEPZZ _87768A_T (11) EP 3 187 768 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 0.07.17 Bulletin 17/27 (21) Application number: 16462.9 (1) Int Cl.: F16N 29/00 (06.01) F16C 33/66 (06.01)

More information

(12) United States Patent (10) Patent No.: US 7,014,690 B2

(12) United States Patent (10) Patent No.: US 7,014,690 B2 USOO7014690B2 (12) United States Patent (10) Patent No.: US 7,014,690 B2 Mitsch et al. (45) Date of Patent: Mar. 21, 2006 (54) EXPANDABLE DESICCANTELEMENT 5,689,893 A 11/1997 Mitsch 5,715,621. A 2/1998

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US006 173454B1 (10) Patent No.: US 6,173,454 B1 Alvarez (45) Date of Patent: Jan. 16, 2001 (54) JONNISAFE 5,191,991 3/1993 Jackson... 220/207 5,347,663 9/1994 Yost... 4/253 (76)

More information

SYS; Só-N III. sžess 43. United States Patent (19) Voorhis 5,706, Jan. 13, Date of Patent: Patent Number:

SYS; Só-N III. sžess 43. United States Patent (19) Voorhis 5,706, Jan. 13, Date of Patent: Patent Number: United States Patent (19) Voorhis III 11 45 US005706670A Patent Number: Date of Patent: Jan. 13, 1998 54 BDIRECTIONAL METERD FLOW CONTROL DEVICE (75) 73 21 22 51 52 58) 56 Inventor: Roger J. Voorhis, Pennellville,

More information

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1 US 2008.0005926A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0005926 A1 Goggin (43) Pub. Date: Jan. 10, 2008 (54) APPARATUS AND METHOD FOR REDUCING CLOTHES DRYER LINT

More information

USOO A United States Patent (19) 11 Patent Number: 5,993,656 Cordani (45) Date of Patent: Nov.30, 1999

USOO A United States Patent (19) 11 Patent Number: 5,993,656 Cordani (45) Date of Patent: Nov.30, 1999 USOO5993656A United States Patent (19) 11 Patent Number: 5,993,656 Cordani (45) Date of Patent: Nov.30, 1999 54). SELECTIVE FLUIDABSORBING DEVICE 4,861,469 8/1989 Rossi et al.... 21.0/502.1 5,130,018 7/1992

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States US 2003O194330A1 (12) Patent Application Publication (10) Pub. o.: US 2003/0194330 A1 Lifson (43) Pub. Date: Oct. 16, 2003 (54) SHORT REVERSE ROTATIO OF COMPRESSOR AT STARTUP (76) Inventor:

More information

(12) United States Patent

(12) United States Patent US007 145105B2 (12) United States Patent Gaullard (10) Patent No.: (45) Date of Patent: Dec. 5, 2006 (54) ELECTRIC KETTLE (75) Inventor: Hervé Gaullard, Courtefontaine (FR) (73) Assignee: SEB SA, Ecully

More information

219,432,433,436,528,529, 99,483 is ABSTRACT 56) References Cited

219,432,433,436,528,529, 99,483 is ABSTRACT 56) References Cited USOO6075229A United States Patent (19) 11 Patent Number: 6,075,229 Vanselow (45) Date of Patent: Jun. 13, 2000 54). CUP WARMER HOLDER 4,442,343 4/1984 Genuit et al.... 219/433 4,463,664 8/1984 Peace......

More information

(21) Appl. No.: 418, Filed: Apr. 7, 1995 (51 Int. CI.'... F28D Ascolillo

(21) Appl. No.: 418, Filed: Apr. 7, 1995 (51 Int. CI.'... F28D Ascolillo United States Patent (19) Middleton et al. US005605052A 11 Patent umber: 5,605,052 (45) Date of Patent: Feb. 25, 1997 (54) MIST SPRAY SYSTEM FOR REFRIGERATIO CODESERS (76) Inventors: Stephen C. Middleton;

More information

United States Patent (19) Jackson

United States Patent (19) Jackson United States Patent (19) Jackson (54) 76 21 22) (51) 52) 58) 56) BUILDING EXTERIOR FIRE PREVENTION SYSTEM Inventor: Willie C. Jackson, 2.4808 Mission Blvd., Hayward, Calif. 94545 Appl. No.:754,792 Filed:

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States US 2005.0072175A1 (12) Patent Application Publication (10) Pub. No.: US 2005/0072175A1 Umeo et al. (43) Pub. Date: Apr. 7, 2005 (54) AIR CONDITIONER ANDTRUCK EQUIPPED WITH SAME (76)

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Vogel et al. USOO6286322B1 (10) Patent No.: (45) Date of Patent: US 6,286,322 B1 Sep. 11, 2001 (54) (75) (73) (*) (21) (22) (51) (52) (58) (56) HOT GAS DEFROST REFRIGERATION SYSTEM

More information

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1 US 20100205768A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0205768 A1 Oh (43) Pub. Date: Aug. 19, 2010 (54) BRUSH ASSEMBLY OF VACUUM CLEANER (30) Foreign Application

More information

United States Patent 19

United States Patent 19 United States Patent 19 USOO5853046A 11 Patent Number: 5,853,046 Williams et al. (45) Date of Patent: Dec. 29, 1998 54) HEAT EXCHANGER SEAL APPARATUS 4.914,929 4/1990 Shimazaki. 5,036,931 8/1991 Iritani.

More information

(2) Patent Application Publication (10) Pub. No.: US 2009/ A1

(2) Patent Application Publication (10) Pub. No.: US 2009/ A1 (19) United tates U 20090094991A1 (2) Patent Application Publication (10) Pub. No.: U 2009/0094991A1 Yu et al. (43) Pub. Date: Apr. 16, 2009 9 (54) HIGH EFFICIENCY HYBRID AIR Publication Classification

More information

EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G08B 17/06 ( ) G08B 17/103 (2006.

EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G08B 17/06 ( ) G08B 17/103 (2006. (19) (12) EUROPEAN PATENT APPLICATION (11) EP 2 2 9 A2 (43) Date of publication: 04.01.12 Bulletin 12/01 (1) Int Cl.: G08B 17/06 (06.01) G08B 17/3 (06.01) (21) Application number: 11171928.2 (22) Date

More information

(12) United States Patent (10) Patent No.: US 6,647,932 B1

(12) United States Patent (10) Patent No.: US 6,647,932 B1 USOO664.7932B1 (12) United States Patent (10) Patent No.: Cui et al. (45) Date of Patent: Nov. 18, 2003 (54) COMPACT BOILER WITH TANKLESS (56) References Cited HEATER FOR PROVIDING HEAT AND DOMESTIC HOT

More information

(12) United States Patent (10) Patent No.: US 6,176,097 B1. Kim (45) Date of Patent: Jan. 23, 2001

(12) United States Patent (10) Patent No.: US 6,176,097 B1. Kim (45) Date of Patent: Jan. 23, 2001 USOO6176097B1 (12) United States Patent (10) Patent No.: Kim (45) Date of Patent: Jan. 23, 2001 (54) SIDE BY SIDE TYPE REFRIGERATOR AND 5,477,699 12/1995 Guess et al.... 62/187 METHOD FOR CONTROLLING 5,732,561

More information

(12) United States Patent

(12) United States Patent USOO9655489B2 (12) United States Patent Ha et al. (10) Patent No.: (45) Date of Patent: US 9,655.489 B2 May 23, 2017 (54) VACUUM CLEANER (71) Applicant: LG ELECTRONICS INC., Seoul (KR) (72) Inventors:

More information

(12) (10) Patent No.: US 7, B2 Army, Jr. et al. (45) Date of Patent: Mar. 13, 2007

(12) (10) Patent No.: US 7, B2 Army, Jr. et al. (45) Date of Patent: Mar. 13, 2007 United States Patent USOO7188488B2 (12) (10) Patent No.: Army, Jr. et al. (45) Date of Patent: Mar. 13, 2007 (54) PACK AND A HALF CONDENSING CYCLE 2003/0084681 A1* 5/2003 Haas... 62/402 PACK WITH COMBINED

More information

AE October 1965 Reformatted October Hot Gas Bypass Control Systems

AE October 1965 Reformatted October Hot Gas Bypass Control Systems Hot Gas Bypass Control Systems AE21-1160 AE21-1160 October 1965 Reformatted October 2010 On many refrigeration and air conditioning systems, the refrigeration load will vary over a wide range. This may

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 US 2004O232165A1 (19) United States (12) Patent Application Publication (10) Pub. No.: Lee (43) Pub. Date: Nov. 25, 2004 (54) GLUE GUN (52) U.S. Cl.... 222/146.5 (76) Inventor: Kuo-Jium Lee, Taichung (TW)

More information

(12) United States Patent (10) Patent No.: US 7,654,310 B2. Li (45) Date of Patent: Feb. 2, 2010

(12) United States Patent (10) Patent No.: US 7,654,310 B2. Li (45) Date of Patent: Feb. 2, 2010 USOO765431 OB2 (12) United States Patent (10) Patent No.: Li (45) Date of Patent: Feb. 2, 2010 (54) LOOP HEAT PIPE 6,840,304 B1* 1/2005 Kobayashi et al.... 165,111 7,231,961 B2 * 6/2007 Alex et al....

More information

(12) United States Patent (10) Patent No.: US 6,460,358 B1

(12) United States Patent (10) Patent No.: US 6,460,358 B1 USOO6460358B1 (12) United States Patent (10) Patent No.: Hebert (45) Date of Patent: Oct. 8, 2002 (54) FLASH GAS AND SUPERHEAT FOREIGN PATENT DOCUMENTS EMETEEAPORATORS AND JP 54-121448 9/1979... 62/513

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1. Weng et al. (43) Pub. Date: Jun. 23, 2005

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1. Weng et al. (43) Pub. Date: Jun. 23, 2005 (19) United States US 2005O133195A1 (12) Patent Application Publication (10) Pub. No.: US 2005/0133195A1 Weng et al. (43) Pub. Date: Jun. 23, 2005 (54) HEAT EXCHANGER USING WATER LIQUID (52) U.S. C.. 165/53

More information

(12) United States Patent (10) Patent No.: US 6,257,007 B1

(12) United States Patent (10) Patent No.: US 6,257,007 B1 USOO6257007B1 (12) United States Patent (10) Patent No.: US 6,257,007 B1 Hartman (45) Date of Patent: Jul. 10, 2001 (54) METHOD OF CONTROL OF COOLING 6,065,298 * 5/2000 Fujimoto... 62/230 SYSTEM CONDENSER

More information

TEPZZ A T EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: F25D 25/02 ( )

TEPZZ A T EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: F25D 25/02 ( ) (19) TEPZZ 7 8 84A T (11) EP 2 728 284 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 07.0.14 Bulletin 14/19 (1) Int Cl.: F2D 2/02 (06.01) (21) Application number: 13191. (22) Date of filing:

More information

(51) Int Cl.: A01G 25/02 ( )

(51) Int Cl.: A01G 25/02 ( ) (19) Europäisches Patentamt European Patent Office Office européen des brevets (12) EUROPEAN PATENT APPLICATION (11) EP 1 695 614 A1 (43) Date of publication: 30.08.2006 Bulletin 2006/35 (51) Int Cl.:

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 (19) United States US 20070209656A1 (12) Patent Application Publication (10) Pub. No.: US 2007/0209656A1 Lee (43) Pub. Date: Sep. 13, 2007 (54) VAPOR HEATING TYPE COOKING APPARATUS (76) Inventor: Won-Ki

More information

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1 (19) United States US 2014O137590A1 (12) Patent Application Publication (10) Pub. No.: US 2014/0137590 A1 Chopko et al. (43) Pub. Date: May 22, 2014 (54) INTEGRATED TRANSPORT Publication Classification

More information

United States Patent (19) Dean

United States Patent (19) Dean United States Patent (19) Dean 54 (76) 21) 22 63 51 52 58) 56) ARVENTTLATION CONTROL SYSTEM Inventor: Arthur C. Dean, 13403 Vimy Ridge Rd., Alexander, Ark. 72002 Appl. No.: 63,429 Filed: Jun. 18, 1987

More information

TEPZZ Z564 A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: B64D 13/06 ( ) B64D 13/08 (2006.

TEPZZ Z564 A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: B64D 13/06 ( ) B64D 13/08 (2006. (19) TEPZZ Z64 A_T (11) EP 3 06 433 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 17.08.16 Bulletin 16/33 (1) Int Cl.: B64D 13/06 (06.01) B64D 13/08 (06.01) (21) Application number: 16127.7

More information

(12) United States Patent (10) Patent No.: US 6,361,301 B1

(12) United States Patent (10) Patent No.: US 6,361,301 B1 USOO636.1301B1 (12) United States Patent (10) Patent No.: Scaglotti et al. (45) Date of Patent: Mar. 26, 2002 (54) HEATER ASSEMBLY FOR BLOW MOLDING 5,256,341. 10/1993 Denis et al. PLASTIC PREFORMS 5,549,468

More information

United States Patent (19) Olin et al.

United States Patent (19) Olin et al. United States Patent (19) Olin et al. 54) VACUUM TOILET UNIT 75 Inventors: Henry Olin, Espoo; Gunner Lindroos, Helsinki; Roland Mattsson, Espoo, all of Finland 73 Assignee: Evac International Oy, Helsinki,

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0160759 A1 Chaney et al. US 2005O160759A1 (43) Pub. Date: (54) (75) (73) (21) (22) (60) CHILLER RESERVOR WITH INTERNAL BAFFLES

More information

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0083132 A1 Maunder et al. US 20140O83132A1 (43) Pub. Date: Mar. 27, 2014 (54) (75) (73) (21) (22) (86) (30) PROCESS FOR LIQUEFACTION

More information

United States Patent (19) Moore, Jr. et al.

United States Patent (19) Moore, Jr. et al. United States Patent (19) Moore, Jr. et al. 54 76 AUTOMATIC SEALING SPRINKLER HEAD ADAPTER AND FIRE PROTECTION SPRINKLER SYSTEM Inventors: Fred D. Moore, Jr., 155 Hunt Dr., Horsham, Pa. 19044; Robert L.

More information

TEPZZ _54Z 7A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

TEPZZ _54Z 7A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ _4Z 7A_T (11) EP 3 14 037 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 12.04.17 Bulletin 17/1 (21) Application number: 119937.3 (1) Int Cl.: G08B 21/02 (06.01) B60R 21/01 (06.01)

More information

(12) United States Patent

(12) United States Patent (12) United States Patent USOO7356873B2 (10) Patent No.: US 7,356,873 B2 Nielsen (45) Date of Patent: Apr. 15, 2008 (54) HIGHLY EFFICIENT AUTONOMOUS 3,592,566 A 7, 1971 Beardslee VACUUM CLEANER 3,906,585

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0017627 A1 Jeong et al. US 201200 17627A1 (43) Pub. Date: Jan. 26, 2012 (54) (75) (73) (21) (22) (86) (30) APPARATUS FOR PURIFYING

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 (19) United States US 20060277782A1 (12) Patent Application Publication (10) Pub. No.: Chen et al. (43) Pub. Date: Dec. 14, 2006 (54) NEGATIVE PRESSURE TYPE DRYING MACHINE THAT UTILIZES THE ENERGY OF THE

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 (19) United States US 200700.44517A1 (12) Patent Application Publication (10) Pub. No.: US 2007/0044517 A1 Yang et al. (43) Pub. Date: Mar. 1, 2007 (54) DETERGENT SUPPLYING APPARATUS OF CLOTHES WASHING

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 (19) United States US 2004O140251A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0140251A1 Hsiao (43) Pub. Date: Jul. 22, 2004 (54) ULTRAVIOLET CLEANING WATER DEVICE (76) Inventor: Chih-Ling

More information

(12) United States Patent (10) Patent No.: US 8,375,741 B2

(12) United States Patent (10) Patent No.: US 8,375,741 B2 US008375741B2 (12) United States Patent () Patent No.: Taras et al. () Date of Patent: Feb. 19, 2013 (54) REFRIGERANTSYSTEM WITH (56) References Cited INTERCOOLER AND LIQUID/VAPOR NJECTION U.S. PATENT

More information

AIR CONDITIONING. Carrier Corporation 2002 Cat. No

AIR CONDITIONING. Carrier Corporation 2002 Cat. No AIR CONDITIONING Carrier Corporation 2002 Cat. No. 020-016 1. This refresher course covers topics contained in the AIR CONDITIONING specialty section of the North American Technician Excellence (NATE)

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 (19) United States US 20060026976A1 (12) Patent Application Publication (10) Pub. No.: US 2006/0026976A1 Carpenter (43) Pub. Date: Feb. 9, 2006 (54) CLIMATE CONTROLAND DEHUMIDIFICATION SYSTEMAND METHOD

More information

TEPZZ _ 7455A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

TEPZZ _ 7455A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ _ 7455A_T (11) EP 3 127 455 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 08.02.2017 Bulletin 2017/06 (21) Application number: 16156729.2 (51) Int Cl.: A47C 19/00 (2006.01) A47C

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States US 20150291450A1 (12) Patent Application Publication (10) Pub. No.: US 2015/0291450 A1 Sherzer (43) Pub. Date: Oct. 15, 2015 (54) METHOD FOR SOLIDS REMOVAL IN HEAT Publication Classification

More information

Tikhonov et al. (45) Date of Patent: Mar. 13, (54) REFRIGERATOR WITH SELECTIVE (56) References Cited ARFLOWPASSAGES BETWEEN THE

Tikhonov et al. (45) Date of Patent: Mar. 13, (54) REFRIGERATOR WITH SELECTIVE (56) References Cited ARFLOWPASSAGES BETWEEN THE (12) United States Patent USOO8132423B2 () Patent No.: US 8,132,423 B2 Tikhonov et al. (45) Date of Patent: Mar. 13, 2012 (54) REFRIGERATOR WITH SELECTIVE (56) References Cited ARFLOWPASSAGES BETWEEN THE

More information

\R-A- (12) United States Patent. (10) Patent No.: US 6,674,055 B2. Zhang et al. (45) Date of Patent: Jan. 6, 2004

\R-A- (12) United States Patent. (10) Patent No.: US 6,674,055 B2. Zhang et al. (45) Date of Patent: Jan. 6, 2004 (12) United States Patent Zhang et al. USOO6674055B2 (10) Patent No. (45) Date of Patent Jan. 6, 2004 (54) ELECTROMAGNETIC WATER HEATER (76) Inventors Shou Jun Zhang, Industrial Road 2, Nan Sha Economic

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 (19) United States US 20040000399A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0000399 A1 Gavula (43) Pub. Date: Jan. 1, 2004 (54) AIR-TO-AIR HEAT PUMP DEFROST BYPASS LOOP (76) Inventor:

More information

into "ill (12) Patent Application Publication (10) Pub. No.: US 2008/ A1 (19) United States 12d Roberts (43) Pub. Date: Feb.

into ill (12) Patent Application Publication (10) Pub. No.: US 2008/ A1 (19) United States 12d Roberts (43) Pub. Date: Feb. (19) United States US 2008.0034781A1 (12) Patent Application Publication (10) Pub. No.: US 2008/0034781 A1 Roberts (43) Pub. Date: Feb. 14, 2008 (54) BEVERAGE PITCHER COLD PLATE STATION (76) Inventor:

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Oikawa et al. USOO6778394B2 (10) Patent No.: (45) Date of Patent: Aug. 17, 2004 (54) ELECTRONIC DEVICE HAVING A HEAT DSSPATION MEMBER (75) Inventors: Hironori Oikawa, Hadano (JP);

More information

( 2 of 52 ) United States Patent 6,557,213 Winn May 6, 2003 Closed loop push/pull system for a cotton gin Abstract A closed loop push/pull system of the present invention employs a hot shelf tower dryer

More information

(12) United States Patent (10) Patent No.: US 6,920,917 B2

(12) United States Patent (10) Patent No.: US 6,920,917 B2 USOO6920917B2 (12) United States Patent (10) Patent No.: Inoue et al. (45) Date of Patent: Jul. 26, 2005 (54) DOUBLE-PIPE HEAT EXCHANGER 5,950,716 A 9/1999 Appelquist et al.... 165/109.1 6,220,344 B1 *

More information

(12) United States Patent (10) Patent No.: US 8,371,246 B1

(12) United States Patent (10) Patent No.: US 8,371,246 B1 USOO8371246B1 (12) United States Patent (10) Patent No.: US 8,371,246 B1 Streng (45) Date of Patent: Feb. 12, 2013 (54) DEVICE FOR DRYING PETS 6,520,120 B1 2/2003 Arnold et al. 6,595,162 B1* 7/2003 Hibbert...

More information

(12) United States Patent (10) Patent No.: US 6,909,365 B2. Toles (45) Date of Patent: Jun. 21, 2005 METHOD THEREFOR 340/667, 457.1, 457.

(12) United States Patent (10) Patent No.: US 6,909,365 B2. Toles (45) Date of Patent: Jun. 21, 2005 METHOD THEREFOR 340/667, 457.1, 457. USOO6909365B2 (12) United States Patent (10) Patent No.: US 6,909,365 B2 Toles (45) Date of Patent: Jun. 21, 2005 (54) CHILD SAFETY SEAT ALARM SYSTEMAND (58) Field of Search... 340/.457, 687, METHOD THEREFOR

More information

N 14. United States Patent (19) 15, W. (11) 4,303, Dec. 1, 1981 T COMPRESSOR 5. The present invention relates to a process for providing

N 14. United States Patent (19) 15, W. (11) 4,303, Dec. 1, 1981 T COMPRESSOR 5. The present invention relates to a process for providing United States Patent (19) Laguilharre et al. 54 MECHANICAL VAPOR RECOMPRESSION EVAPORATORS (75) Inventors: Pierre R. Laguilharre, Enghien les Bains; Jacques J. Ciboit, Paris, both of France 73 Assignee:

More information

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0307237 A1 CHEN US 2013 0307237A1 (43) Pub. Date: Nov. 21, 2013 (54) MEDICAL CART SYSTEM (75) Inventor: (73) Assignee: (21)

More information

XSTREAM Valve System With A.R.M.E.D. Technology Service & Installation Instructions Page 1

XSTREAM Valve System With A.R.M.E.D. Technology Service & Installation Instructions Page 1 Page 1 WHY should I install the XSTREAM Valve System? XDX is more efficient, saving on power consumption. Use of XDX system decreases defrost cycles. XDX maintains more consistent product temperatures,

More information

(51) Int Cl.: F17C 5/02 ( ) F17C 7/04 ( )

(51) Int Cl.: F17C 5/02 ( ) F17C 7/04 ( ) (19) TEPZZ 948 9B_T (11) EP 2 94 839 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 04.06.14 Bulletin 14/23 (1) Int Cl.: F17C /02 (06.01) F17C 7/04

More information

INSTALLATION INSTRUCTIONS HOT GAS BYPASS SYSTEM DESIGN MANUAL

INSTALLATION INSTRUCTIONS HOT GAS BYPASS SYSTEM DESIGN MANUAL INSTALLATION INSTRUCTIONS HOT GAS BYPASS SYSTEM DESIGN MANUAL MODELS: WA242H WA36H NOTE: Electrical data presented in this manualsupersedes any other data for the above listed models. Bard Manufacturing

More information

To accomplish this, the refrigerant fi tis pumped throughh aclosed looped pipe system.

To accomplish this, the refrigerant fi tis pumped throughh aclosed looped pipe system. Basics Refrigeration is the removal of heat from a material or space, so that it s temperature is lower than that of it s surroundings. When refrigerant absorbs the unwanted heat, this raises the refrigerant

More information

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0023402 A1 FOett US 201700234O2A1 (43) Pub. Date: Jan. 26, 2017 (54) (71) (72) (73) (21) (22) (86) (60) ULTRAVOLET LIGHT FLAME

More information

Europaisches Patentamt (1 9) Qjl) European Patent Office. Office eurodeen des brevets (11) EP A1 (12) EUROPEAN PATENT APPLICATION

Europaisches Patentamt (1 9) Qjl) European Patent Office. Office eurodeen des brevets (11) EP A1 (12) EUROPEAN PATENT APPLICATION Europaisches Patentamt (1 9) Qjl) European Patent Office Office eurodeen des brevets (11) EP 0 962 132 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) nt. CI.6: A01 M 1/20, A61 L 9/03

More information

USOO A United States Patent (19) 11 Patent Number: 6,164,247 Iwasaki et al. (45) Date of Patent: Dec. 26, 2000 LLP

USOO A United States Patent (19) 11 Patent Number: 6,164,247 Iwasaki et al. (45) Date of Patent: Dec. 26, 2000 LLP USOO6164247A United States Patent (19) 11 Patent Number: Iwasaki et al. (45) Date of Patent: Dec. 26, 2000 54 INTERMEDIATE FLUID TYPE WAPORIZER, 4,417,951 11/1983 Stanisic et al.... 122/492 AND NATURAL

More information

SECTION 8 AIR SOURCE HEAT PUMPS UNIT 43 AIR SOURCE HEAT PUMPS

SECTION 8 AIR SOURCE HEAT PUMPS UNIT 43 AIR SOURCE HEAT PUMPS SECTION 8 AIR SOURCE HEAT PUMPS UNIT 43 AIR SOURCE HEAT PUMPS UNIT OBJECTIVES After studying this unit, the reader should be able to Describe the operation of reverse-cycle refrigeration (heat pumps) Explain

More information

United States Patent (19) Fischereder

United States Patent (19) Fischereder United States Patent (19) Fischereder 54 76 22 21 ) 30 52 51 58 56 ADJUSTABLE PUPPET SHOWSTAGE Inventor: Franz Fischereder, Mainaustrabe 67, Munich, Germany Filed: Jan. 29, 1973 Appl. No.: 327,315 Foreign

More information

Performance Rating of Refrigerant Pressure Regulating Valves

Performance Rating of Refrigerant Pressure Regulating Valves ANSI/AHRI Standard 771 (SI) 2014 Standard for Performance Rating of Refrigerant Pressure Regulating Valves Approved by ANSI on May 19, 2015 IMPORTANT SAFETY DISCLAIMER AHRI does not set safety standards

More information

(12) United States Patent (10) Patent No.: US 7,190,120 B1

(12) United States Patent (10) Patent No.: US 7,190,120 B1 US007190120B1 (12) United States Patent () Patent No.: SansOne et al. (45) Date of Patent: Mar. 13, 2007 (54) AIRPORT STROBE LIGHT MONITORING 4,449,073 A * 5/1984 Mongoven et al.... 315/130 SYSTEM (75)

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 (19) United States US 20060266O74A1 (12) Patent Application Publication (10) Pub. No.: US 2006/0266074 A1 Groll et al. (43) Pub. Date: (54) HEAT PUMP SYSTEM WITH MULTI-STAGE COMPRESSION (75) Inventors:

More information

United States Patent Frans

United States Patent Frans United States Patent Frans (54) 72 (73) 22 21) (52) 51 58) HEAT PROCESSING OF MINERALs Inventor: Robert D. Frans, Middleburg Hits., Ohio Assignee: The Hanna Mining Company, Cleveland, Ohio Filed: Sept.

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States US 2015O168032A1 (12) Patent Application Publication (10) Pub. No.: US 2015/0168032 A1 Steele (43) Pub. Date: Jun. 18, 2015 (54) POWER SUPPLY SYSTEM FORTRANSPORT Publication Classification

More information

US 9,466,551 Bl Oct. 11, 2016

US 9,466,551 Bl Oct. 11, 2016 111111 1111111111111111111111111111111111111111111111111111111111111 US009466551Bl c12) United States Patent Reist et al. (10) Patent No.: (45) Date of Patent: US 9,466,551 Bl Oct. 11, 2016 (54) HEAT TRANSFERRING

More information

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1 US 2011 0120094A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0120094A1 Crawley et al. (43) Pub. Date: May 26, 2011 (54) METHOD OF REGENERATING AN EXHAUST (30) Foreign

More information

Refrigeration Basics from a Brewery Perspective

Refrigeration Basics from a Brewery Perspective Refrigeration Basics from a Brewery Perspective By Jim VanderGiessen Jr, Pro Refrigeration Inc. By studying and understanding the basic principles of refrigeration, you will be able to understand any type

More information

2,804,427. Aug. 27, 1957 J. F. SURANO METHOD AND APPARATUS FOR DEODORIZING OILS AND FATS. Filed Oct. 27, Sheets-Sheet INVENTOR. ????

2,804,427. Aug. 27, 1957 J. F. SURANO METHOD AND APPARATUS FOR DEODORIZING OILS AND FATS. Filed Oct. 27, Sheets-Sheet INVENTOR. ???? Aug. 27, 1957 J. F. SURANO METHOD AND APPARATUS FOR DEODORIZING OILS AND FATS Filed Oct. 27, 1955 2. Sheets-Sheet???? a /? Z INVENTOR. Aug. 27, 1957 J. F. SURANCO METHOD AND APPARATUS FOR DEODORIZING OILS

More information

Taiwan (21) Appl. No.: 817,519 (22 Filed: Jan. 9, Int. Cl... A47L 5/24 52 U.S. C... 15/324; 15/328; 15/330; 15/339; 15/344; 417/201

Taiwan (21) Appl. No.: 817,519 (22 Filed: Jan. 9, Int. Cl... A47L 5/24 52 U.S. C... 15/324; 15/328; 15/330; 15/339; 15/344; 417/201 United States Patent (19) Wei 11) 45 Patent Number: Date of Patent: 4,656,687 Apr. 14, 1987 (54) ELEPHANT-SHAPED CAR CLEANER AND AR PUMP 76 Inventor: Yung-Kuan Wei, No. 1, Lane 970, Sec 2, Pen Tien Street,

More information

Bulletin , March Electric Hot Gas Bypass Valves

Bulletin , March Electric Hot Gas Bypass Valves Bulletin 100-60, March 2018 Electric Hot Gas Bypass Valves PAGE 2 / Bulletin 100-60 10 FEATURES AND BENEFITS SDR-4 Direct temperature control Tight shutoff when closed Can be interfaced with direct digital

More information

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0204207 A1 Speers et al. US 20080204207A1 (43) Pub. Date: Aug. 28, 2008 (54) TWO-WAY AUTOMOTIVE REMOTE (76) (21) (22) (51)

More information

(12) United States Patent (10) Patent No.: US 7,708,808 B1

(12) United States Patent (10) Patent No.: US 7,708,808 B1 USOO7708808B1 (12) United States Patent (10) Patent No.: US 7,708,808 B1 Heumann (45) Date of Patent: May 4, 2010 (54) CYCLONE SEPARATOR WITH ROTATING 3,535,854. A * 10/1970 Taylor... 55,338 COLLECTION

More information

United States Patent (19) Anwunah et al.

United States Patent (19) Anwunah et al. United States Patent (19) Anwunah et al. (54) BATH ROOM SOAP RECYCLING DEVICE 76 Inventors: Vincent Anwunah, John Anwunah, both of 12015 Prest, Detroit, Mich. 48227 (21) Appl. No.: 398,357 (22 Filed: Mar.

More information

MYSTICOOL Max Valve System with Xstream and A.R.M.E.D. Technology Service & Installation Instructions Page 1

MYSTICOOL Max Valve System with Xstream and A.R.M.E.D. Technology Service & Installation Instructions Page 1 Page 1 WHY should I install the MYSTICOOL Max Valve System? XDX is more efficient, saving on power consumption. Use of XDX system decreases defrost cycles. XDX maintains more consistent product temperatures,

More information

(12) United States Patent (10) Patent No.: US 6,692,130 B1

(12) United States Patent (10) Patent No.: US 6,692,130 B1 USOO6692130B1 (12) United States Patent (10) Patent No.: Snow (45) Date of Patent: Feb. 17, 2004 (54) SOLAR POWERED HEATING AND 5,433,660 A 7/1995 Ohba VENTILATION SYSTEM FOR VEHICLE 5,588.909 A 12/1996

More information

US A United States Patent (19) 11 Patent Number: 6,067,007 Gioia (45) Date of Patent: May 23, 2000

US A United States Patent (19) 11 Patent Number: 6,067,007 Gioia (45) Date of Patent: May 23, 2000 US006067007A United States Patent (19) 11 Patent Number: Gioia (45) Date of Patent: May 23, 2000 54 METHOD AND APPARATUS FOR 5,682,133 10/1997 Johnson et al.. DETECTION, NOTIFICATION AND 5,703,598 12/1997

More information

(12) United States Patent (10) Patent No.: US 6,443,434 B1

(12) United States Patent (10) Patent No.: US 6,443,434 B1 USOO6443434B1 (12) United States Patent (10) Patent No.: Prather (45) Date of Patent: Sep. 3, 2002 (54) FORCED-AIR SCENT DISPENSER 5,970,643 A 10/1999 Gawel, Jr.... 43/1 6,050,016 A * 4/2000 Cox... (76)

More information

United States Patent (19)

United States Patent (19) United States Patent (19) 11 USOO5826803A Patent Number: 5,826,803 Cooper (45) Date of Patent: Oct. 27, 1998 54) LAWN AND GARDEN SPRINKLER WITH 1989,525 1/1935 Moore... 239/588 X BENDABLE TUBES 2,757,960

More information

REFRIGERATION CYCLE Principles of Mechanical Refrigeration Level 2: Cycle Analysis

REFRIGERATION CYCLE Principles of Mechanical Refrigeration Level 2: Cycle Analysis REFRIGERATION CYCLE Principles of Mechanical Refrigeration Level 2: Cycle Analysis Technical Development Program Technical Development Programs (TDP) are modules of technical training on HVAC theory, system

More information

(12) United States Patent (10) Patent No.: US 6,612,118 B2

(12) United States Patent (10) Patent No.: US 6,612,118 B2 USOO6612118B2 (12) United States Patent (10) Patent No.: Billman et al. (45) Date of Patent: Sep. 2, 2003 (54) ICE MAKER CONTROL 5,653,114. A 8/1997 Newman et al.... 62/74 6,125,639 A * 10/2000 Newman

More information