ISSN Vol.08,Issue.21, November-2016, Pages:

Size: px
Start display at page:

Download "ISSN Vol.08,Issue.21, November-2016, Pages:"

Transcription

1 ISSN Vol.08,Issue.21, November-2016, Pages: Thermal Analysis of Vapour Compression Cycle for Different Refrigerants ALI MOHAMMED ABDOULHA MASSOUD 1, DR. MOHAMMAD TARIQ 2 1 Research Scholar, Dept of Mechanical Engineering, SSET, SHIATS-DU, Naini, Allahabad, India, ahuwiada360@gmail.com. 2 Assistant Professor, Dept of Mechanical Engineering, SSET, SHIATS-DU, Naini, Allahabad, India, mohammad.tariq@shiats.edu.in Abstract: Vapour compression cycle is an improved type of air refrigeration cycle in which a suitable working substance, termed as refrigerant, is used. The refrigerants generally used for this purpose are ammonia (NH3), carbon dioxide (CO2) and sulphur-dioxide (SO2). The refrigerant used, does not leave the system, but is circulated throughout the system alternately condensing and evaporating. In evaporating, the refrigerant absorbs its latent heat from the solution which is used for circulating it around the cold chamber and in condensing; it gives out its latent heat to the circulating water of the cooler. The vapour compression cycle which is used in vapour compression refrigeration system is now-adays used for all purpose refrigeration. It is used for all industrial purposes from a small domestic refrigerator to a big air conditioning plant. The present analysis has been worked out for the evaporator temperature 00C and Condenser temperature 350C while the duty of the unit has been taken as 352 kw. Two refrigerants with specified conditions at evaporator and condenser have given a designer for more options for optimization. The optimization of the vapour compression cycle with superheating at evaporator by 5deg and sub cooling a the outlet of condenser by 5 deg of both the refrigerants proven that the results of refrigerating effect for the refrigerants R134a and R717 with their conditions have least difference for their dryness fraction and mass flow rate of refrigerants. Work required by compressor is very less for R134a for without condition and with condition as compared to ammonia. As far as COP of the cycle is concerned, the refrigerant R134a with prevailing conditions have maximum value as compared to ammonia. But Ammonia have maximum refrigerating effect. Keywords: Refrigerants, Vapour Compression Cycle, COP, Air Conditioning. I. INTRODUCTION A. Air Conditioning Air conditioning (often referred to as AC, A.C., or A/C) is the process of altering the condition of air by removing heat and humidity to achieve a more comfortable interior environment, typically with the aim of distributing the conditioned air to an occupied space such as a building or a vehicle to improve thermal comfort and indoor air quality. In common use, an air conditioner is a device that removes heat 2016 IJATIR. All rights reserved. from the air inside a building or vehicle, thus lowering the air temperature. The cooling is typically achieved through a refrigeration cycle, but sometimes evaporation or free cooling is used. Air conditioning systems can also be made based on desiccants [5]. In the most general sense, air conditioning can refer to any form of technology that modifies the condition of air (heating, cooling, (de- )humidification, cleaning, ventilation, or air movement). However, in construction, such a complete system of heating, ventilation, and air conditioning is referred to as heating, ventilation, and air conditioning [6]. System, in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, largescale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems [7]. 1. Description of the Vapour Compression Refrigeration System Figure.1 Vapour compression refrigeration The vaporcompression uses a circulating liquid refrigerant as the medium which absorbs and removes heat from the space to be cooled and subsequently rejects that heat elsewhere. Figure 1 depicts a typical, single-stage vapor-compression system. All such systems have four components: a compressor, a condenser, a thermal expansion valve (also called a throttle valve or metering device), and an evaporator. Circulating refrigerant enters the compressor in the thermodynamic state known as a saturated vapour [8] and is compressed to a higher pressure, resulting in a higher temperature as well. The hot, compressed vapor is then in the thermodynamic state known as a superheated vapor and it is at a temperature and pressure at which it can be condensed with either cooling water or cooling air flowing across the coil or tubes. This is where the circulating refrigerant rejects heat from the system and the rejected heat is carried away by either the water or the air (whichever may be the case). The condensed liquid refrigerant, in the

2 ALI MOHAMMED ABDOULHA MASSOUD, DR. MOHAMMAD TARIQ thermodynamic state known as a saturated liquid, is next routed through an expansion valve where it undergoes an abrupt reduction in pressure. That pressure reduction results in the adiabatic flash evaporator of a part of the liquid refrigerant. The auto-refrigeration effect of the adiabatic flash evaporation lowers the temperature of the liquid and vapor refrigerant mixture to where it is colder than the temperature of the enclosed space to be refrigerated. Fig.1. A Fictitious Pressure Volume Diagram for a Typical Refrigeration Cycle Then all the lubricating oil from the system should be removed and the maximum amount of oil allowed to be remained inside the system is 5% of the total amount of oil present in the system. The mineral oil should be replaced with ester based synthetic oil. The drier and the oil filter also should be replaced. The amount of R134a required in the system is about 90 to 95% of R12. Labels should be placed in the systems that have been retrofitted with R134a describing the new refrigerant and the lubricating oil. II. MATERIALS AND METHODS The liquefaction of the refrigerant is accomplished in the condenser, which is, essentially, a container cooled externally by air or water. The hot high-pressure refrigerant gas from the compressor is conveyed to the condenser and liquefies therein. Since there is a high gas pressure in the condenser, and the liquid refrigerant there is under the same pressure, it is easy to complete the cycle by providing a needle valve or other regulating device for injecting liquid into the evaporator. This essential component of a refrigerant plant is called the expansion valve. The cold mixture is then routed through the coil or tubes in the evaporator. A fan circulates the warm air in the enclosed space across the coil or tubes carrying the cold refrigerant liquid and vapor mixture. That warm air evaporates the liquid part of the cold refrigerant mixture. At the same time, the circulating air is cooled and thus lowers the temperature of the enclosed space to the desired temperature. The evaporator is where the circulating refrigerant absorbs and removes heat which is subsequently rejected in the condenser and transferred elsewhere by the water or air used in the condenser. To complete the refrigeration cycle, the refrigerant vapor from the evaporator is again a saturated vapor and is routed back into the compressor. 2. R12 to R134a Conversion The process of retrofitting R12 system with R134a is quite an easy process. First of all, complete R12 should be removed from the system and recovered in the container. TABLE I. Properties of R-134a S. No. Properties R-134a 1 Boiling Point F or C 2 Auto-Ignition 1418 F or 770 C Temperature 3 Ozone Depletion Level 0 4 Solubility In Water 0.11% by weight at 77 F or 25 C 5 Critical Temperature 252 F or 122 C 6 Cylinder Color Code Light Blue 7 Global Warming Potential (GWP) 1200 Fig.2. Basic Vapour Compression Cycle Applied to a Water Chiller. Fig.3. Simple Saturation Refrigeration Cycle on a Pressure-Enthalpy Diagram.

3 Thermal Analysis of Vapour Compression Cycle for Different Refrigerants This basic vapour compression refrigeration cycle is illustrated in figure 2 where it is shown applied to a waterchilling set. Figure 3 illustrates the changes in the state of the refrigerant as the simple, basic vapour compression cycle takes place on p-h diagram. In order to explain the cycle and describe the diagram, it is first necessary to consider the thermodynamics of the present analysis. G. Power Needed for Compression- The product of work done in compression with the mass flow rate of refrigerant handled (yields the power needed for compression,, in Watt or kw. In the figure 3, state 1 is known because, with the simplifying assumptions made in the present analysis, it is that of the dry saturated vapour leaving the evaporator. A. Thermodynamics and Refrigeration- The subject of thermodynamics referred to the physics of air-water vapour mixtures. As it refers to the behaviour of refrigerants in vapour compression cycles of refrigeration, in order to deal with such cycles quantitatively. As a preamble to this, some principles and definitions must be reviewed. B. Wet Vapour- This is a mixture of saturated liquid and saturated vapour. The quality of the mixture is expressed in terms of its dryness fraction, defined as the mass of saturated vapour divided by the total mass of saturated vapour and saturated liquid. The point 4 in figure3 represents wet vapour. Wet vapour is a mixture of saturated liquid at state 4' and dry saturated vapour at state 1. The state of the wet vapour entering the evaporator can be defined in terms of the relevant enthalpies and its dryness fraction (D) at state 4, is given by C. Refrigerating Effect- In the basic vapour compression cycle of refrigeration shown in figure 3 a mixture of relatively cold, saturated liquid and saturated vapour enters the evaporator. The liquid part of the mixture is boiled to a saturated vapour and leaves the evaporator at state 1 as shown in figure 3. The refrigerating effect () is the enthalpy change across the evaporator. Using the notation of figure 3, this is expressed by D. Mass Flow Rate- The mass flow rate of refrigerant ( is calculated by is the refrigeration duty in kw. H. Heat Rejected at the Condenser- All the heat removed at the evaporator together with all the energy provided by the compressor must be rejected from the system. This heat is rejected at the condenser and is expressed as follows; The rate of heat rejection at the condenser is determined by I. Coefficient of Performance- The coefficient of performance of a refrigeration machine is the ratio of the energy removed at the evaporator (refrigerating effect) to the energy supplied to the compressor. Thus, using the notation of figure 3., the COP can be calculated as follows: COP (Carnot) = J. Actual Vapour-Compression Cycle- An ideal, simple, reversible vapour-compression cycle is not a practical proposition. The departure from reversibility arises from the irreversible nature of the throttling expansion process, pressure losses in the evaporator, condenser and pipelines, heat transfer through finite temperature differences and a measure of irreversibility in the compression process. Figure3. represents two of these irreversibility the throttling expansion (3--4) through the expansion valve and the desuperheating process (2-2') during the vapour first enters the condenser. The condensation process (2'-3) and the evaporation process (4-1), on the other hand, are reversible. Liquid refrigerant is incompressible and if it entered the suction valve of a reciprocating compressor it could damage the cylinder head or the valve plates at top dead centre. E. Volumetric Flow Rate- In the present analysis, assuming that there is no pressure drop in the suction line and that there are no heat exchanges between the suction line and its surroundings, the state entering the compressor is the same as that leaving the evaporator, namely, 0 0 C saturated. The volumetric flow rate at the suction state will be given by F. Compressor Work- In the ideal case, where there is no heat lost from the cylinders and no friction, the process of compression is adiabatic, reversible and isentropic. This is shown in figure 3 by the line joining the points1 and 2. It is assumed that there is no pressure drop in the pipeline between the outlet from the evaporator and the suction port on the compressor and that no heat gains or losses occur between the suction line and its environment. The compressor sucks dry saturated vapour from the evaporator and power must be provided to affect this process. The work done in compression () for this ideal case is given by the enthalpy increase across the compressor. Fig.4. Simple Saturation Refrigeration Cycle on a Temperature-Entropy Diagram To avoid this risk it is arranged that evaporation is completed before the vapour leaves the evaporator and, consequently, the state then entering the suction valve has several degrees of superheat. It is often also arranged that there is more than enough heat transfer surface in the

4 ALI MOHAMMED ABDOULHA MASSOUD, DR. MOHAMMAD TARIQ condenser to change the refrigerant from a superheated vapour to a saturated liquid. In this case the liquid is subcooled to a temperature less than its saturated temperature for the prevailing pressure. A consequence of this is that any loss of position head (because the condenser might be at a lower level than the expansion valve), or any frictional pressure drop in the liquid line, is less likely to cause the liquid to flash to gas before it reaches the expansion valve. Figure 4 shows a pressure-enthalpy diagram of a simple cycle with superheat at the outlet from the evaporator and sub-cooling at the outlet from the condenser. For the calculation of the properties, reference [15] has been used for this work. 2. Dryness Fraction For saturated liquid at a temperature of 0 0 C and a pressure of kPa, h 4 = kj/kg. For dry saturated vapour at 0 0 C and kpa, h 1 = kj/kg. Hence, the dryness fraction will be calculated by using equation Thus 25 per cent, by weight, of the liquid refrigerant entering the expansion valve flashes to vapour as the pressure drop through the valve occurs. Since the volume of the vapour is much greater than that of the liquid, the space occupied by the vapour is significantly large. 3. Refrigerating Effect = ( ) = kj/kg 4. The Mass Flow Rate kg/s Volumetric flow rate TABLE III. Table for Interpolation Fig.5. Pressure-Enthalpy Diagram of a Simple, Actual, Vapour-Compression Cycle Showing Superheat at Evaporator Outlet and Sub-Cooling at Condenser Outlet Pressure drops through the piping, the evaporator and the condenser are ignored and isentropic compression is assumed. It can be seen that the dryness fraction is reduced and the refrigerating effect is improved, compared with the simple plant as shown in figure5. 1. Assumption Following assumption have been made for the present analysis Compression should be isentropic. Pressure drops in the piping, evaporator and condenser are ignored Specific heat does not alter very much for the small temperature change of 5 K at constant pressure. TABLE II. Input Data Table Refrigerant Properties Values Refrigerant Evaporator temperature 0 0 C 134a (T e ) Condenser Temperature 35 0 C (T c ) Duty of the plant 352 kw Refrigerant Superheat at the 5 K 134a evaporator outlet Sub-cooling at the outlet 5 K from the condenser Refrigerant Superheat at the 5 K R717 evaporator outlet (Ammonia) TABLE IV. Table for Interpolation Pressure Entropy (s) Enthalpy (p) kpa kj/kgk (h 2 ) kj/kg Sub-cooling at the outlet 5 K Mass flow rate of refrigerant = kg/s from the condenser Volumetric flow rate of the refrigerant S. No. Work Done in Compression W r = ( ) = kj/kg Compression Power P = x = kw Heat rejected at the condenser q c = ( ) = kj/kg Rate of heat rejection = X = 406 kw Coefficient of performance = 6.52 Temperature (t 2 ) 0 C Carnot Coefficient of performance COP (Carnot) = 7.8 Refrigerant R134a R134a with 5 K of superheat at the evaporator outlet and 5 K of sub-cooling at the outlet from the condenser Dryness fraction = 0.21 Refrigerating effect Q r = (h 1 h 4 ) = (h 1 h 3 ) = ( )= kj/kg

5 Thermal Analysis of Vapour Compression Cycle for Different Refrigerants = ( )/( ) = m 3 /kg Work done in compression W r W r = ( ) = kj/kg Power absorbed by the compressor=2.180x22.33=48.68 kw Heat Rejected at the condenser = kw/kg Rate of heat rejection at the condenser Qc = x ( ) = kw = kw COP of the cycle /22.33 = 7.23 Carnot COP COP (Carnot) = ( )/(35-0) = 8.8 Refrigerant R717 (ammonia) Refrigerant R717 with 5 K of superheat at the evaporator outlet and 5 K of sub-cooling at the condenser outlet. Dryness fraction = 0.11 Refrigerating effect Q r = (h 1 h 4 ) = (h 1 h 3 ) Q r = ( ) = kj/kg Mass flow rate Volumetric flow rate v = x = m 3 /s At compressor discharge the entropy, s 2 =s 1 = kj/kg K. Interpolating for this entropy in table 3.4 at a pressure of 1350 kpa yields: TABLE V. Values of Properties at Interpolated Temperature Entropy (s) Temperature (T- T s ) Enthalpy (h) C C C III. RESULTS AND DISCUSSION The results of the present work have been discussed in the following paragraphs in the form of table and graphs. Graphs are plotted using origin 50 software. Sub cooling and superheating of the refrigerants have been selected same for both the refrigerants as suggested by [21]. Results are well within the published values. In the following graphs, the results are presented for variation of the refrigerating effect with different thermal parameters of the cycle. The refrigerants have been chosen as 134a (1,1,1,2 Tetrafluorethane) and R717 (Ammonia). Figure 6 shows the variation of refrigerating effect of different refrigerants with dryness fraction at their respective conditions. It has been observed from the figure that the refrigerant R134a produces maximum refrigerating effect and minimum dryness fraction under given conditions. The conditions of sub cooling and superheating as mentioned in the table V, has imposed to both the refrigerants decreases the refrigerating effect as the dryness fraction increases. Figure6 represents the refrigerating effect with mass flow rate of the refrigerants. It has been found that, the refrigerating effect is higher and mass flow rate is minimum for refrigerant 134a as compared to other two conditions. Whence h 2 = kj/kg Work done in compression W r = ( ) = kj/kg Fig.6. Variation of the Different Refrigerants for Refrigerating Effect at Dryness Fraction Compressor power P = x = kw Heat rejection at the condenser Rate of heat rejection = x ( ) = kw COP of the cycle COP = ( )/( ) = 6.82 Carnot COP COP (Carnot) = Carnot COP = ( )/[( ) - ( )] = 7.8 Fig.7. Variation of Refrigerating Effect with Mass Flow Rate

6 ALI MOHAMMED ABDOULHA MASSOUD, DR. MOHAMMAD TARIQ Fig.8. Variation of Refrigerating Effect with Volumetric Flow Rate effect with work required by compressor. The work required by the compressor is maximum with the refrigerant ammonia with its prevailing conditions as compared to the other refrigerant. Figure 10 shows the variation of het rejected at the condenser for all the refrigerants with their prevailing conditions. It has been found that the refrigerant ammonia with their conditions have highest refrigerating effect as compared to 134a. The refrigerating effect is also maximum for the ammonia. Figure 11 represents the variation of refrigerating effect with coefficient of performance of the cycle for both the refrigerants with their conditions. The COP of the cycle is maximum for R134a with given conditions as compared to other two refrigerants. Though, it gives less refrigerating effect as compared to the ammonia. Figure11 represents the variation of combined graph of three parameters namely; refrigerating effect, work required by compressor and heat rejected at condenser with dryness fraction. The comparative study reflects that the value of heat rejected at the condenser is maximum as compared to other two values. On the other hand, the value of work required in compressor is minimum. Fig.9. Variation of Refrigerating Effect with Work Required By Compressor Fig.11. Variation of Refrigerating Effect Coefficient of Performance of Cycle Fig.10. Variation of Refrigerating Effect with Heat Rejected At Condenser Figure10 represents the refrigerating effect of the refrigerants with volumetric flow rate of the refrigerants. The refrigerating effect is highest for 134a but volume flow rate is minimum for refrigerant 134a with their conditions as given. On the other hand, the ammonia with the prevailing conditions shows the maximum volume flow rate of the refrigerant. Figure 10 represents the variation of refrigerating Fig.12. Variation of Different Parameters with Dryness Fraction.

7 Thermal Analysis of Vapour Compression Cycle for Different Refrigerants IV. CONCLUSION The present analysis has been worked out for the evaporator temperature 0 0 C and Condenser temperature 35 0 C while the duty of the unit has been taken as 352 kw. Two refrigerants with specified conditions at evaporator and condenser have given a designer for more options for optimizatiom. The optimization of the vapour compression cycle with superheating at evaporator by 5 deg and sub cooling a the outlet of condenser by 5 deg of both the refrigerants proven that the results of refrigerating effect for the refrigerants R134a and R717 with their conditions have least difference for their dryness fraction and mass flow rate of refrigerants. Work required by compressor is very less for R134a for without condition and with condition as compared to ammonia. As far as COP of the cycle is concerned, the refrigerant R134a with prevailing conditions have maximum value as compared to ammonia. But Ammonia has maximum refrigerating effect. Saved power in compressor for optimum designed and matched systems is expected to be higher than 2.27% in respect to that of the Simple Cycle. The bleed system for condensate subcooling can be used to upgrade already existing plants. Some increase of the cool power, depending on the Refrigeration plant features, can be obtained, and a COP increase of some 9.8 %, is expected by using R143a with prevailing conditions. V. REFERENCES [1]Daou, K; Wang, Xia (2005). Desiccant cooling air conditioning: a review, Renewable and Sustainable Energy Reviews. 10 (2): [2]McDowall, Robert (2006). Fundamentals of HVAC Systems. Elsevier. p. 3. [3]Franklin,Benjamin(June17,1758). Letter to John Lining, 6 August [4] Early University Benefactors, [5] Unsung Engineering Heros: Robert Sherman, [6]Mate, John "Making a Difference: A Case Study of the Greenpeace Ozone Campaign" RECIEL 10: [7]Y.V.C.Rao(2003).AnIntroductionto thermodynamics (2nd ed.). Universities Press. [8]Simarpreet Singh et al., Comparative study of cycle modification strategies for trans-critical CO2 refrigeration cycle for warm climatic conditions, Case Studies in Thermal Engineering 7(2016)78 91 [9]Book: Principles of Refrigeration by Roy J. Dossat, fourth edition, Prentice Hall [10]Daou, K; Wang, Xia (2005). Desiccant cooling air conditioning: a review, Renewable and Sustainable Energy Reviews. 10 (2): [11]McDowall, Robert (2006). Fundamentals of HVAC Systems. Elsevier. p. 3. [12]ranklin, Benjamin (June 17, 1758). Letter to John Lining, 6 August [13] A brief history of Air conditioning, Popular Mechanics [14] Early University Benefactors, [15]American Society of Heating, Refrigerating and Air- Conditioning Engineers from the (1997) ASHRAE Handbook. [16]Shailendra Singh Chauhan and S.P.S. Rajput, Parametric analysis of a combined dew point evaporativevapour compression based air conditioning system, Alexandria Engineering Journal (2016) PP 1-12

Subscripts 1-4 States of the given system Comp Compressor Cond Condenser E Evaporator vol Volumetric G Gas L Liquid

Subscripts 1-4 States of the given system Comp Compressor Cond Condenser E Evaporator vol Volumetric G Gas L Liquid Simulation Analysis of Compression Refrigeration Cycle with Different Refrigerants P.Thangavel, Dr.P.Somasundaram, T.Sivakumar, C.Selva Kumar, G.Vetriselvan Abstract --- In this analysis, the performance

More information

Paper No. : 04 Paper Title : Unit Operations in Food processing Module 11 : Principles of Refrigeration

Paper No. : 04 Paper Title : Unit Operations in Food processing Module 11 : Principles of Refrigeration Paper No. : 04 Paper Title : Unit Operations in Food processing Module 11 : Principles of Refrigeration 11.1 Introduction Preservation of foods is a vital processing step in food processing. There are

More information

Chapter 9. Refrigeration and Liquefaction

Chapter 9. Refrigeration and Liquefaction Chapter 9 Refrigeration and Liquefaction Refrigeration is best known for its use in the air conditioning of buildings and in the treatment, transportation, and preservation of foods and beverages. It also

More information

Pressure Enthalpy Charts

Pressure Enthalpy Charts Pressure Enthalpy Charts What is a p-h Diagram? A p-h diagram is a diagram with a vertical axis of absolute pressure and a horizontal axis of specific enthalpy. "Enthalpy is the amount of energy in a substance

More information

Chapter 10. Refrigeration and Heat Pump Systems

Chapter 10. Refrigeration and Heat Pump Systems Chapter 10 Refrigeration and Heat Pump Systems Learning Outcomes Demonstrate understanding of basic vaporcompression refrigeration and heat pump systems. Develop and analyze thermodynamic models of vapor-compression

More information

(Refer Slide Time: 00:00:40 min)

(Refer Slide Time: 00:00:40 min) Refrigeration and Air Conditioning Prof. M. Ramgopal Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 10 Vapour Compression Refrigeration Systems (Refer Slide

More information

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3 ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3 1. OBJECTIVE The objective of this experiment is to observe four basic psychrometric processes

More information

Week 9. Refrigeration Cycles I. GENESYS Laboratory

Week 9. Refrigeration Cycles I. GENESYS Laboratory Week 9. Refrigeration Cycles I Objectives 1. Introduce the concepts of refrigerators and heat pumps and the measure of their performance. 2. Analyze the ideal vapor-compression refrigeration cycle. 3.

More information

WORK STUDY ON LOW TEMPERATURE (CASCADE) REFRIGERATION SYSTEM

WORK STUDY ON LOW TEMPERATURE (CASCADE) REFRIGERATION SYSTEM WORK STUDY ON LOW TEMPERATURE (CASCADE) REFRIGERATION SYSTEM Sachin Kumar 1, Vicky Ranga 2 1Assistant Professor, Department of Mechanical Engineering, Jagan Nath University Jhajjar, Haryana, India. 2Scholar.

More information

Refrigeration Cycles MOHAMMAD FAISAL HAIDER. Bangladesh University of Engineering and Technology

Refrigeration Cycles MOHAMMAD FAISAL HAIDER. Bangladesh University of Engineering and Technology Refrigeration Cycles MOHAMMAD FAISAL HAIDER LECTURER Department of Mechanical Engineering Department of Mechanical Engineering Bangladesh University of Engineering and Technology Objectives Introduce the

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road AUTONOMOUS QUESTION BANK (DESCRIPTIVE) UNIT I

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road AUTONOMOUS QUESTION BANK (DESCRIPTIVE) UNIT I SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 AUTONOMOUS QUESTION BANK (DESCRIPTIVE) Subject with Code : Refrigeration and Air Conditioning (16ME8806) Course & Branch:

More information

Role of Nano-technology for improving of thermal performances of vapour compression refrigeration system (VCRS): An Overview

Role of Nano-technology for improving of thermal performances of vapour compression refrigeration system (VCRS): An Overview International Journal of Research in Engineering and Innovation Vol-2, Issue-1 (2018), 21-28 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger Abstract Shoeb J. Inamdar 1 H.S. Farkade 2 M. Tech student. (Thermal Engineering) 1, Asst. Professor 2 Department of Mechanical

More information

Fabrication of Hot and Cold Water Dispenser

Fabrication of Hot and Cold Water Dispenser e-issn 2455 1392 Volume 2 Issue 7, July 2016 pp. 1 6 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Fabrication of Hot and Cold Water Dispenser Sana Shaikh 1, Priyanka Rawate 2 1,2 Bharati

More information

Thermodynamics II Chapter 5 Refrigeration

Thermodynamics II Chapter 5 Refrigeration Thermodynamics II Chapter 5 Refrigeration Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi Malaysia Objectives Introduce the concepts of refrigerators and heat pumps and the measure

More information

A Comparison Between Refrigerants Used In Air Conditioning

A Comparison Between Refrigerants Used In Air Conditioning A Comparison Between Refrigerants Used In Air Conditioning Derya Özkan, Özden Agra and Özlem Çetin University of Yildiz Technical University, Turkey Corresponding email: tumer@yildiz.edu.tr SUMMARY It

More information

Performance of an Improved Household Refrigerator/Freezer

Performance of an Improved Household Refrigerator/Freezer Performance of an Improved Household Refrigerator/Freezer D. O. Ariyo Department of Mechanical Engineering, School of Engineering, Federal Polytechnic, Offa, Nigeria Y. L. Shuaib-Babata Department of Mechanical

More information

HVAC Fundamentals & Refrigeration Cycle

HVAC Fundamentals & Refrigeration Cycle HVAC Fundamentals & Refrigeration Cycle Change of State of Water & the Refrigeration Cycle Change of State Water The Basic Refrigeration Cycle Types of DX Systems The Chilled water System The Cooling Tower

More information

Homework Chapter2. Homework Chapter3

Homework Chapter2. Homework Chapter3 Homework Chapter2 2/1 A storage tank holds methane at 120 K, with a quality of 25 %, and it warms up by 5 C per hour due to a failure in the refrigeration system. How long time will it take before the

More information

Analysis of Constant Pressure and Constant Area Mixing Ejector Expansion Refrigeration System using R-1270 as Refrigerant

Analysis of Constant Pressure and Constant Area Mixing Ejector Expansion Refrigeration System using R-1270 as Refrigerant Analysis of Constant Pressure and Constant Area Mixing Ejector Expansion Refrigeration System using R-1270 as Refrigerant Ravi Verma 1, Sharad Chaudhary 2 1, 2 Department of Mechanical Engineering, IET

More information

ASSESSMENT OF R430A REFRIGERANT AS A POSSIBLE SUBSTITUTE TO R134A REFRIGERANT IN LARGE CAPACITY FREEZER

ASSESSMENT OF R430A REFRIGERANT AS A POSSIBLE SUBSTITUTE TO R134A REFRIGERANT IN LARGE CAPACITY FREEZER University of Maiduguri Faculty of Engineering Seminar Series Volume 6, december 5 ASSESSMENT OF REFRIGERANT AS A POSSIBLE SUBSTITUTE TO R34A REFRIGERANT IN LARGE CAPACITY FREEZER S. Shodiya*, M.B. Oumarou

More information

LECTURE-17. Multi-Stage Vapour Compression Refrigeration. 1. Introduction

LECTURE-17. Multi-Stage Vapour Compression Refrigeration. 1. Introduction Lecturer: -Dr. Esam Mejbil Abid Subject: Air Conditioning and Refrigeration Year: Fourth B.Sc. Babylon University College of Engineering Department of Mechanical Engineering LECTURE-17 Multi-Stage Vapour

More information

Performance analysis of a vapour compression refrigeration system with a diffuser for theeco-friendly refrigerants R-134a, R-600a and R-152a

Performance analysis of a vapour compression refrigeration system with a diffuser for theeco-friendly refrigerants R-134a, R-600a and R-152a International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 4 Issue 6 ǁ June. 2016 ǁ PP. 52-57 Performance analysis of a vapour compression

More information

Numerical Study on Improvement of COP of Vapour Compression Refrigeration System

Numerical Study on Improvement of COP of Vapour Compression Refrigeration System Numerical Study on Improvement of COP of Vapour Compression Refrigeration System Sanath Kumar K H 1, Arun Kumara K S 2, Nissar Ahmed 3 Assistant Professor, Department of Mechanical Engineering, VVIT, Bangalore,

More information

ME 410 MECHA ICAL E GI EERI G SYSTEMS LABORATORY

ME 410 MECHA ICAL E GI EERI G SYSTEMS LABORATORY ME 410 MECHA ICAL E GI EERI G SYSTEMS LABORATORY MASS & E ERGY BALA CES I PSYCHROMETRIC PROCESSES EXPERIME T 3 1. OBJECTIVE The object of this experiment is to observe four basic psychrometric processes

More information

we will examine only the vapour compression systems transfers to the Carnot cycle can serve as the initial model of the ideal refrigeration cycle.

we will examine only the vapour compression systems transfers to the Carnot cycle can serve as the initial model of the ideal refrigeration cycle. Refrigeration Cycle Reading Problems 10-1 10-5, 10-7, 10-9 10-11, 10-14, 10-39 Definitions a refrigeration system removes thermal energy from a low-temperature region and transfers heat to a high-temperature

More information

R07. Answer any FIVE Questions All Questions carry equal marks *****

R07. Answer any FIVE Questions All Questions carry equal marks ***** Set No: 1 III B.Tech. II Semester Supplementary Examinations, April/May 2013 REFRIGERATION AND AIR CONDITIONING (Mechanical Engineering) Time: 3 Hours Max Marks: 80 Answer any FIVE Questions All Questions

More information

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division INTRODUCTION PRESSURE-ENTHALPY CHARTS AND THEIR USE The refrigerant in a refrigeration system, regardless of type, is present in two different states. It is present as liquid and as vapor (or gas). During

More information

Dhulapally, Secunderabad Subject: REFRIGERATION AND AIR CONDITIONING QUESTION BANK

Dhulapally, Secunderabad Subject: REFRIGERATION AND AIR CONDITIONING QUESTION BANK St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad-500 014 Subject: REFRIGERATION AND AIR CONDITIONING Class : ECE III 1 Define Unit of refrigeration. 2 Define C.O.P. QUESTION BANK 3 What is the

More information

3. (a) Explain the working of a rotary screw compressor. [10] (b) How the capacity control is achieved in refrigerant compressor?

3. (a) Explain the working of a rotary screw compressor. [10] (b) How the capacity control is achieved in refrigerant compressor? Code No: RR410305 Set No. 1 IV B.Tech I Semester Regular Examinations, November 2006 REFRIGERATION & AIR CONDITIONING (Mechanical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All

More information

Enhancement of COP in Vapour Compression Refrigeration System

Enhancement of COP in Vapour Compression Refrigeration System Enhancement of COP in Vapour Compression Refrigeration System M. Krishna Prasanna #1 M.E student, Heat Transfer studies in Energy Systems Department of Mechanical Engg., Andhra University Visakhapatnam-530003,

More information

International Journal Of Core Engineering & Management (IJCEM) Volume 2, Issue 9, December 2015

International Journal Of Core Engineering & Management (IJCEM) Volume 2, Issue 9, December 2015 EXERGY ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION CYCLE- A REVIEW Pradhumn Tiwari 1, Prakash Pandey 2 1 Pradhumn Tiwari Research Scholar, Maulana Azad Nation Institute of Technology, Bhopal, M.P, India

More information

s. Properties for R134a are as follows : Saturated R-134a Superheated R-134a

s. Properties for R134a are as follows : Saturated R-134a Superheated R-134a CHAPTER 9 REFRIGERATION & AIR-CONDITIONING YEAR 2012 ONE MARK Common Data For Q. 1 and Q.2 A refrigerator operates between 120 kpa and 800 kpa in an ideal vapour compression cycle with R-134a as the refrigerant.

More information

EXPERIMENTAL INVESTIGATION OF WATER COOLER SYSTEM BY USING ECO-FRIENDLY REFRIGERANT (R-134a)

EXPERIMENTAL INVESTIGATION OF WATER COOLER SYSTEM BY USING ECO-FRIENDLY REFRIGERANT (R-134a) EXPERIMENTAL INVESTIGATION OF WATER COOLER SYSTEM BY USING ECO-FRIENDLY REFRIGERANT (R-134a) Abstract- With the recent government regulations, of banning the ozone depleting substances and Kyoto protocol

More information

CHAPTER 7 PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM IN HYBRID REFRIGERATION SYSTEM

CHAPTER 7 PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM IN HYBRID REFRIGERATION SYSTEM 111 CHAPTER 7 PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM IN HYBRID REFRIGERATION SYSTEM 7.1 INTRODUCTION Energy is the primary component to run any system in the world. According to

More information

Performance Comparison of Ejector Expansion Refrigeration Cycle with Throttled Expansion Cycle Using R-170 as Refrigerant

Performance Comparison of Ejector Expansion Refrigeration Cycle with Throttled Expansion Cycle Using R-170 as Refrigerant International Journal of Scientific and Research Publications, Volume 4, Issue 7, July 2014 1 Performance Comparison of Ejector Expansion Refrigeration Cycle with Throttled Expansion Cycle Using R-170

More information

Due to its low temperature glide about 1.5 approx. (75% less than R-407C and R-427A), it is suitable for a wide range of applications.

Due to its low temperature glide about 1.5 approx. (75% less than R-407C and R-427A), it is suitable for a wide range of applications. TECHNICAL DATA SHEET R434A () Features and uses of R-434A () is a non-flammable HFC mixture. ODP = 0, compatible with traditional mineral lubricants, alkyl benzene and also with synthetic POE, so there

More information

Compendium DES July 2016, CARN

Compendium DES July 2016, CARN Compendium DES July 2016, CARN 1 Contents Contents... 2 1. Energy balance... 4 Using Energy Balance for analyzing energy systems... 4 Energy Balance definition... 4 Steady state, steady flow... 4 Methodology...

More information

PERFORMANCE OF DEEP FREEZER BY USING HYDROCARBON BLENDS AS REFRIGERANTS

PERFORMANCE OF DEEP FREEZER BY USING HYDROCARBON BLENDS AS REFRIGERANTS Int. J. Chem. Sci.: 14(S2), 2016, 665-674 ISSN 0972-768X www.sadgurupublications.com PERFORMANCE OF DEEP FREEZER BY USING HYDROCARBON BLENDS AS REFRIGERANTS J. THAVAMANI *, MARRIPUDAGALA KOMALI, SHAIK

More information

Performance of window air conditioner using alternative refrigerants with different configurations of capillary tube

Performance of window air conditioner using alternative refrigerants with different configurations of capillary tube ISSN: 2347-3215 Volume 1 Number 4 (2013) pp. 46-54 www.ijcrar.com Performance of window air conditioner using alternative refrigerants with different configurations of capillary tube Richa Soni 1*, P.K.Jhinge

More information

FS 231: Final Exam (5-6-05) Part A (Closed Book): 60 points

FS 231: Final Exam (5-6-05) Part A (Closed Book): 60 points Name: Start time: End time: FS 231: Final Exam (5-6-05) Part A (Closed Book): 60 points 1. What are the units of the following quantities? (10 points) a. Enthalpy of a refrigerant b. Dryness fraction of

More information

Design, Manufacturing of Chilled Water System for Process Cooling Application

Design, Manufacturing of Chilled Water System for Process Cooling Application IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 11 May 2016 ISSN (online): 2349-784X Design, Manufacturing of Chilled Water System for Process Cooling Application Prof.

More information

EXPERIMENTAL INVESTIGATION OF COMPARISION OF AIR COOLED AND WATER COOLED CONDENSER ATTACHED WITH COOLING TOWER

EXPERIMENTAL INVESTIGATION OF COMPARISION OF AIR COOLED AND WATER COOLED CONDENSER ATTACHED WITH COOLING TOWER EXPERIMENTAL INVESTIGATION OF COMPARISION OF AIR COOLED AND WATER COOLED CONDENSER ATTACHED WITH COOLING TOWER Gourav Roy; Taliv Hussain; Rahul Wandra Department of Mechanical Engineering, Lovely Professional

More information

Chapter 11 REFRIGERATION CYCLES

Chapter 11 REFRIGERATION CYCLES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 11 REFRIGERATION CYCLES Wan Rosli Wan Sulaiman Copyright The McGraw-Hill Companies, Inc.

More information

Experimental Study on Performance Parameters for Refrigerants R22, R410a and R404a at Various Air Outlet Temperatures

Experimental Study on Performance Parameters for Refrigerants R22, R410a and R404a at Various Air Outlet Temperatures Experimental Study on Performance Parameters for Refrigerants, R41a and R44a at Various Air Outlet Temperatures P. Nagaraju P. G. Student Sanketika Institute of Technology and Management Ch. Kiran Kumar

More information

Comparative Study of Transcritical CO 2 Cycle with and Without Suction Line Heat Exchanger at High Ambienttemperature

Comparative Study of Transcritical CO 2 Cycle with and Without Suction Line Heat Exchanger at High Ambienttemperature International Journal Of Computational Engineering Research (ijceronlinecom) Vol 3 Issue 3 Comparative Study of Transcritical CO 2 Cycle with and Without Suction Line Heat Exchanger at High Ambienttemperature

More information

NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A

NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A [1] Ranendra Roy, [2] Madhu Sruthi Emani, [3] Bijan Kumar Mandal [1], [2],[3] Department of Mechanical

More information

EXERGY ANALYSIS OF DOMESTIC REFRIGERATOR WITH DIFFERENT REFRIGERANTS

EXERGY ANALYSIS OF DOMESTIC REFRIGERATOR WITH DIFFERENT REFRIGERANTS International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 1 EXERGY ANALYSIS OF DOMESTIC REFRIGERATOR WITH DIFFERENT REFRIGERANTS Rahul ukey, Sharad chaudhary Abstract Electricity

More information

Combination unit to support instruction in Thermodunamics, Fluid Mechanics, and Heat Transfer

Combination unit to support instruction in Thermodunamics, Fluid Mechanics, and Heat Transfer Paper ID #6647 Combination unit to support instruction in Thermodunamics, Fluid Mechanics, and Heat Transfer Dr. Lin Lin, University of Southern Maine Dr. Lin joined Department of Engineering at University

More information

Thermodynamic Analysis of Cascade Refrigeration System Using R12-R13, R290-R23 and R404A-R23

Thermodynamic Analysis of Cascade Refrigeration System Using R12-R13, R290-R23 and R404A-R23 Thermodynamic Analysis of Cascade Refrigeration System Using R12-R13, R290-R23 and R404A-R23 A. D. Parekh, P. R. Tailor Abstract The Montreal protocol and Kyoto protocol underlined the need of substitution

More information

Thermodynamic Calculations of Two-Stage Vapor Compression Refrigeration Cycle with Flash Chamber and Separate Vapor Mixing Intercooler

Thermodynamic Calculations of Two-Stage Vapor Compression Refrigeration Cycle with Flash Chamber and Separate Vapor Mixing Intercooler Thermodynamic Calculations of Two-Stage Vapor Compression Refrigeration Cycle with Flash Chamber and Separate Vapor Mixing Intercooler Author: Volodymyr Voloshchuk Vl.volodya@gmail.com Introduction In

More information

Design & Fabrication of Hybrid Cooler

Design & Fabrication of Hybrid Cooler IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 11 April 2016 ISSN (online): 2349-6010 Design & Fabrication of Hybrid Cooler Shashank Chauragade Mukul Kshirsagar

More information

Refrigeration and Air Conditioning

Refrigeration and Air Conditioning Refrigeration and Air Conditioning 1. Pick up the wrong statement. A refrigerant should have (a) Tow specific heat of liquid (b) high boiling point (c) high latent heat of vaporisation (d) higher critical

More information

Chapter 11 REFRIGERATION CYCLES. Department of Mechanical Engineering

Chapter 11 REFRIGERATION CYCLES. Department of Mechanical Engineering Chapter 11 REFRIGERATION CYCLES Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University it Objectives Introduce the concepts of refrigerators and heat pumps and the measure of their performance.

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING 1 P a g e INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -00 043 MECHANICAL ENGINEERING QUESTION BANK Name : REFRIGERATION AND AIR CONDITIONING Code : A60334 Class : III B. Tech

More information

NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A

NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A ISSN: 2250-0138 (Online) NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A RANENDRA ROY a1, MADHU SRUTHI EMANI b AND BIJAN KUMAR MANDAL c abc Department

More information

"COP Enhancement Of Domestic Refrigerator By Sub cooling And Superheating Using Shell &Tube Type Heat Exchanger"

COP Enhancement Of Domestic Refrigerator By Sub cooling And Superheating Using Shell &Tube Type Heat Exchanger "COP Enhancement Of Domestic Refrigerator By Sub cooling And Superheating Using Shell &Tube Type Heat Exchanger" 1 Prof.Gaffar G.Momin, 2 Sagar B. Tupe, 2 Swapnil A. Parate 2 Omkar G. Yewale 2 Aakash P.

More information

η second law = Second law efficiency

η second law = Second law efficiency EXERGY ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION CYCLE BASED AUTOMOTIVE AIR CONDITIONER USING ECO FRIENDLY REFRIGERANTS Vijender Singh Saini 1, Balvinder 2, Pardeep Kumar 3 1 M.Tech Scholar, 2,3 Assistant

More information

PERFORMANCE OF VCRS SYSTEM WITH HEAT EXCHANGER AND PHASE CHANGE MATERIAL

PERFORMANCE OF VCRS SYSTEM WITH HEAT EXCHANGER AND PHASE CHANGE MATERIAL PERFORMANCE OF VCRS SYSTEM WITH HEAT EXCHANGER AND PHASE CHANGE MATERIAL K.Thejeswarudu 1, R. Meenakshi Reddy 2 and E. Siva Reddy 2 1 PG Student, Department of Mechanical Engineering, G. Pulla Reddy College

More information

Performance investigation of Air-conditioning system using ejector as expansion device

Performance investigation of Air-conditioning system using ejector as expansion device International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347 161 216 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Performance

More information

Chapter 11. Refrigeration Cycles. Study Guide in PowerPoint

Chapter 11. Refrigeration Cycles. Study Guide in PowerPoint Chapter 11 Refrigeration Cycles Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 7th edition by Yunus A. Çengel and Michael A. Boles The vapor compression refrigeration cycle

More information

Performance Evaluation of Eco- Friendly Alternate Refrigerants for VCRS

Performance Evaluation of Eco- Friendly Alternate Refrigerants for VCRS Performance Evaluation of Eco- Friendly Alternate Refrigerants for VCRS Lalit Narayan, Abhishek Arya 2,2 M. Tech. Scholar, Associate Professor,,2 Scope College of Engineering, Bhopal, India Abstract: The

More information

Thermal Design of Condenser Using Ecofriendly Refrigerants R404A-R508B for Cascade Refrigeration System

Thermal Design of Condenser Using Ecofriendly Refrigerants R404A-R508B for Cascade Refrigeration System Thermal Design of Condenser Using Ecofriendly Refrigerants R404A-R508B for Cascade Refrigeration System A D Parekh, and P R Tailor Abstract Because of damaging effect of CFC refrigerants on stratospheric

More information

Thermodynamics I. Refrigeration and Heat Pump Cycles

Thermodynamics I. Refrigeration and Heat Pump Cycles Thermodynamics I Refrigeration and Heat Pump Cycles Dr.-Eng. Zayed Al-Hamamre 1 Content Introduction The Reversed Carnot Cycle The Ideal Compression Refrigeration Systems Deviation from the ICRS Selection

More information

Carnot. 2. (a) Discuss the advantages of the dense air refrigeration system over an open air refrigeration system?

Carnot. 2. (a) Discuss the advantages of the dense air refrigeration system over an open air refrigeration system? UNIT-1 1. What is the difference between a refrigerator and heat pump? Derive an expression for the cop for both if they are running on reversed Carnot cycle? The above figure shows the objectives of refrigerators

More information

International Journal of Research in Engineering and Innovation Vol-1, Issue-5 (2017), 68-72

International Journal of Research in Engineering and Innovation Vol-1, Issue-5 (2017), 68-72 International Journal of Research in Engineering and Innovation Vol-1, Issue-5 (2017), 68-72 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

Refrigerant Glide and Effect on Performances Declaration

Refrigerant Glide and Effect on Performances Declaration Refrigerant Glide and Effect on Performances Declaration Scope and Purpose As a consequence of the EU regulation 517/2014 (F-gas), the future synthetic refrigerants with a low global warming potential

More information

Vapour Compression-Absorption Cascade Refrigeration System- Thermodynamic Analysis

Vapour Compression-Absorption Cascade Refrigeration System- Thermodynamic Analysis Vapour Compression-Absorption Cascade Refrigeration System- Thermodynamic Analysis PARBHUBHAI R.TAILOR Department of Mechanical Engineering Sardar Vallabhbhai National Institute of Technology Surat,Gujarat-395007,INDIA

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BY AENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2016 Special10(7): pages 112-122 Open Access Journal The Effect Of

More information

Performance Analysis of Solar Assisted Cascade Refrigeration System of Cold Storage System

Performance Analysis of Solar Assisted Cascade Refrigeration System of Cold Storage System Performance Analysis of Solar Assisted Cascade Refrigeration System of Cold Storage System Dr. Nimai Mukhopadhyay 1, ER. Someshwar Chowdhury 2 Assistant Professor, Dept. of M. E., Jalpaiguri Government

More information

EVALUATION OF REFRIGERANT R290 AS A REPLACEMENT TO R22

EVALUATION OF REFRIGERANT R290 AS A REPLACEMENT TO R22 EVALUATION OF REFRIGERANT R290 AS A REPLACEMENT TO R22 Ameya P. Shrivastava 1, Choudhari Chandrakishor S. 2 1,2 Mechanical Department, AISSMS College of Engineering, Pune 411001, (India) ABSTRACT HCFC

More information

Improving and Comparing the Coefficient of Performance of Domestic Refgirator by using Refrigerants R134a and R600a

Improving and Comparing the Coefficient of Performance of Domestic Refgirator by using Refrigerants R134a and R600a ISSN (e): 0 00 Vol, 0 Issue, 8 August 0 International Journal of Computational Engineering Research (IJCER) Improving and Comparing the Coefficient of Performance of Domestic Refgirator by using Refrigerants

More information

Performance Enhancement of Mini Refrigerator with Phase Change Materials

Performance Enhancement of Mini Refrigerator with Phase Change Materials Performance Enhancement of Mini Refrigerator with Phase Change Materials Souptik Acharya 1, Manu Jose 2 and Risikesh Choudhury 3 Souptik Achraya,student at St. Martin s Engineering College Manu Jose T,

More information

R10. IV B.Tech I Semester Regular/Supplementary Examinations, Nov/Dec REFRIGERATION & AIR-CONDITIONING (Mechanical Engineering)

R10. IV B.Tech I Semester Regular/Supplementary Examinations, Nov/Dec REFRIGERATION & AIR-CONDITIONING (Mechanical Engineering) Set No. 1 IV B.Tech I Semester Regular/Supplementary Examinations, Nov/Dec - 2014 REFRIGERATION & AIR-CONDITIONING (Mechanical Engineering) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions

More information

RAC. Unit 1. Previous year Questions

RAC. Unit 1. Previous year Questions RAC Unit 1 Previous year Questions 1.What is the basic difference between open and closed Air refrigeration cycles? Describe a Bellcoleman or Reversed Joule air refrigeration cycle with the help of a neat

More information

Experimental Research On Gas Injection High Temperature Heat Pump With An Economizer

Experimental Research On Gas Injection High Temperature Heat Pump With An Economizer Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2014 Experimental Research On Gas Injection High Temperature Heat Pump With

More information

pdfmachine trial version

pdfmachine trial version HVAC PROBLEM SHEET # 02(REVERSED BRAYTON CYCLE) 1. 500 kg of atmospheric air is circulated per hour in an open type of refrigeration installation. The air is drawn from the cold chamber at temperature

More information

Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad B.Tech (III II SEM) MECHANICAL ENGINEERING

Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad B.Tech (III II SEM) MECHANICAL ENGINEERING Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad- 500 043 B.Tech (III II SEM) MECHANICAL ENGINEERING REFRIGERATION AND AIR CONDITIONING Prepared by, Dr. CH V K N S N Moorthy, Professor

More information

Chapter 11 REFRIGERATION CYCLES

Chapter 11 REFRIGERATION CYCLES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 11 REFRIGERATION CYCLES Mehmet Kanoglu University of Gaziantep Copyright

More information

Available online at ScienceDirect. Energy Procedia 109 (2017 ) 56 63

Available online at   ScienceDirect. Energy Procedia 109 (2017 ) 56 63 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 109 (2017 ) 56 63 International Conference on Recent Advancement in Air Conditioning and Refrigeration, RAAR 2016, 10-12 November

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 Background The science which deals with creating a controlled climate in indoor space is called air conditioning. Earlier days the air-conditioning was treated as a luxury,

More information

Seyedeh Sepideh Ghaffari 1 & Seyed Ali Jazayeri 2

Seyedeh Sepideh Ghaffari 1 & Seyed Ali Jazayeri 2 Modern Applied Science; Vol. 9, No. 13; 2015 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education The Design of a Shell-Tube Heat Exchanger as Evaporator an Absorption

More information

RS-70 is suitable as a direct replacement for R-22 in low, medium and high temperatures in a great number of applications:

RS-70 is suitable as a direct replacement for R-22 in low, medium and high temperatures in a great number of applications: TECHNICAL DATA SHEET Features and uses of is a non-azeotropic blend of HFC with zero Ozone Depletion Potential et low Global Warming Potential (GWP), formulated to meet the requirements of the F-Gas Regulation

More information

Improvement Of Energy Efficiency Ratio Of Refrigerant Compressor

Improvement Of Energy Efficiency Ratio Of Refrigerant Compressor Improvement Of Energy Efficiency Ratio Of Refrigerant Compressor K.Harshavardhan Reddy, M. Rama Narasimha Reddy, A.VENKATASWAMI, Dr M.YOHAN Abstract: - At first glance, calculating the of any type of compression

More information

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger Shoeb Inamdar 1, H. S. Farkade 2 P.G. Student, Department of Mechanical Engineering, Govt. College of Engg. Amravati. Maharashtra,

More information

Refrigeration Systems

Refrigeration Systems Refrigeration Systems COP COP = coefficient of performance Air conditioners, refrigerators: COP=QL/Wnet Heat pumps: COP=QH/Wnet Energy balance: Wnet+QL=QH From Cengel, Thermodynamics: An Engineering Approach,

More information

Thermodynamics: Homework A Set 7 Jennifer West (2004)

Thermodynamics: Homework A Set 7 Jennifer West (2004) Thermodynamics: Homework A Set 7 Jennifer West (2004) Problem 1 Water is the working fluid in a Carnot vapor power cycle. Saturated liquid enters the boiler at a pressure of 18 MPa, and saturated vapor

More information

HEFAT th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics Sun City, South Africa Paper number:pp1

HEFAT th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics Sun City, South Africa Paper number:pp1 HEFAT27 5 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics Sun City, South Africa Paper number:pp PERFORMANCE ANALYSIS OF AIR-COOLED CONDENSER USING MICRO-FIN TUBES P.A.Patil

More information

Performance Assessment of Water Cooled Condenser Refrigeration System

Performance Assessment of Water Cooled Condenser Refrigeration System Energy and Power 2017, 7(3): 70-74 DOI: 10.5923/j.ep.20170703.03 Performance Assessment of Water Cooled Condenser Refrigeration System Sheetal Narayan Shetty *, Prashanth Kamath Department of Mechanical

More information

ENSC 388. Assignment #6

ENSC 388. Assignment #6 ENSC 388 Assignment #6 Assignment date: Wednesday Oct. 21, 2009 Due date: Wednesday Oct. 28, 2009 Problem 1 A turbine operating at steady state receives air at a pressure of 3.0 and a temperature of 390.

More information

UNIT - 3 Refrigeration and Air - Conditioning

UNIT - 3 Refrigeration and Air - Conditioning UNIT - 3 Refrigeration and Air - Conditioning Science of providing and maintaining temperatures below that of surroundings I n t r o d u c t i o n t o R e f r i g e r a t i o n The term refrigeration may

More information

REVIEW OF DESIGN OF SINGLE EFFECT SOLAR POWERED VAPOUR ABSORPTION AIR CONDITIONING SYSTEM

REVIEW OF DESIGN OF SINGLE EFFECT SOLAR POWERED VAPOUR ABSORPTION AIR CONDITIONING SYSTEM REVIEW OF DESIGN OF SINGLE EFFECT SOLAR POWERED VAPOUR ABSORPTION AIR CONDITIONING SYSTEM Mr. S. S. Mali 1, Prof.M.M.Wagh3 Prof. N. N. Shinde 2 1 M. Tech Scholar, Department Of Energy Technology, Shivaji

More information

VAPOR COMPRESSION HEAT PUMP USING LOW TEMPERATURE GEOTHERMAL WATER: A CASE STUDY OF NORTHERN THAILAND

VAPOR COMPRESSION HEAT PUMP USING LOW TEMPERATURE GEOTHERMAL WATER: A CASE STUDY OF NORTHERN THAILAND VAPOR COMPRESSION HEAT PUMP USING LOW TEMPERATURE GEOTHERMAL WATER: A CASE STUDY OF NORTHERN THAILAND Fongsaward S. Singharajwarapan 1 and Nattaporn Chaiyat 2 1 Groundwater Technology Service Center, Chiang

More information

U.G. Student, Department of Mechanical Engineering, J D Engineering College, Nagpur, Maharashtra, India

U.G. Student, Department of Mechanical Engineering, J D Engineering College, Nagpur, Maharashtra, India DESIGN OF HYBRID AIR COOLER USING VAPOUR COMPRESSION REFRIGERATION SYSTEM Vimalkirti Shende 1, Sushil Borkar 2, Touseef Iqbal Qureshi 3 Asst. Prof. Nikhil Bhende 1 1,2,3 U.G. Student, Department of Mechanical

More information

Refrigeration Cycle And Compressor Performance For Various Low GWP Refrigerants

Refrigeration Cycle And Compressor Performance For Various Low GWP Refrigerants Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 26 Refrigeration Cycle And Compressor Performance For Various Low GWP Refrigerants Jit Guan

More information

ENERGY SAVINGS THROUGH LIQUID PRESSURE AMPLIFICATION IN A DAIRY PLANT REFRIGERATION SYSTEM. A. Hadawey, Y. T. Ge, S. A. Tassou

ENERGY SAVINGS THROUGH LIQUID PRESSURE AMPLIFICATION IN A DAIRY PLANT REFRIGERATION SYSTEM. A. Hadawey, Y. T. Ge, S. A. Tassou Condensers ENERGY SAVINGS THROUGH LIQUID PRESSURE AMPLIFICATION IN A DAIRY PLANT REFRIGERATION SYSTEM A. Hadawey, Y. T. Ge, S. A. Tassou 4 7 8 5 3 2 6 1 Produced by: The Centre for Energy and Built Environment

More information

REFRIGERATION CYCLE Principles of Mechanical Refrigeration Level 2: Cycle Analysis

REFRIGERATION CYCLE Principles of Mechanical Refrigeration Level 2: Cycle Analysis REFRIGERATION CYCLE Principles of Mechanical Refrigeration Level 2: Cycle Analysis Technical Development Program Technical Development Programs (TDP) are modules of technical training on HVAC theory, system

More information

A Theoretical investigation on HC Mixtures as Possible Alternatives to R134a in Vapor Compression Refrigeration

A Theoretical investigation on HC Mixtures as Possible Alternatives to R134a in Vapor Compression Refrigeration ANALELE UNIVERSITĂłII EFTIMIE MURGU REŞIłA ANUL XXI, NR. 1, 2014, ISSN 1453-7397 Feiza Memet A Theoretical investigation on HC Mixtures as Possible Alternatives to R134a in Vapor Compression Refrigeration

More information

An Experiment of Heat Exchanger Produces Hot Water Using Waste Heat Recovery from Air Conditioning

An Experiment of Heat Exchanger Produces Hot Water Using Waste Heat Recovery from Air Conditioning ISBN 978-93-84468-94-1 International Conference on Education, Business and Management (ICEBM-2017) Bali (Indonesia) Jan. 8-9, 2017 An Experiment of Heat Exchanger Produces Hot Water Using Waste Heat Recovery

More information

COMPARATIVE ANALYSIS OF SINGLE AND DOUBLE EFFECT LiBr-WATER ABSORPTION SYSTEM

COMPARATIVE ANALYSIS OF SINGLE AND DOUBLE EFFECT LiBr-WATER ABSORPTION SYSTEM COMPARATIVE ANALYSIS OF SINGLE AND DOUBLE EFFECT LiBr-WATER ABSORPTION SYSTEM Suhail Ahmad Khan Department of Mechanical Engineering, Aligarh Muslim University, Aligarh (India) ABSTRACT Energy analysis

More information