ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3

Size: px
Start display at page:

Download "ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3"

Transcription

1 ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3 1. OBJECTIVE The objective of this experiment is to observe four basic psychrometric processes which are heating, cooling, humidification and dehumidification in an air conditioning unit. The air velocity, dry and wet bulb temperatures and the amount of water added/removed will be measured to check the mass and energy balances of these processes. 2. INTRODUCTION The function of an air conditioning equipment is to change the state of the entering air to a desired state by controlling temperature and humidity of the specified space. Air conditioning applications are divided into two types according to their purposes: i) Comfort air conditioning, ii) Industrial air conditioning. The primary function of air conditioning is to modify the state of the air for human comfort. The industrial air conditioning meets the temperature and humidity requirements of an industrial or scientific process. In comfort air conditioning, it is necessary to control simultaneously the temperature, relative humidity, cleanliness and distribution of air to meet the comfort requirements of the occupants. According to the comfort chart given by the American Society of Heating, Refrigeration and Air-conditioning Engineers (ASHRAE), comfort conditions can be obtained at C dry bulb temperature (DBT) and (50 ± 20)% relative humidity in winter, and C DBT and (50 ± 20)% relative humidity in summer. In order to maintain these requirements, the state of the air is modified in an air conditioning apparatus such that the varying summer and winter loads are balanced. 3. THEORY In air conditioning, the moist air (or simply the air) is taken as a mixture of dry air (a) and water vapor (w) carried with it. At a given total air pressure and temperature, the amount of water vapor that may be contained in the air is limited. The mixture existing at this limit is called saturated air. Any excess water vapor in the air separates itself from the mixture as a liquid (condensate) or solid (ice). 1

2 The dry bulb temperature (T db ) is the familiar temperature that can be measured by a thermometer or a thermocouple. On the other hand, the wet bulb temperature, T wb, is related to the humidity level. The humidity of moist air may be stated in terms of either relative humidity, Φ or humidity ratio, ω. The psychrometric charts are diagrams giving the relationship between T db, T wb, Φ, ω and h (enthalpy) by assuming an ambient pressure. For example, ASHRAE psychrometric chart no. 5 is for 750 m. elevation ( kpa barometric pressure) which may be used for Ankara (see Fig. 7). Many psychrometric processes may be represented on these charts by straight lines. Wet bulb temperature (T wb ) is the temperature measured when the bulb of a thermometer or the junction of a thermocouple is wetted. For unsaturated moist air, it is less than the dry bulb temperature; the difference being proportional to the relative humidity. In practice T wb is assumed to be equal to the adiabatic saturation temperature, T*, which would be reached if moisture is added in an adiabatic process until the air becomes saturated. Thus, T wb ~ T*. Relative humidity (Φ) and humidity ratio (ω) are defined as, / (1) where P w is the partial pressure of water vapor in air and P ws is the saturation pressure of water at air temperature T. Relative humidity is a dimensionless quantity usually expressed as percentage. The humidity ratio (also called specific humidity), ω, is defined as / (2) where m w is the mass of water vapor in moist air and m a is the mass of the dry air. Using the ideal gas relationship for dry air and water vapor, humidity ratio becomes... (3) The humidity ratio of air at a given P and T may be calculated from the above relationships when T * is known: (4) where., 2

3 T, T * are the dry and wet bulb temperatures ( C), respectively, h f * h g h fg P w c p * is the specific enthalpy of liquid water at T * (kj/kg w ) g is the specific enthalpy of water vapor at T ( kj/kg w ) g * = (h g - h f ) at T* (kj/kg w ) ws * is the saturation pressure of water evaluated at T * (kpa) a is the constant pressure specific heat of dry air ( kj/kg a ). Note that * indicates properties which are evaluated at the adiabatic saturation (that is the wet bulb) temperature T *. Enthalpy (h) The enthalpy of the moist air at any state can be read from psychrometric charts or can be calculated (5) Sensible Heating or Cooling (Q s ) The sensible heat transfer process is one where only energy is added or removed from the moist air. The dry and wet bulb temperatures, relative humidity change as a result of heat transfer, but there is no change in water vapor content or humidity ratio of the air (see Fig. 1). Fig. 1 Sensible heating and cooling Humidification or Dehumidification The process of adding water vapor to the air is called humidification. Humidification increases the humidity ratio, relative humidity, wet bulb temperature and the enthalpy, but the dry bulbb temperature may slightly change or remains unchanged. The reverse process, which 3

4 decreases the humidity ratio is called dehumidification. It may be achieved by absorbing the moisture at constant temperature by a desiccant (a drying agent) as shown in Fig. 2 or by cooling the moist air below its dew point temperature as illustrated in Fig. 3 by using refrigeration. Combined Heating and Humidification, or Cooling and Dehumidification The following combined sensible and latent process, shown in Fig. 3 may occur in air conditioning: 1-6: Heating and humidification (common in winter) 1-7: Heating and dehumidification (with a desiccant) 1-8: Cooling and humidification (as in air washers) 1-9: Cooling and dehumidification (common in summer) 1-9 : Cooling and dehumidification (theoretical) In Fig. 3, process 1-9 is actual whereas processs 1-9 is theoretical (ideal). Fig. 2 Humidification and dehumidification concepts Fig. 3 Combined processess Mass and Energy Balances At steady state, the following relations can be obtained from the mass and energy balances for a general process as shown in Fig. 4. The continuity equation for dry air is given by Fig. 4 General control volume 4

5 and that for the water vapor is The first law of thermodynamics yields where m& & m w. zero during sensible heating or cooling = condensate removed during dehumidification (-) water vapor injected during humidification (+) (6) (7) (8) h w o h g at water vapor temperaturee (96 C) for humidification = h f at T 2 for dehumidification Q & = Rate of heat transfer, (+) for heating, (-) for cooling Note that water boils at about 96 o C in Ankara. The percentage error between the measured and theoretical values can be found by Theoretical Value Measured Value Percentage Error = 100% (9) Theoretical Value Refrigeration Cycle Cooling the moist air with or without dehumidification is usually achieved by using a mechanical refrigeration cycle which includes a compressor, a condenser, an expansion valve (or capillary tube for small systems) and an evaporator. Fig. 5 Refrigeration cycle In the laboratory unit, the compressor is reciprocating type run by an electrical motor which also runs the fan of the air cooled condenser. Figure 5 shows the equipment schematics as well as P-h and T-s diagrams of a typical cycle. In reality, the compression processs will be 5

6 irreversible and there will be pressure losses through the evaporator, the condenser and the connecting pipes. The isentropic efficiency of the compressor is defined as: (10) The parameters that are important include the compressor discharge temperature (T 2 ), cooling capacity, power input and coefficient of performance of the cycle which may be defined as : (11) Because of the irreversibility of the expansion valve and also the other parts, the COP becomes less than the ideal value of a reversible (Carnot) cycle, Fig. 8 is the P-h diagram for the refrigerant, R-12. (12) 4. Experimental Setup The schematic layout of the set-up is shown in Fig. 6. The main parts of the set-up are as follows: i. Preheaters : Three electrical heaters to heat the air entering ii. Boiler : To supply steam for humidifier. It is composed of a stainless steel container and three electrical heaters, which are dipped into the water iii. Cooling Coil : To cool the air with or without dehumidification iv. Rotating vane anemometer : To measure air flow rate in feet per minute v. Reheaters : Two electrical heaters after the cooling coil which reheats the cooled air before delivery to the space, if required vi. Compressor-Condenser unit : To complete the refrigeration cycle vii. Fan : For air circulation viii. Thermocouples and thermometers : For measuring dry and wet bulb temperatures 6

7 PROCEDURE : Before the Experiment: Check all the thermocouples and thermometers, they should show the same dry bulb and wet bulb temperatures at all locations. Start the boiler and wait until the thermometer shows 96 C. Then turn OFF the power to the boiler, to be restarted for humidification. During the Experiment: Turn the fan ON and note down the air flow. Use heating, cooling, humidification and dehumidification as required. Make the necessary measurements and note them down on the enclosed Data Sheet. At least minutes should pass to reach a steady state after any modification on the operation is made. Measurement steps during the experiment: Start your alarm clock to measure the condensed water and water level change in the boiler (5 min). During this 5 min. duration, read the wet bulb and dry bulb temperature values for each state, read the temperature values related with the refrigeration cycle, read the pressure values related with the refrigeration cycle. After 5 min measure the amount of the collected condensed water and boiler level. Measure the air velocity. After the Experiment: (1) Plot the process lines on psychrometric chart. (2) Estimate the T wb at section 4, based on state 5 and the processes between states 4 and 5 (Hint: use the psychrometric chart). (3) Find h, Φ and ω from chart and from equations (1) to (5). Compare the results. (4) Make necessary calculations for m& a, m& w and Q & at each section. Compare the theoretical energy and mass changes with measured ones. (5) Draw the refrigeration (R-12) cycle on the P-h diagram provided (Fig. 8) and estimate power input to the compressor, (, refrigerant flow rate ( m& r ), isentropic efficiency ( ) and the COP. 7

8 RESULTS AND DISCUSSIONS Questions for Further Discussion: i. Why using the sea level psychrometric chart for Ankara is incorrect? Estimate the error in humidity ratio and enthalpy at some selected moist air states. ii. Estimate the heat lost or gained from the duct surfaces. Will the omission of this cause significant errors in the energy balances? (U sur = 1.7 W/(m 2. C)) (ONLY FOR THE LONG REPORT) Section Preheater Evaporator Reheater Total Lateral Area (m 2 ) iii. Comment on taking electrical heaters consumption as constant. Estimate the variation in electrical energy supplied to these heaters if the resistance is known within ± 20%, and voltage varies within ± 5%. (ONLY FOR LONG REPORT) 8

9 5 1 Discharge d Inlet Mixer Rotating vane anemometer 4 Evaporator 3 Mixer Steam Injection Mixer 2 Fan Reheaters (3.6 kw) T.E.V PreHeaters (2.88 kw) Feed Water Drier Condensate Boiler Compressor condenser unit Liquid Receiver 1.44 kw 2.5 kw 1.44 kw Fig. 6 Schematic drawing of the experimental set-up 9

10 ME 410 EXPERIMENT 3 Mass & Energy Balances in Psychrometric Processes DATA SHEET Lab Group : Date: AMBIENT Pressure 92 kpa Temperature mv (11th T.C) AIR FLOW (ft/min) Preheaters: 0.72 kw each (x3) Duct Area: m² Reheaters: 0.72 kw each (x2) Boiler Cross Section: 0.3 m x 0.4 m Temperature Section Dry Bulb Wet Bulb TC Readings at Section 4 (Dry-bulb) TC No. (mv) TC No. (mv) TC No. (mv) TC No. (mv) 1 & Tavg Energy Input at Preheaters Energy Input at Reheaters ENERGY VALUES kw kw High side pressure of compressor Low side pressure of compressor Temperature at condenser inlet Temperature at evaporator outlet REFRIGERATION CYCLE Psi (Red Gage) Psi (Blue Gage) mv (20th TC) mv (21st TC) Measurement Time Change in boiler level Amount of condensate WATER MEASUREMENTS min mm ml Conversion Factors: 1 Psi =6.895 kpa 1 ft/min m/s T ( C) 23.46xT(mV)

11 ME 410 EXPERIMENT 3 OUTLINE FOR RESULTS Table-1 Enthalpy (h), humidity ratio (ω) and relative humidity (Φ) values for each section T db T wb From Chart From Equations Deviations ( % ) Section ( o C ) ( o C ) h (kj/kg) ω (gr/kg) Φ (%) h (kj/kg) ω (gr/kg) Φ (%) h ω Φ 1 & Table-2 Results of energy and mass balance calculations States 2 & 3 3 & 4 Process Preheating+ Humidification Cooling+ Dehumidification Measured Values Theoretical Values % Deviations Q & m (kw) m& w (kg/s) Q & m (kw) m& w (kg/s) Q & m m& w 4 & 5 Reheating :.. kg/s :.. kg/s :.. kw :.. COP :.. 11

12 Fig. 7 ASHRAE Psychrometric Chart 12

13 Fig. 8 P-H Chart 13

ME 410 MECHA ICAL E GI EERI G SYSTEMS LABORATORY

ME 410 MECHA ICAL E GI EERI G SYSTEMS LABORATORY ME 410 MECHA ICAL E GI EERI G SYSTEMS LABORATORY MASS & E ERGY BALA CES I PSYCHROMETRIC PROCESSES EXPERIME T 3 1. OBJECTIVE The object of this experiment is to observe four basic psychrometric processes

More information

ME Mechanical Engineering Systems Laboratory. Experiment 3 - Mass and Energy Balances in Psychrometric Processes

ME Mechanical Engineering Systems Laboratory. Experiment 3 - Mass and Energy Balances in Psychrometric Processes ME 410 - Mechanical Engineering Systems Laboratory Experiment 3 - Mass and Energy Balances in Psychrometric Processes Assist.Prof.Dr. Özgür BAYER, A-123 AIR-CONDITIONING (A/C) Goal: Control temperature

More information

s. Properties for R134a are as follows : Saturated R-134a Superheated R-134a

s. Properties for R134a are as follows : Saturated R-134a Superheated R-134a CHAPTER 9 REFRIGERATION & AIR-CONDITIONING YEAR 2012 ONE MARK Common Data For Q. 1 and Q.2 A refrigerator operates between 120 kpa and 800 kpa in an ideal vapour compression cycle with R-134a as the refrigerant.

More information

R07. Answer any FIVE Questions All Questions carry equal marks *****

R07. Answer any FIVE Questions All Questions carry equal marks ***** Set No: 1 III B.Tech. II Semester Supplementary Examinations, April/May 2013 REFRIGERATION AND AIR CONDITIONING (Mechanical Engineering) Time: 3 Hours Max Marks: 80 Answer any FIVE Questions All Questions

More information

For an ideal gas mixture, Dalton s law states that the sum of the partial pressures of the individual components is equal to the total pressure.

For an ideal gas mixture, Dalton s law states that the sum of the partial pressures of the individual components is equal to the total pressure. 1 PSYCHROMETICS Psychrometry is the study of the characteristics of moist air. We will see soon that evaporation of moisture from the skin can have a significant impact on thermal comfort. The rate of

More information

AND AIR-CONDITIONING. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

AND AIR-CONDITIONING. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 14 GAS VAPOR MIXTURES AND AIR-CONDITIONING Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University 2 Objectives Differentiate between dry air and atmospheric air. Define and calculate

More information

UNIT 1 AIR CONDITIONING 1. Write the various psychometric processes? Explain any four processes with neat sketches?

UNIT 1 AIR CONDITIONING 1. Write the various psychometric processes? Explain any four processes with neat sketches? SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS) (Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu) (Accredited by NBA & Accredited by NAAC with A Grade) (An ISO 9001:2008

More information

Week 4. Gas-vapor mixtures Air conditioning processes. ME 300 Thermodynamics II 1

Week 4. Gas-vapor mixtures Air conditioning processes. ME 300 Thermodynamics II 1 Week 4 Gas-vapor mixtures Air conditioning processes ME 300 Thermodynamics II 1 Today s Outline Gas-vapor mixtures Key definitions and measures ME 300 Thermodynamics II 2 Gas-vapor Mixtures At temperatures

More information

Dhulapally, Secunderabad Subject: REFRIGERATION AND AIR CONDITIONING QUESTION BANK

Dhulapally, Secunderabad Subject: REFRIGERATION AND AIR CONDITIONING QUESTION BANK St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad-500 014 Subject: REFRIGERATION AND AIR CONDITIONING Class : ECE III 1 Define Unit of refrigeration. 2 Define C.O.P. QUESTION BANK 3 What is the

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road AUTONOMOUS QUESTION BANK (DESCRIPTIVE) UNIT I

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road AUTONOMOUS QUESTION BANK (DESCRIPTIVE) UNIT I SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 AUTONOMOUS QUESTION BANK (DESCRIPTIVE) Subject with Code : Refrigeration and Air Conditioning (16ME8806) Course & Branch:

More information

R10. IV B.Tech I Semester Regular/Supplementary Examinations, Nov/Dec REFRIGERATION & AIR-CONDITIONING (Mechanical Engineering)

R10. IV B.Tech I Semester Regular/Supplementary Examinations, Nov/Dec REFRIGERATION & AIR-CONDITIONING (Mechanical Engineering) Set No. 1 IV B.Tech I Semester Regular/Supplementary Examinations, Nov/Dec - 2014 REFRIGERATION & AIR-CONDITIONING (Mechanical Engineering) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions

More information

MECHANICAL DEPARTMENT, OITM SEM: 6 TH REFRIGERATION & AIR-CONDITIONING PAPER: ME-302-E UNIT-I Q.1 (a) Derive an expression for the COP of Bell-Coleman refrigeration cycle in terms of pressure. (10) [May-09]

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING 1 P a g e INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -00 043 MECHANICAL ENGINEERING QUESTION BANK Name : REFRIGERATION AND AIR CONDITIONING Code : A60334 Class : III B. Tech

More information

Psychrometrics. Outline. Psychrometrics. What is psychrometrics? Psychrometrics in daily life and food industry Psychrometric chart

Psychrometrics. Outline. Psychrometrics. What is psychrometrics? Psychrometrics in daily life and food industry Psychrometric chart Psychrometrics Outline What is psychrometrics? Psychrometrics in daily life and food industry Psychrometric chart Dry bulb temperature, wet bulb temperature, absolute humidity, relative humidity, specific

More information

FS 231: Final Exam (5-6-05) Part A (Closed Book): 60 points

FS 231: Final Exam (5-6-05) Part A (Closed Book): 60 points Name: Start time: End time: FS 231: Final Exam (5-6-05) Part A (Closed Book): 60 points 1. What are the units of the following quantities? (10 points) a. Enthalpy of a refrigerant b. Dryness fraction of

More information

Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad B.Tech (III II SEM) MECHANICAL ENGINEERING

Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad B.Tech (III II SEM) MECHANICAL ENGINEERING Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad- 500 043 B.Tech (III II SEM) MECHANICAL ENGINEERING REFRIGERATION AND AIR CONDITIONING Prepared by, Dr. CH V K N S N Moorthy, Professor

More information

3. (a) Explain the working of a rotary screw compressor. [10] (b) How the capacity control is achieved in refrigerant compressor?

3. (a) Explain the working of a rotary screw compressor. [10] (b) How the capacity control is achieved in refrigerant compressor? Code No: RR410305 Set No. 1 IV B.Tech I Semester Regular Examinations, November 2006 REFRIGERATION & AIR CONDITIONING (Mechanical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All

More information

9. ENERGY PERFORMANCE ASSESSMENT OF HVAC SYSTEMS

9. ENERGY PERFORMANCE ASSESSMENT OF HVAC SYSTEMS 9. ENERGY PERFORMANCE ASSESSMENT OF HVAC SYSTEMS 9.1 Introduction Air conditioning and refrigeration consume significant amount of energy in buildings and in process industries. The energy consumed in

More information

Pressure Enthalpy Charts

Pressure Enthalpy Charts Pressure Enthalpy Charts What is a p-h Diagram? A p-h diagram is a diagram with a vertical axis of absolute pressure and a horizontal axis of specific enthalpy. "Enthalpy is the amount of energy in a substance

More information

Chapter 14 GAS VAPOR MIXTURES AND AIR-CONDITIONING

Chapter 14 GAS VAPOR MIXTURES AND AIR-CONDITIONING Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 14 GAS VAPOR MIXTURES AND AIR-CONDITIONING Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

Chapter 8 Balances on Nonreactive Processes PSYCHROMETRIC CHART

Chapter 8 Balances on Nonreactive Processes PSYCHROMETRIC CHART Chapter 8 Balances on Nonreactive Processes PSYCHROMETRIC CHART Figure 8.4-1 (p. 385) Terminologies Absolute Humidity % Relative Humidity Dew Point Humid Volume Dry-bulb Temperature Wet-bulb Temperature

More information

REFRIGERATION AND AIR CONDITIONING

REFRIGERATION AND AIR CONDITIONING REFRIGERATION AND AIR CONDITIONING SECOND EDITION S.N. Sapali Professor of Mechanical Engineering College of Engineering, Pune Delhi-110092 2014 REFRIGERATION AND AIR CONDITIONING, Second Edition S.N.

More information

CE311 Fall 2016 Mid-Term Exam 1

CE311 Fall 2016 Mid-Term Exam 1 CE311 Fall 16 Mid-Term Exam 1 Name Instructions 1. Please solve the problems using the specified SI or IP system of units. 2. Please show all of your calculations to get full credit and pay attention to

More information

S.A. Klein and G.F. Nellis Cambridge University Press, 2011

S.A. Klein and G.F. Nellis Cambridge University Press, 2011 12.A-1 A mixture of helium and water vapor is flowing through a pipe at T= 90 C and P = 150 kpa. The mole fraction of helium is y He = 0.80. a.) What is the relative humidity of the mixture? b.) What is

More information

Development of a Psychrometric Test Chamber. Michael J. Swedish. Associate Professor Mechanical Engineering Department Milwaukee School of Engineering

Development of a Psychrometric Test Chamber. Michael J. Swedish. Associate Professor Mechanical Engineering Department Milwaukee School of Engineering Session 2633 Development of a Psychrometric Test Chamber Michael J. Swedish Associate Professor Mechanical Engineering Department Milwaukee School of Engineering Acknowledgments The design of the Psychrometric

More information

Chapter 14, Problem 27.

Chapter 14, Problem 27. Chapter 14, Problem 27. A house contains air at 25 C and 65 percent relative humidity. Will any moisture condense on the inner surfaces of the windows when the temperature of the window drops to 10 C?

More information

LISTOF EXPERIMENTS. S. No. NAME OF EXPERIMENTS PAGE No.

LISTOF EXPERIMENTS. S. No. NAME OF EXPERIMENTS PAGE No. LISTOF EXPERIMENTS S. No. NAME OF EXPERIMENTS PAGE No. 1. To study refrigeration cyc;e, determine of coefficient of performance of cycle & determine of tonnage capacity of refrigeration unit. 2. To determine

More information

Chapter 10. Refrigeration and Heat Pump Systems

Chapter 10. Refrigeration and Heat Pump Systems Chapter 10 Refrigeration and Heat Pump Systems Learning Outcomes Demonstrate understanding of basic vaporcompression refrigeration and heat pump systems. Develop and analyze thermodynamic models of vapor-compression

More information

Chapter 9. Refrigeration and Liquefaction

Chapter 9. Refrigeration and Liquefaction Chapter 9 Refrigeration and Liquefaction Refrigeration is best known for its use in the air conditioning of buildings and in the treatment, transportation, and preservation of foods and beverages. It also

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics Department of Mechanical Engineering ME 3 Mechanical Engineering Thermodynamics Lecture 34 The Psychrometric Chart Psychrometric Properties in EES Air Conditioning Processes Moist Air Properties Using

More information

Homework Chapter2. Homework Chapter3

Homework Chapter2. Homework Chapter3 Homework Chapter2 2/1 A storage tank holds methane at 120 K, with a quality of 25 %, and it warms up by 5 C per hour due to a failure in the refrigeration system. How long time will it take before the

More information

CE311 Fall 2016 Mid-Term Exam 1

CE311 Fall 2016 Mid-Term Exam 1 Instructions 1.! Please solve the problems using the specified SI or IP system of units. 2.! Please show all of your calculations to get full credit and pay attention to assumptions. 3.! Neatly mark points

More information

EXPERIMENTAL STUDY OF AIR FLOW RATE EFFECTS ON HUMIDIFICATION PARAMETERS WITH PREHEATING AND DEHUMIDIFICATION PROCESS CHANGING

EXPERIMENTAL STUDY OF AIR FLOW RATE EFFECTS ON HUMIDIFICATION PARAMETERS WITH PREHEATING AND DEHUMIDIFICATION PROCESS CHANGING EXPERIMENTAL STUDY OF AIR FLOW RATE EFFECTS ON HUMIDIFICATION PARAMETERS WITH PREHEATING AND DEHUMIDIFICATION PROCESS CHANGING Ayad T. Mustafa College of Engineering, Nahrain University, Jadiriya, Baghdad,

More information

A/C Cooling Load calculation and measurement

A/C Cooling Load calculation and measurement Testo Inc. 40 White Lake Rd. Sparta NJ 07871 (800) 227-0729 A/C Cooling Load calculation and measurement When we talk about sizing an air conditioning appliance (tons of cooling, BTU/h or KW), we are specifying

More information

: REFRIGERATION & AIR CONDITIONING COURSE CODE : 6023 COURSE CATEGORY : A PERIODS/ WEEK : 6 PERIODS/ SEMESTER : 90 CREDIT : 6 TIME SCHEDULE

: REFRIGERATION & AIR CONDITIONING COURSE CODE : 6023 COURSE CATEGORY : A PERIODS/ WEEK : 6 PERIODS/ SEMESTER : 90 CREDIT : 6 TIME SCHEDULE COURSE TITLE : REFRIGERATION & AIR CONDITIONING COURSE CODE : 6023 COURSE CATEGORY : A PERIODS/ WEEK : 6 PERIODS/ SEMESTER : 90 CREDIT : 6 TIME SCHEDULE MODULE TOPIC PERIODS 1 Introduction. Applications

More information

AR/IA/UP 241 Lecture 5: Psychrometrics

AR/IA/UP 241 Lecture 5: Psychrometrics Faculty of Architecture and Planning Thammasat University AR/IA/UP 241 Lecture 5: Psychrometrics Author: Asst. Prof. Chalermwat Tantasavasdi 1. Definition of Psychrometric Chart The word psychrometry is

More information

UNIT - 3 Refrigeration and Air - Conditioning

UNIT - 3 Refrigeration and Air - Conditioning UNIT - 3 Refrigeration and Air - Conditioning Science of providing and maintaining temperatures below that of surroundings I n t r o d u c t i o n t o R e f r i g e r a t i o n The term refrigeration may

More information

THE PSYCHROMETRIC CALCULATOR By: Stanley F. Gallos, The Bastian-Blessing Company INTRODUCTION PROPERTIES OF THE RSES CALCULATOR

THE PSYCHROMETRIC CALCULATOR By: Stanley F. Gallos, The Bastian-Blessing Company INTRODUCTION PROPERTIES OF THE RSES CALCULATOR Source Application Manual SAM Chapter 620-20 Section 03 THE PSYCHROMETRIC CALCULATOR By: Stanley F. Gallos, The Bastian-Blessing Company INTRODUCTION Problems involving changes in temperature, humidity,

More information

Analysis of Constant Pressure and Constant Area Mixing Ejector Expansion Refrigeration System using R-1270 as Refrigerant

Analysis of Constant Pressure and Constant Area Mixing Ejector Expansion Refrigeration System using R-1270 as Refrigerant Analysis of Constant Pressure and Constant Area Mixing Ejector Expansion Refrigeration System using R-1270 as Refrigerant Ravi Verma 1, Sharad Chaudhary 2 1, 2 Department of Mechanical Engineering, IET

More information

Article Energy Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms

Article Energy Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms Article Energy Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms Min Suk Jo, Jang Hoon Shin, Won Jun Kim and Jae Weon Jeong * Department of Architectural

More information

Thermodynamics II Chapter 6 Mixtures & Psychrometry

Thermodynamics II Chapter 6 Mixtures & Psychrometry Thermodynamics II Chapter 6 Mixtures & Psychrometry Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi Malaysia Objectives Differentiate between dry air and atmospheric air. Define and

More information

Feasibility of Controlling Heat and Enthalpy Wheel Effectiveness to Achieve Optimal Closed DOAS Operation

Feasibility of Controlling Heat and Enthalpy Wheel Effectiveness to Achieve Optimal Closed DOAS Operation Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering July 2018 Feasibility of Controlling Heat and Enthalpy Wheel Effectiveness to

More information

Drying principles and general considerations

Drying principles and general considerations Drying principles and general considerations Drying Mechanisms In the process of drying heat is necessary to evaporate moisture from the grain and a flow of air is needed to carry away the evaporated moisture.

More information

UNIT-1 Q.1 Draw P-V and T-s diagram of Reversed Carnot cycle (2M-Apr./May-2009) Q.2 Define Ton of refrigeration and COP. (2M- Nov/Dec-2009)

UNIT-1 Q.1 Draw P-V and T-s diagram of Reversed Carnot cycle (2M-Apr./May-2009) Q.2 Define Ton of refrigeration and COP. (2M- Nov/Dec-2009) UNIT-1 Q.1 Draw P-V and T-s diagram of Reversed Carnot cycle (2M-Apr./May-2009) Q.2 Define Ton of refrigeration and COP. (2M- Nov/Dec-2009) (2M-Apr./May-2011) Q.3 Differentiate between heat engine and

More information

SAMPLE STUDY MATERIAL

SAMPLE STUDY MATERIAL R.A.C.-ME GAE, IES, PSU SAMPLE SUDY MAERIAL Mechanical Engineering ME Postal Correspondence Course Refrigeration & Air Conditioning GAE, IES & PSUs R.A.C.-ME GAE, IES, PSU 2 C O N E N. INRODUCION & BASIC

More information

Scientific Principals and Analytical Model. Charcoal Cooler. Lisa Crofoot MECH 425, Queens University

Scientific Principals and Analytical Model. Charcoal Cooler. Lisa Crofoot MECH 425, Queens University Scientific Principals and Analytical Model Charcoal Cooler Lisa Crofoot MECH 425, Queens University 1.0 Scientific Principles Evaporative cooling is based on the principle that water requires heat energy

More information

MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS

MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS MASS BALANCES, PSYCHROMETRICS & HVAC 1 Copyright 2018. All rights reserved. How to use this book The exam specifications in effect since

More information

Week 9. Refrigeration Cycles I. GENESYS Laboratory

Week 9. Refrigeration Cycles I. GENESYS Laboratory Week 9. Refrigeration Cycles I Objectives 1. Introduce the concepts of refrigerators and heat pumps and the measure of their performance. 2. Analyze the ideal vapor-compression refrigeration cycle. 3.

More information

Use this Construction/HVAC Glossary to answer the questions below.

Use this Construction/HVAC Glossary to answer the questions below. www.garyklinka.com Page 1 of 21 Instructions: 1. Print these pages. 2. Circle the correct answers and transfer to the answer sheet on the second last page. 3. Page down to the last page for the verification

More information

CHAPTER 7 PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM IN HYBRID REFRIGERATION SYSTEM

CHAPTER 7 PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM IN HYBRID REFRIGERATION SYSTEM 111 CHAPTER 7 PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM IN HYBRID REFRIGERATION SYSTEM 7.1 INTRODUCTION Energy is the primary component to run any system in the world. According to

More information

Mechanical Engineering Laboratory

Mechanical Engineering Laboratory Mechanical Engineering Laboratory MEE 416 Professor H. Ezzat Khalifa Syracuse University http://lcs.syr.edu/faculty/khalifa/mee416/ MEE416 1 A. Experiment 1 Air-Conditioning: Air-side Experiment 0031 Link

More information

Performance Comparison of Ejector Expansion Refrigeration Cycle with Throttled Expansion Cycle Using R-170 as Refrigerant

Performance Comparison of Ejector Expansion Refrigeration Cycle with Throttled Expansion Cycle Using R-170 as Refrigerant International Journal of Scientific and Research Publications, Volume 4, Issue 7, July 2014 1 Performance Comparison of Ejector Expansion Refrigeration Cycle with Throttled Expansion Cycle Using R-170

More information

Basic Principals of Air conditioning By Dr. Esam Mejbil Abed

Basic Principals of Air conditioning By Dr. Esam Mejbil Abed REPUBLIC OF IRAQ Ministry of Higher Education & Scientific Research University of Babylon College of Engineering Mechanical Engineering Department Basic Principals of Air conditioning By Dr. Esam Mejbil

More information

Experimental Study of Direct Contact Condensation of Steam on Water Droplets

Experimental Study of Direct Contact Condensation of Steam on Water Droplets , July 1-3, 2015, London, U.K. Experimental Study of Direct Contact Condensation of Steam on Water Droplets Semra GUMRUK, Murat K. AKTAS Abstract Air or water cooled condensers are used to reduce the moisture

More information

UNIT-III PSYCHROMETRY. Though there are many psychometric terms, yet the following are important from the subject point of view :

UNIT-III PSYCHROMETRY. Though there are many psychometric terms, yet the following are important from the subject point of view : UNIT-III PSYCHROMETRY 3.1 INTRODUCTION The psychrometric is that branch of engineering science which deals with the study of moist air i.e., dry air mixed with water vapour or humidity. It also includes

More information

ISSN Vol.08,Issue.21, November-2016, Pages:

ISSN Vol.08,Issue.21, November-2016, Pages: ISSN 2348 2370 Vol.08,Issue.21, November-2016, Pages:4164-4170 www.ijatir.org Thermal Analysis of Vapour Compression Cycle for Different Refrigerants ALI MOHAMMED ABDOULHA MASSOUD 1, DR. MOHAMMAD TARIQ

More information

ω = (1) Kirby S. Chapman Ph.D.

ω = (1) Kirby S. Chapman Ph.D. White Paper: Relative Humidity Impacts of the AirFloor System in the Built Environment Kirby S. Chapman Ph.D. kirby.chapman@scavengetech.com Introduction Relative humidity is specified as one of the seven

More information

Temperature. In the HVAC area, we talk about two kinds of temperatures.

Temperature. In the HVAC area, we talk about two kinds of temperatures. HEATING and COOLING HEATING and COOLING PSYCHROMETRIC CHART Temperature In the HVAC area, we talk about two kinds of temperatures. One is called dry bulb (DB) temperature, a fancy name for the reading

More information

Paper No. : 04 Paper Title : Unit Operations in Food processing Module 11 : Principles of Refrigeration

Paper No. : 04 Paper Title : Unit Operations in Food processing Module 11 : Principles of Refrigeration Paper No. : 04 Paper Title : Unit Operations in Food processing Module 11 : Principles of Refrigeration 11.1 Introduction Preservation of foods is a vital processing step in food processing. There are

More information

14 Drying. I Basic relations and definitions. Oldřich Holeček, Martin Kohout

14 Drying. I Basic relations and definitions. Oldřich Holeček, Martin Kohout 14 Drying Oldřich Holeček, Martin Kohout I Basic relations and definitions Drying is a process which is used for removing the liquid from the solid material. In standard chemical engineering practice drying

More information

II. OBJECTIVE OF RESEARCH

II. OBJECTIVE OF RESEARCH Enhancement of Coefficient of Performance of Vapor Compression Refrigeration System Using Diffuser at let of Condenser Mr. Nurul Seraj 1, Dr. S. C. Roy 2 1 Student, 2 Head of Department, Department of

More information

The Basics - B Practical Psychrometrics. Jerry Cohen President Jacco & Assoc.

The Basics - B Practical Psychrometrics. Jerry Cohen President Jacco & Assoc. The Basics - B Practical Psychrometrics Jerry Cohen President Jacco & Assoc. Who is Jacco Established 1968 Hudson, Ohio Columbus, Ohio Toledo, Ohio Focused on the Engineered Environment Systems Knowledgeable

More information

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division INTRODUCTION PRESSURE-ENTHALPY CHARTS AND THEIR USE The refrigerant in a refrigeration system, regardless of type, is present in two different states. It is present as liquid and as vapor (or gas). During

More information

Last exam / sista tent

Last exam / sista tent Värme- och strömningsteknik Thermal and flow engineering Refrigeration Kylteknik Ron Zevenhoven Exam 24-2-2017 4 questions, max. points = 8 + 8 + 6 + 8 = 30 All support material is allowed except for telecommunication

More information

EXPERIMENTAL INVESTIGATION OF COMPARISION OF AIR COOLED AND WATER COOLED CONDENSER ATTACHED WITH COOLING TOWER

EXPERIMENTAL INVESTIGATION OF COMPARISION OF AIR COOLED AND WATER COOLED CONDENSER ATTACHED WITH COOLING TOWER EXPERIMENTAL INVESTIGATION OF COMPARISION OF AIR COOLED AND WATER COOLED CONDENSER ATTACHED WITH COOLING TOWER Gourav Roy; Taliv Hussain; Rahul Wandra Department of Mechanical Engineering, Lovely Professional

More information

Chapter 14. At temperatures below the critical temperature, the gas GAS VAPOR MIXTURES AND AIR-CONDITIONING. Objectives

Chapter 14. At temperatures below the critical temperature, the gas GAS VAPOR MIXTURES AND AIR-CONDITIONING. Objectives Chapter 14 GAS VAPOR MIXTURES AND -CONDITIONING At temperatures below the critical temperature, the gas phase of a substance is frequently referred to as a vapor. The term vapor implies a gaseous state

More information

Thermodynamics: Homework A Set 7 Jennifer West (2004)

Thermodynamics: Homework A Set 7 Jennifer West (2004) Thermodynamics: Homework A Set 7 Jennifer West (2004) Problem 1 Water is the working fluid in a Carnot vapor power cycle. Saturated liquid enters the boiler at a pressure of 18 MPa, and saturated vapor

More information

Armstrong Cool-Fog Systems

Armstrong Cool-Fog Systems Armstrong Cool-Fog Systems Armstrong International, Inc. is a leading supplier of hydropneumatic fogging systems used for both humidification and evaporative cooling. Its systems were first developed in

More information

2. CURRICULUM. Sl. No.

2. CURRICULUM. Sl. No. . CURRICULUM Sl. No. Code Title No. of Lecture Hours 1 RAC 001 Fundamentals of Refrigeration and Air 60 conditioning RAC 00 Psychrometry, Heat load Estimation for 70 Air conditioning and Refrigeration

More information

Fig.: macroscopic kinetic energy is an organized form of energy and is much more useful

Fig.: macroscopic kinetic energy is an organized form of energy and is much more useful Harnessing Energy Fig.: macroscopic kinetic energy is an organized form of energy and is much more useful Vapor Power Cycle The vast majority of electrical generating plants are variations of vapor power

More information

SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL REFRIGERATION CYCLES REFRIGERATION CYCLES REFRIGERATION CYCLES

SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL REFRIGERATION CYCLES REFRIGERATION CYCLES REFRIGERATION CYCLES SSC-JE SAFF SELECION COMMISSION MECHANICAL ENGINEERING SUDY MAERIAL 2 Syllabus: hermal Engineering () Refrigeration cycles; Principle of a Refrigeration Subject wise paper analysis: Mechanical Engineering

More information

Energy Consumption Reduction of AHU using Heat Pipe as Dehumidifier

Energy Consumption Reduction of AHU using Heat Pipe as Dehumidifier Energy Consumption Reduction of AHU using Heat Pipe as Dehumidifier Rohit R. Parab Mechanical Engineering Department Vishwakarma Institute of Technology, Pune, India Laxmikant D. Mangate Mechanical Engineering

More information

1 /35 2 /35 3 /30 Total /100

1 /35 2 /35 3 /30 Total /100 Test is open book and notes. Answer all questions and sign honor code statement: I have neither given nor received unauthorized assistance during this exam. Signed Remember to show your work partial credit

More information

PLEASE READ AND FOLLOW THESE INSTRUCTIONS

PLEASE READ AND FOLLOW THESE INSTRUCTIONS ME 300 Final Examination May 2, 2005 161 ME or 261 ME Name: Thermo No. Section: (Please circle) 8:30 a.m. 11:30 a.m. 2:30 p.m. PLEASE READ AND FOLLOW THESE INSTRUCTIONS 1. Put your name on each page of

More information

REFRIGERATION TUTOR. OBJECTIVE: To perform test on the refrigeration tutor to determine different COPs and other performance parameters.

REFRIGERATION TUTOR. OBJECTIVE: To perform test on the refrigeration tutor to determine different COPs and other performance parameters. REFRIGERATION TUTOR OBJECTIVE: To perform test on the refrigeration tutor to determine different COPs and other performance parameters. EXPERIMENTAL SETUP: All the components of refrigeration bench are

More information

Subscripts 1-4 States of the given system Comp Compressor Cond Condenser E Evaporator vol Volumetric G Gas L Liquid

Subscripts 1-4 States of the given system Comp Compressor Cond Condenser E Evaporator vol Volumetric G Gas L Liquid Simulation Analysis of Compression Refrigeration Cycle with Different Refrigerants P.Thangavel, Dr.P.Somasundaram, T.Sivakumar, C.Selva Kumar, G.Vetriselvan Abstract --- In this analysis, the performance

More information

4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015)

4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015) 4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015) Multi-stage Series Heat Pump Drying System with Dehumidification Simulation and Experiment Verification Chao

More information

Exhaust. a) For an arbitrary ambient temperature develop an expression for Q chiller in terms of M amb and M total.

Exhaust. a) For an arbitrary ambient temperature develop an expression for Q chiller in terms of M amb and M total. 1. State 2 75 o F Exhaust M amb T amb State 3 Room Q chiller State 1 60 o F M total A room at steady state has a supply air stream of cool air entering at 60 o F. The lights, office appliances and people

More information

SECTION THIRTEEN HEATING, VENTILATION, AND AIR CONDITIONING

SECTION THIRTEEN HEATING, VENTILATION, AND AIR CONDITIONING Source: BUILDING DESIGN AND CONSTRUCTION HANDBOOK SECTION THIRTEEN HEATING, VENTILATION, AND AIR CONDITIONING Lawrence E. McCabe* Chief Engineer Mechanical STV Group Douglassville, Pennsylvania The necessity

More information

Thermo-physical properties found on most psychrometric charts

Thermo-physical properties found on most psychrometric charts Psychrometric Chart The psychrometric chart displays the relationship between dry-bulb, wet-bulb, and dew point temperatures and specific and relative humidity. Given any two properties, the others can

More information

Open and Closed Door Moisture Transport and Corresponding Energy Consumption in Household Refrigerator

Open and Closed Door Moisture Transport and Corresponding Energy Consumption in Household Refrigerator 18 R. Saidur et al./journal of Energy & Environment, Vol. 6, May 2007 Open and Closed Door Moisture Transport and Corresponding Energy Consumption in Household Refrigerator R. Saidur, M. A. Sattar, M.

More information

HVAC (Heating, Ventilating, and Air Conditioning)

HVAC (Heating, Ventilating, and Air Conditioning) HVAC (Heating, Ventilating, and Air Conditioning) Gas vapor Mixtures The term vapor implies a gaseous state that is close to the saturation region of the substance, raising the possibility of condensation

More information

Fundamentals of Psychrometrics. By James L. Murphy, Colorado Building Environments Sales Engineer

Fundamentals of Psychrometrics. By James L. Murphy, Colorado Building Environments Sales Engineer Fundamentals of Psychrometrics By James L. Murphy, Colorado Building Environments Sales Engineer Let s s Start with Air Air is Made up of Two Main Gases Nitrogen (77%) Oxygen (23%) If that is all there

More information

Air Conditioning Clinic

Air Conditioning Clinic Air Conditioning Clinic Psychrometry One of the Fundamental Series D C B A C B D A July 2012 TRG-TRC001-EN Psychrometry One of the Fundamental Series A publication of Trane Preface Psychrometry A Trane

More information

Comfort and health-indoor air quality

Comfort and health-indoor air quality Comfort and health-indoor air quality 1 The human body has a complicated regulating system to maintain the human body temperature constant most of the time, which is 98.6 F (36.9 C) regardless of the environmental

More information

(Refer Slide Time: 00:00:40 min)

(Refer Slide Time: 00:00:40 min) Refrigeration and Air Conditioning Prof. M. Ramgopal Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 10 Vapour Compression Refrigeration Systems (Refer Slide

More information

Heat pump and energy recovery systems

Heat pump and energy recovery systems SBS5311 HVACR II http://ibse.hk/sbs5311/ Heat pump and energy recovery systems Ir. Dr. Sam C. M. Hui Faculty of Science and Technology E-mail: cmhui@vtc.edu.hk Oct 2017 Contents Basic concepts Air-to-air

More information

Conceptual Design of a Better Heat Pump Compressor for Northern Climates

Conceptual Design of a Better Heat Pump Compressor for Northern Climates Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1976 Conceptual Design of a Better Heat Pump Compressor for Northern Climates D. Squarer

More information

Comparison Simulation between Ventilation and Recirculation of Solar Desiccant Cooling System by TRNSYS in Hot and Humid Area

Comparison Simulation between Ventilation and Recirculation of Solar Desiccant Cooling System by TRNSYS in Hot and Humid Area Comparison Simulation between Ventilation and Recirculation of Solar Desiccant Cooling System by TRNSYS in Hot and Humid Area MMS DEZFOULI, SOHIF MAT, K.SOPIAN Solar Energy Research Institute (SERI, Universiti

More information

Performance investigation of Air-conditioning system using ejector as expansion device

Performance investigation of Air-conditioning system using ejector as expansion device International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347 161 216 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Performance

More information

Math. The latent heat of fusion for water is 144 BTU s Per Lb. The latent heat of vaporization for water is 970 Btu s per Lb.

Math. The latent heat of fusion for water is 144 BTU s Per Lb. The latent heat of vaporization for water is 970 Btu s per Lb. HVAC Math The latent heat of fusion for water is 144 BTU s Per Lb. The latent heat of vaporization for water is 970 Btu s per Lb. Math F. to C. Conversion = (f-32)*(5/9) C. to F. Conversion = C * 9/5 +

More information

Psychrometrics: The Science of Moisture in Air. Presented by Tom Peterson, CEO and Founder. Climate by Design International

Psychrometrics: The Science of Moisture in Air. Presented by Tom Peterson, CEO and Founder. Climate by Design International Psychrometrics: The Science of Moisture in Air Presented by Tom Peterson, CEO and Founder Climate by Design International www.cdihvac.com Owatonna, MN 507-451-2198 4 02/2014 1 Psychrometrics or psychrometry

More information

Impact of Multi-Stage Liquid Desiccant Dehumidification in a Desiccant and Evaporative Cooling-Assisted Air Conditioning System

Impact of Multi-Stage Liquid Desiccant Dehumidification in a Desiccant and Evaporative Cooling-Assisted Air Conditioning System 4 th International Conference On Building Energy Environment Impact of Multi-Stage Liquid Desiccant Dehumidification in a Desiccant and Evaporative Cooling-Assisted Air Conditioning System J Y Park H W

More information

Numerical Simulation of Window Air Conditioner

Numerical Simulation of Window Air Conditioner Numerical Simulation of Window Air Conditioner Mathewlal T 1, Kalpesh Patil 2, Gauri Thorat 3, Anisha Ankush 4, Ambarish Pote 5, Kartik Doshi 6 ( 1 Associate ProfessorMechanical Engineering Department,

More information

Effects of Flash and Vapor Injection on the Air-to- Air Heat Pump System

Effects of Flash and Vapor Injection on the Air-to- Air Heat Pump System Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2010 Effects of Flash and Vapor Injection on the Air-to- Air Heat Pump System

More information

Air Conditioning and Refrigeration Laboratory

Air Conditioning and Refrigeration Laboratory AL-Qadisiyah University ollege of Engineering Department of Mechanical Engineering Laboratory brochure SINE 2016 Air onditioning and Refrigeration Laboratory By Ahmed Thabit Abed AL-Rubaye Assistant Lecturer

More information

AIR CONDITIONING. Carrier Corporation 2002 Cat. No

AIR CONDITIONING. Carrier Corporation 2002 Cat. No AIR CONDITIONING Carrier Corporation 2002 Cat. No. 020-016 1. This refresher course covers topics contained in the AIR CONDITIONING specialty section of the North American Technician Excellence (NATE)

More information

SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU DEPARTMENT OF MECHANICAL ENGINEERING ETD-II. Model Short Answer Questions And Answers

SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU DEPARTMENT OF MECHANICAL ENGINEERING ETD-II. Model Short Answer Questions And Answers SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU DEPARTMENT OF MECHANICAL ENGINEERING ETD-II Model Short Answer Questions And Answers VAPOUR POWER CYCLES 1. What are the methods to increase thermal efficiency

More information

Numerical Study on Improvement of COP of Vapour Compression Refrigeration System

Numerical Study on Improvement of COP of Vapour Compression Refrigeration System Numerical Study on Improvement of COP of Vapour Compression Refrigeration System Sanath Kumar K H 1, Arun Kumara K S 2, Nissar Ahmed 3 Assistant Professor, Department of Mechanical Engineering, VVIT, Bangalore,

More information

GRAPSI_DRAW DIGITAL PSYCHROMETRIC CHART

GRAPSI_DRAW DIGITAL PSYCHROMETRIC CHART GRAPSI_DRAW DIGITAL PSYCHROMETRIC CHART Daniela de C. Lopes 1,*, Evandro de C. Melo 1, José H. Martins 1, Luis Manuel N. Gracia 2, Adriana C. Guimarães 3 1 Department of Agricultural Engineering, Federal

More information