ROOFTOP DISCONNECTION VERSION 1.5

Size: px
Start display at page:

Download "ROOFTOP DISCONNECTION VERSION 1.5"

Transcription

1 DRAFT VA DCR STORMWATER DESIGN SPECIFICATION No. 1 ROOFTOP DISCONNECTION VERSION 1.5 Note to Reviewers of the Stormwater Design Standards and Specifications The Virginia Department of Conservation and Recreation (DCR) has developed an updated set of nonproprietary BMP standards and specifications for use in complying with the Virginia Stormwater Management Law and Regulations. These standards and specifications were developed with assistance from the Chesapeake Stormwater Network (CSN), Center for Watershed Protection (CWP), Northern Virginia Regional Commission (NVRC), and the Engineers and Surveyors Institute (ESI) of Northern Virginia. These standards and specifications are based on both the traditional BMPs and Low Impact Development (LID) practices. The advancements in these standards and specifications are a result of extensive reviews of BMP research studies incorporated into the CWP's National Pollution Removal Performance Database (NPRPD). In addition, we have borrowed from BMP standards and specifications from other states and research universities in the region. Table 1 describes the overall organization and status of the proposed design specifications under development by DCR. Table 1: Organization and Status of Proposed DCR Stormwater Design Specifications: Status as of 9/24/2008 # Practice Notes Status 1 1 Rooftop Disconnection Includes front-yard bioretention 2 2 Filter Strips Includes grass and conservation filter strips 2 3 Grass Channels 2 4 Soil Compost Amendments 5 Green Roofs 1 6 Rain Tanks Includes cisterns 2 7 Permeable Pavement 1 8 Infiltration Includes micro- small scale and conventional infiltration techniques 9 Bioretention Includes urban bioretention 3 10 Dry Swales 2 11 OPEN 12 Filtering Practices 2 13 Constructed Wetlands Includes wet swales 2 14 Wet Ponds 2 15 ED Ponds 2 1 Status: 1= Partial draft of design spec; 2 = Complete draft of design spec; 3 = Design specification has undergone one round of external peer review as of 9/24/08 Reviewers should be aware that these draft standards and specifications are just the beginning of the process. Over the coming months, they will be extensively peer-reviewed to develop standards and specifications that can boost performance, increase longevity, reduce the maintenance burden, create attractive amenities, and drive down the unit cost of the treatment provided. 3 2 Rooftop Disconnection 1 of 10 9/24/08

2 Timeline for review and adoption of specifications and Role of the Virginia s Stormwater BMP Clearinghouse Committee: The CSN will be soliciting input and comment on each standard and specification until the end of 2008 from the research, design and plan review community. This feedback will ensure that these design standards strike the right balance between prescription and flexibility, and that they work effectively in each physiographic region. The collective feedback will be presented to the BMP Clearinghouse Committee to help complement their review efforts. The Virginia Stormwater BMP Clearinghouse Committee will consider the feedback and recommend final versions of these BMP standards and specifications for approval by DCR. The revisions to the Virginia Stormwater Management Regulations are not expected to become finalized until late The DCR intends that these stormwater BMP standards and specifications will be finalized by the time the regulations become final. The Virginia Stormwater BMP Clearinghouse Committee will consider the feedback and recommend final versions of these BMP standards and specifications for approval by DCR, which is vested by the Code of Virginia with the authority to determine what practices are acceptable for use in Virginia to manage stormwater runoff. As with any draft, there are several key caveats, as outlined below: Many of the proposed design standards and specifications lack graphics. Graphics will be produced in the coming months, and some of graphics will be imported from the DCR 1999 Virginia Stormwater Management (SWM) Handbook. The design graphics shown in this current version are meant to be illustrative. Where there are differences between the schematic and the text, the text should be considered the recommended approach. There are some inconsistencies in the material specifications for stone, pea gravel and filter fabric between ASTM, VDOT and the DCR 1999 SWM Handbook. These inconsistencies will be rectified in subsequent versions. While the DCR 1999 SWM Handbook was used as the initial foundation for these draft standards and specifications, additional side-by-side comparison will be conducted to ensure continuity. Other inconsistencies may exist regarding the specified setbacks from buildings, roads, septic systems, water supply wells and public infrastructure. These setbacks can be extremely important, and local plan reviewers should provide input to ensure that they strike the appropriate balance between risk aversion and practice feasibility. These practice specifications will be posted in Wikipedia fashion for comment on the Chesapeake Stormwater Network s web site at with instructions regarding how to submit comments, answers to remaining questions about the practice, useful graphics, etc. DCR requests that you provide an copy of your comments, etc., to Scott Crafton (scott.crafton@dcr.virginia.gov). The final version will provide appropriate credit and attribution on the sources from which photos, schematics, figures, and text were derived. Thank you for your help in producing the best stormwater design specifications for the Commonwealth. Rooftop Disconnection 2 of 10 9/24/08

3 DRAFT VA DCR STORMWATER DESIGN SPECIFICATION No. 1 ROOFTOP DISCONNECTION VERSION 1.5 SECTION 1: DESCRIPTION OF PRACTICE This strategy involves treating runoff close to its source by intercepting rooftop runoff and infiltrating, filtering, treating, or reusing it before it moves from the roof into the storm drain system. Two kinds of practices are allowed. The first is for simple rooftop disconnection, whereas the second involves disconnection combined with supplementary runoff treatment, including the following: Compost amended soils in the filter path Installation of dry wells or french drains Installation of rain gardens or front yard bioretention Storage and reuse in a rain tank or cistern Storage and release in a foundation planter With proper design and maintenance, each of the disconnection options can provide relatively high runoff reduction rates, as shown in Table 1. With the exception of dry wells and rain gardens, most disconnection options have little or no capability to remove nutrients (Table 2). Any runoff reduction achieved by rooftop disconnections can be subtracted from the overall Rooftop Disconnection 3 of 10 9/24/08

4 channel protection volume for the site, and may also increase the time of concentration used to model larger design storms to control flooding. Table 1: Runoff Reduction Capabilities For Rooftop Disconnection Annual Runoff Reduction Rate HSG Soils A and B HSG Soils C and D Simple Disconnection Compost-Amended Filter Path Dry Wells or French Drains Rain Gardens/Bioretention Rain Tank or Cistern actual storage volume x 0.75 Foundation Planter 40 1 CA= Compost Amended Soils, see Design Specification No. 4 Sources: CWP and CSN (2008), CWP, 2007 Rooftop Disconnection 4 of 10 9/24/08

5 SECTION 2: PERFORMANCE CRITERIA Table 2: Pollutant Removal Capabilities For Rooftop Disconnection EMC Reduction Rate Total Phosphorus Total Nitrogen Simple Disconnection 0 0 Compost-amended Filter Path 0 0 Dry Wells or French Drains Rain Gardens/Bioretention Rain Tank or Cistern 0 0 Foundation Planter 0 0 Sources: CWP and CSN (2008), CWP (2007) SECTION 3: DESIGN APPLICATIONS AND VARIATIONS The flow chart in Figure 1 below provides guidance for choosing the best disconnection option for an individual rooftop: Figure 1: This simple flow chart helps homeowners decide whether simple disconnection, rain barrels, french drains or rain gardens are most appropriate for their lot. Rooftop Disconnection 5 of 10 9/24/08

6 3.1: Simple Rooftop Disconnection SECTION 4: DESIGN CRITERIA Simple disconnection is only allowed for residential lots greater than 6000 sq. ft. For smaller sites, disconnection with supplementary runoff treatment may be considered. The contributing flow path from impervious areas should not exceed 75 feet. The disconnection length must exceed the contributing flow path. A compensatory mechanism is needed if the disconnection length is less than 40 feet and/or the post construction Hydrologic Soil Group is in the C or D Category. Pervious areas used for disconnection should be graded to have a slope in the 1 to 2% range, and should never exceed 5%. The total impervious area contributing to any single discharge point shall not exceed 1000 square feet and shall drain continuously through a pervious filter until reaching a property line or drainage swale. The disconnection shall not cause basement seepage. Normally, this involves extending downspouts at least 10 feet from the building if the ground does not slope away from the building. Maintenance of disconnected downspouts is essentially maintaining the lawn or landscaped areas in the path of the water from the downspout. 3.2: Compost-amended filter path The design should conform to Stormwater Design Specification No. 4 (Soil Compost Amendments), and include the following elements: Flow from the downspout should be spread over a 10-foot wide strip extending downgradient from the building to the street or conveyance system. A pea gravel or riverstone diaphragm should be installed at the downspout outlet to distribute flows across the filter path. Existing soils in the strip will be scarified or tilled to a depth of 12 to 18 inches and amended with well-aged compost to achieve an organic matter content in the range of 8 to 13%. The depth of compost amendment is based on the relationship of the contributing rooftop area (RA) to the area of the soil amendment strip (SA), using the following general guidance: o RA/SA = 1, use 4 inches compost. Rooftop Disconnection 6 of 10 9/24/08

7 o RA/SA = 2, use 8 inches compost. o RA/SA = 3, use 12 inches of compost and till to a depth of inches. 3.3: Dry Wells and French Drains Depending on soil properties, roof runoff may be infiltrated into a shallow dry well or French drain. The design for this option should meet the requirements of micro-infiltration, as described in Design Specification No. 8 (Infiltration), and summarized in Table 3. Table 3: Design Requirements for Micro-Infiltration Design Factor Micro Infiltration Design Impervious Area Treated 250 to 2500 sq. ft. Typical Practices Dry Well and French Drain Runoff Reduction Sizing Minimum 0.1 inches over CDA (the RA) Minimum Soil Infiltration Rate 0.5 inches/hour Observation Well No Type of Pretreatment External (leaf screens, etc) Depth Dimensions Max. 3 foot depth UIC Permit Needed No Head Required Nominal, 1 to 3 feet Underdrain Requirements? Only on marginal soils Required Soil Test One per practice Building Setbacks 5 feet downgradient, 25 feet upgradient In general, the size of Micro-Infiltration Facilities needs to be10-15% of the contributing roof area. An on-site soil test is needed to determiner if soils are suitable for infiltration. The microinfiltration facility should be located in an expanded right of way or stormwater easement so that it can be accessed for maintenance. 3.4: Rain Gardens and Front Yard Bioretention Depending on soil properties, roof runoff may be filtered through a shallow bioretention area. The design for this option should meet the requirements of micro-bioretention, as described in Design Specification No. 7 (Bioretention), and summarized in Table 4. Rooftop Disconnection 7 of 10 9/24/08

8 Table 4 Design Requirements for Micro-Bioretention Design Factor Micro-Bioretention aka Rain Garden Impervious Area Treated 250 to 2500 sq. ft. Type of Inflow Sheetflow or roof leader Runoff Reduction Sizing Minimum 0.1 inches over CDA Minimum Soil Infiltration Rate 0.5 inches/hour (or use underdrain) Observation Well/ Cleanout Pipes No Type of Pretreatment External (leaf screens, etc) Minimum Filter Media Depth 24 inches Media Source Mixed on site Head Required Nominal, 1 to 3 feet Required Soil Borings One, only when an underdrain is not used Building Setbacks 5 feet downgradient, 25 feet upgradient For high density sites, front yard bioretention may be an attractive option. This form of bioretention captures roof overflow and lawn and driveway runoff from low to medium density residential lots in a slight depressed area between the home and the street. The bottom of the bioretention area then connects by an underdrain to the main storm drain pipe located underneath the street The concept is to take advantage of the drop from the roof leader to the street storm drain pipe, by creating a 10 foot wide bioretention corridor from roof to the street. The minimum effective length of the bioretention corridor is 20 feet long. The bioretention corridor is subtly graded to create a shallow 6-12 inch deep ponding area between the roof leader and the edge of a sidewalk or road. The ponding area may have a turf or landscape cover, depending on homeowner preference. The bioretention media is approximately 3 feet deep, and is located over a inch deep stone reservoir. A perforated underdrain is located above the stone reservoir, to promote storage and recharge, even on poorly draining soils. In highly urban settings, the underdrain is directly connected into the major storm drain pipe running underneath the street or in the street right of way. A trench needs to be excavated during construction to connect the underdrain to the street storm drain system. Construction of the remainder of the front yard bioretention system is deferred until after the lot has been stabilized. The front yard design should reduce the risk of homeowner conversion because it allows them to choose whether they want turf or landscaping. Front yard bioretention requires regular mowing and/or landscape maintenance to perform effectively and should be located in an expanded right of way of stormwater easement so that it can be accessed in the event that it fails to drain properly. 3.5: Rain Tanks and Cisterns This form of disconnection must conform to the design requirements outlined in Design Specification No. 6 (Rain Tanks and Cisterns). The runoff reduction rates for rain tanks and cisterns depend on their storage capacity and ability to drawdown water in between storms for reuse as potable water, greywater, or irrigation use. Rooftop Disconnection 8 of 10 9/24/08

9 Designers will need to estimate the water reuse volume, based on the method of distribution, frequency of use, and seasonally adjusted indoor and/or outdoor water demands for the building. Based on the prevailing climate for the region, a conservative runoff reduction estimate of 40% is recommended for initial design. Pretreatment measures may need to be employed to keep leaves, bird droppings, and other pollutants from entering the tank or cistern. All devices should have a suitable overflow area to route extreme flows into the next treatment practice or stormwater conveyance system. 3.6: Foundation Planter This form of disconnection must conform to the design requirements for foundation planters as outlined in Design Specification No. 9 (Bioretention). Foundation planters are another option to disconnect and treat rooftop runoff. They consist of confined planters that store and/or infiltrate runoff through a soil bed to reduce runoff volumes and pollutant loads. Stormwater planters combine an aesthetic landscaping feature with a functional form of stormwater treatment. Stormwater planters generally receive runoff from adjacent rooftop downspouts and are landscaped with plants that are tolerant to both periods of drought and inundation. The two basic design variations for stormwater planters are the infiltration planter and the filter planter. An infiltration planter filters rooftop runoff through soils in the planter followed by infiltration into soils below the planter. The recommended minimum width is 30 inches; length and shape can be decided by architectural considerations. The planter should be sized to temporarily store at least 1/2-inch of runoff from the contributing rooftop area in a reservoir above the planter bed. Infiltration planters should be placed at least 10 feet away from a building to prevent possible flooding or basement seepage damage. A filter planter has an impervious liner on the bottom. The minimum planter width is 18 inches with the shape and length governed by architectural considerations. Runoff is temporarily stored in a reservoir located above the planter bed. Overflow pipes are installed to discharge runoff when maximum ponding depths are exceeded to avoid water spilling over the side of the planter. Since a filter planter is self-contained and does not infiltrate into the ground, it can be installed right next to a building. All planters should be placed at grade level or above ground, and sized to allow captured runoff to drain out within four hours after a storm event. Plant materials should be capable of withstanding moist and seasonally dry conditions. Planting media should have an infiltration rate of at least 2 inches per hour. The sand and gravel on the bottom of the planter should have a minimum infiltration rate of 5 inches per hour. The planter can be constructed of stone, Rooftop Disconnection 9 of 10 9/24/08

10 concrete, brick, wood, or other durable material. If treated wood is used, care should be taken so that trace metals and creosote do not leach out of the planter. SECTION 4: OPERATIONS AND MAINTENANCE The rooftop disconnection and supplementary treatment device must be covered by a drainage easement to allow inspection and maintenance. When the disconnection occurs on a private residential lot, its existence and purpose shall be noted on the deed of record. Homeowners must be provided a simple document that explains their purpose and routine maintenance needs. A legally binding maintenance agreement must be in place to ensure that downspouts remain disconnected, treatment units are maintained and filtering/infiltrating areas are not converted or disturbed. The agreements should grant authority for local agencies to access the property for inspection or corrective action. SECTION 5: REFERENCES City of Portland, Environmental Services Portland Stormwater Management Manual. Portland, OR. CWP National Pollutant Removal Performance Database Version 3.0. Center for Watershed Protection, Ellicott City, MD. Northern Virginia Regional Commission Low Impact Development Supplement to the Northern Virginia BMP Handbook. Fairfax, Virginia Philadelphia Stormwater Management Guidance Manual Schueler, T., D. Hirschman, M. Novotney and J. Zielinski Urban stormwater retrofit practices. Manual 3 in the Urban Subwatershed Restoration Manual Series. Center for Watershed Protection, Ellicott City, MD Schueler, T Technical Support for the Baywide Runoff Reduction Method. Chesapeake Stormwater Network. Baltimore, MD Rooftop Disconnection 10 of 10 9/24/08

ROOFTOP (IMPERVIOUS SURFACE) DISCONNECTION

ROOFTOP (IMPERVIOUS SURFACE) DISCONNECTION VIRGINIA DCR DEQ STORMWATER DESIGN SPECIFICATION No. 1 ROOFTOP (IMPERVIOUS SURFACE) DISCONNECTION VERSION 2.0 July 1, 2013 SECTION 1: DESCRIPTION This strategy involves managing runoff close to its source

More information

SHEETFLOW TO CONSERVATION AREA OR VEGETATED FILTER STRIP

SHEETFLOW TO CONSERVATION AREA OR VEGETATED FILTER STRIP DRAFT VA DCR STORMWATER DESIGN SPECIFICATION No. 2 SHEETFLOW TO CONSERVATION AREA OR VEGETATED FILTER STRIP VERSION 1.6 Note to Reviewers of the Stormwater Design Specifications The Virginia Department

More information

West Virginia Stormwater Management Manual: Methods.

West Virginia Stormwater Management Manual: Methods. West Virginia Stormwater Management Manual: Methods Created to deliver targeted training on new tools and practices to improve the quality of stormwater runoff. www.cbstp.org www.chesapeakestormwater.net

More information

RAIN TANKS VERSION 0.55

RAIN TANKS VERSION 0.55 DRAFT VA DCR STORMWATER DESIGN SPECIFICATION No. 6 RAIN TANKS VERSION 0.55 Note to Reviewers of the Stormwater Design Specifications The Virginia Department of Conservation and Recreation (DCR) has developed

More information

SECTION A-1: DESCRIPTION

SECTION A-1: DESCRIPTION URBAN BIORETENTION Stormwater Planters Expanded Tree Pits Stormwater Curb Extensions VERSION 1.0 SECTION A-1: DESCRIPTION Urban bioretention practices are similar in function to regular bioretention practices

More information

Using Runoff Reduction Practices to Shrink the Water Quality Volume (WQv) September 18, 2018 Jay Dorsey

Using Runoff Reduction Practices to Shrink the Water Quality Volume (WQv) September 18, 2018 Jay Dorsey Using Runoff Reduction Practices to Shrink the Water Quality Volume (WQv) September 18, 2018 Jay Dorsey This Presentation Ohio EPA Post-Construction Criteria/Guidance Runoff Reduction Accounting Green

More information

Appendix D - Technical Design Criteria for BMPs

Appendix D - Technical Design Criteria for BMPs Appendix D - Technical Design Criteria for BMPs City of Wayzata Page 3 On-site infiltration features Definitions and Scope: Infiltration facilities are constructed basins or depressions located in permeable

More information

VA DCR STORMWATER DESIGN SPECIFICATION NO. 11 WET SWALE. VERSION 2.0 January 1, 2013 SECTION 1: DESCRIPTION

VA DCR STORMWATER DESIGN SPECIFICATION NO. 11 WET SWALE. VERSION 2.0 January 1, 2013 SECTION 1: DESCRIPTION VIRGINIA DCR STORMWATER DESIGN SPECIFICATION No. 11 VERSION 2.0 January 1, 2013 SECTION 1: DESCRIPTION Wet swales can provide runoff filtering and treatment within a conveyance system and are a cross between

More information

Stormwater Management Techniques WMPF LAND USE TRAINING INSTITUTE MARCH 14, 2018

Stormwater Management Techniques WMPF LAND USE TRAINING INSTITUTE MARCH 14, 2018 Stormwater Management Techniques WMPF LAND USE TRAINING INSTITUTE MARCH 14, 2018 Potential Impacts of New Development Urban development can significantly increase stormwater runoff Water quality considerations

More information

Contents. Adapted/abbreviated from GSWMM Coastal Stormwater Supplement, August

Contents. Adapted/abbreviated from GSWMM Coastal Stormwater Supplement, August CH. 3 STORMWATER MANAGEMENT PRACTICES Contents Soil Restoration... 30 Site Reforestation/Revegetation... 32 Green Roofs... 35 Permeable Pavements... 37 Undisturbed Pervious Areas... 44 Vegetated Filter

More information

Session 1E Non-Structural BMPs. Chesapeake Bay Stormwater Training Partnership 1

Session 1E Non-Structural BMPs. Chesapeake Bay Stormwater Training Partnership 1 Session 1E Non-Structural BMPs Chesapeake Bay Stormwater Training Partnership 1 Agenda Site Design (self-crediting) Soil Amendments Simple l Disconnection Sheet Flow Grass Channels Site Plan courtesy of

More information

County of Prince Edward. Stormwater Management Plan. Agreement in lieu of a Stormwater Management Plan

County of Prince Edward. Stormwater Management Plan. Agreement in lieu of a Stormwater Management Plan County of Prince Edward Stormwater Management Program Date: E-Permitting Number: This stormwater management plan (Agreement) is hereby submitted by the Owner to specify the methods that will be implemented

More information

SMALL PROJECTS SIMPLIFIED APPROACH

SMALL PROJECTS SIMPLIFIED APPROACH SMALL PROJECT APPLICATION AND STORMWATER MANAGEMENT DESIGN ASSISTANCE MANUAL FOR SMALL PROJECTS IN FULTON TOWNSHIP LANCASTER COUNTY, PENNSYLVANIA SMALL PROJECTS SIMPLIFIED APPROACH Prepared By: Light-Heigel

More information

J. Paul Guyer, P.E., R.A.

J. Paul Guyer, P.E., R.A. J. Paul Guyer, P.E., R.A. Paul Guyer is a registered civil engineer, mechanical engineer, fire protection engineer, and architect with over 35 years experience in the design of buildings and related infrastructure.

More information

Structural Stormwater Best Management Practices

Structural Stormwater Best Management Practices Structural Stormwater Best Management Practices for Small Commercial and Residential Applications Timothy Bruno Watershed Manager PA Department of Environmental Protection What are STRUCTURAL BMPs? Physical

More information

Objective: To provide practitioners and reviewers with information and design guidelines related to innovations in urban stormwater management.

Objective: To provide practitioners and reviewers with information and design guidelines related to innovations in urban stormwater management. West Virginia Stormwater Manual Training Workshop A Chesapeake Bay Stormwater Training Partnership Workshop December 5, 2012 9:00 AM 4:30 PM Robert C. Byrd Health Sciences Center Eastern 2500 Foundation

More information

Appendices: Glossary. General Terms. Specific Terms. Low Impact Development Approaches Handbook

Appendices: Glossary. General Terms. Specific Terms. Low Impact Development Approaches Handbook 67 67 General Terms Specific Terms 66 Low Impact Development Approaches Handbook The vocabulary of low impact development is evolving, and many terms are used interchangeably and to describe the same or

More information

Standards Manual. RIDOT Workshop. Design Strategies: How to Meet Minimum Standard No. 1 July 13, 2011

Standards Manual. RIDOT Workshop. Design Strategies: How to Meet Minimum Standard No. 1 July 13, 2011 Rhode Island Stormwater Design and Installation Standards Manual RIDOT Workshop LID Site Planning and Design Strategies: How to Meet Minimum Standard No. 1 July 13, 2011 Low Impact Development (LID) Community

More information

4.5 City of Indianapolis Stormwater Green Infrastructure Guidance: Bioretention (rain gardens) Bioretention Fact Sheet Bioretention Technical Design

4.5 City of Indianapolis Stormwater Green Infrastructure Guidance: Bioretention (rain gardens) Bioretention Fact Sheet Bioretention Technical Design 4.5 City of Indianapolis Stormwater Green Infrastructure Guidance: Bioretention (rain gardens) Bioretention Fact Sheet Bioretention Technical Design Specification Bioretention O & M Manual Draft Green

More information

Small Project Guidance Document

Small Project Guidance Document Small Project Guidance Document Introduction If you are considering a relatively small construction project on your property that creates new impervious area and you need to manage the stormwater that

More information

COMMUNITY DEVELOPMENT DEPARTMENT POLICY DRAINAGE FOR RESIDENTIAL PROJECTS WITH ONE OR TWO UNITS REVISED JANUARY 4, 2018

COMMUNITY DEVELOPMENT DEPARTMENT POLICY DRAINAGE FOR RESIDENTIAL PROJECTS WITH ONE OR TWO UNITS REVISED JANUARY 4, 2018 COMMUNITY DEVELOPMENT DEPARTMENT POLICY DRAINAGE FOR RESIDENTIAL PROJECTS WITH ONE OR TWO UNITS REVISED JANUARY 4, 2018 A. California Residential Code Requirement - Construction plans shall indicate how

More information

Charles County, MD Low Impact Development (LID)/ Environmental Site Design (ESD) Ordinance & Design Manual

Charles County, MD Low Impact Development (LID)/ Environmental Site Design (ESD) Ordinance & Design Manual Charles County, MD Low Impact Development (LID)/ Environmental Site Design (ESD) Ordinance & Design Manual Presentation Highlights Background What is LID / ESD? Why adopt LID/ESD MD SWM Act 2007 Planning

More information

Rhode Island Stormwater Design and Installation Standards Manual

Rhode Island Stormwater Design and Installation Standards Manual Rhode Island Stormwater Design and Installation Standards Manual RIDOT Workshop LID Site Planning and Design Strategies: How to Meet Minimum Standard No. 1 August 25, 2011 Low Impact Development (LID)

More information

SHEET FLOW TO A FILTER STRIP OR CONSERVED OPEN SPACE

SHEET FLOW TO A FILTER STRIP OR CONSERVED OPEN SPACE VIRGINIA DCR STORMWATER DESIGN SPECIFICATION No. 2 SHEET FLOW TO A FILTER STRIP OR CONSERVED OPEN SPACE VERSION 1.6 September 30, 2009 Spec No. 2: Filter Strip, v1.6, September 30, 2009 1 SECTION 1: DESCRIPTION

More information

Non-Residential&Multi-Family PropertyCreditManual

Non-Residential&Multi-Family PropertyCreditManual CityofRichmond DepartmentofPublicUtilities StormwaterManagementProgram Non-Residential&Multi-Family PropertyCreditManual ApprovedFebruary2011 City of Richmond Stormwater Non-Residential & Multi-Family

More information

SIMPLIFIED APPROACH TO STORMWATER MANAGEMENT FOR SMALL PROJECTS

SIMPLIFIED APPROACH TO STORMWATER MANAGEMENT FOR SMALL PROJECTS SIMPLIFIED APPROACH TO STORMWATER MANAGEMENT FOR SMALL PROJECTS Introduction As required by federal and state law, the Borough of Swarthmore has adopted regulations that affect stormwater runoff and surface

More information

Planning, Design, and Construction of Green Infrastructure.

Planning, Design, and Construction of Green Infrastructure. Planning, Design, and Construction of Green Infrastructure www.water.rutgers.edu What is Green Infrastructure? an approach to stormwater management that is costeffective, sustainable, and environmentally

More information

CHAPTER 11 SITE DESIGN AND LOW IMPACT DEVELOPMENT

CHAPTER 11 SITE DESIGN AND LOW IMPACT DEVELOPMENT CHAPTER 11 SITE DESIGN AND LOW IMPACT DEVELOPMENT Source: City of Bend Chapter Organization 11.1 Purpose... 11-1 11.2 Applicability... 11-1 11.3 Low Impact Development Overview... 11-2 11.3.1 Key Strategies...

More information

County of Fairfax, Virginia

County of Fairfax, Virginia County of Fairfax, Virginia To protect and enrich the quality of life for the people, neighborhoods, and diverse communities of Fairfax County DATE: July 16, 2007 TO: SUBJECT: All Architects, Attorneys,

More information

DRAFT DESIGN CRITERIA STORMWATER TREATMENT STANDARDS CITY OF OVERLAND PARK

DRAFT DESIGN CRITERIA STORMWATER TREATMENT STANDARDS CITY OF OVERLAND PARK DRAFT DESIGN CRITERIA STORMWATER TREATMENT STANDARDS CITY OF OVERLAND PARK A. Authority As set forth in the Overland Park Municipal Code (OPMC), Chapter 16.210, the Director of Planning and Development

More information

Lesson 2: Stormwater Best Management Practices (BMPs)

Lesson 2: Stormwater Best Management Practices (BMPs) Lesson 2: Stormwater Best Management Practices (BMPs) Environmental Stewards Class Christopher C. Obropta, Ph.D., P.E. Extension Specialist in Water Resources 732-932-9800 ext. 6209 obropta@envsci.rutgers.edu

More information

SHEET FLOW TO A VEGETATED FILTER STRIP OR CONSERVED OPEN SPACE

SHEET FLOW TO A VEGETATED FILTER STRIP OR CONSERVED OPEN SPACE VIRGINIA DEQ STORMWATER DESIGN SPECIFICATION No. 2 SHEET FLOW TO A VEGETATED FILTER STRIP OR CONSERVED OPEN SPACE VERSION 1.9 March 1, 2011 SECTION 1. DESCRIPTION Filter strips are vegetated areas that

More information

WQ-07 INFILTRATION TRENCH

WQ-07 INFILTRATION TRENCH Greenville County Technical Specification for: WQ-07 INFILTRATION TRENCH 1.0 Infiltration Trench 1.1 Description Infiltration Trenches are excavations filled with stone to create an underground reservoir

More information

Draft Impervious Cover Reduction Action Plan for West New York, Hudson County, New Jersey

Draft Impervious Cover Reduction Action Plan for West New York, Hudson County, New Jersey Draft Impervious Cover Reduction Action Plan for West New York, Hudson County, New Jersey Prepared for the Town of West New York by the Rutgers Cooperative Extension Water Resources Program March 29, 2017

More information

Bioretention cell schematic key

Bioretention cell schematic key Bioretention Cells Bioretention cell schematic key 1 3 Hardwood mulch 2 Curb cut 3 18-30 Modified soil 4 Stone aggregate choker layer 5 Stone aggregate base layer 6 Subdrain 7 Undisturbed soil 8 Overflow/Cleanout

More information

Draft Impervious Cover Reduction Action Plan for West Long Branch Borough, Monmouth County, New Jersey

Draft Impervious Cover Reduction Action Plan for West Long Branch Borough, Monmouth County, New Jersey Draft Impervious Cover Reduction Action Plan for West Long Branch Borough, Monmouth County, New Jersey Prepared for West Long Branch Borough by the Rutgers Cooperative Extension Water Resources Program

More information

Slow it, Spread it, Sink it using Green Stormwater Infrastructure

Slow it, Spread it, Sink it using Green Stormwater Infrastructure Milly Archer Water Resources Coordinator Becky Tharp Green Infrastructure Collaborative Slow it, Spread it, Sink it using Green Stormwater Infrastructure Overview Defining LID and GSI Hydrology and impacts

More information

Rain Gardens. Welcoming and filtering rainwater naturally. Asad Rouhi Northern Virginia Soil and Water Conservation District

Rain Gardens. Welcoming and filtering rainwater naturally. Asad Rouhi Northern Virginia Soil and Water Conservation District Rain Gardens Welcoming and filtering rainwater naturally Asad Rouhi Northern Virginia Soil and Water Conservation District Urban Development Impact Inadequate drainage, erosion, flooding Northern Virginia

More information

APPENDIX A SIMPLIFIED APPROACH TO STORMWATER MANAGEMENT FOR SMALL PROJECTS. In West Sadsbury Township, Chester County, Pennsylvania

APPENDIX A SIMPLIFIED APPROACH TO STORMWATER MANAGEMENT FOR SMALL PROJECTS. In West Sadsbury Township, Chester County, Pennsylvania APPENDIX A SIMPLIFIED APPROACH TO STORMWATER MANAGEMENT FOR SMALL PROJECTS In West Sadsbury Township, Chester County, Pennsylvania TABLE OF CONTENTS I. Introduction 3 II. Importance of Stormwater Management

More information

Stormwater Control Plan: Small (Tier 1) Land Development Project

Stormwater Control Plan: Small (Tier 1) Land Development Project Stormwater Control Plan: Small (Tier 1) Land Development Project Project ID for Tracking (for City Staff only): The California Regional Water Quality Control Board for the Central Coast Region (Water Board)

More information

GRASS CHANNELS VA DEQ STORMWATER DESIGN SPECIFICATION NO. 3. VERSION 1.9 March 1, 2011 SECTION 1: DESCRIPTION

GRASS CHANNELS VA DEQ STORMWATER DESIGN SPECIFICATION NO. 3. VERSION 1.9 March 1, 2011 SECTION 1: DESCRIPTION VIRGINIA DEQ STORMWATER DESIGN SPECIFICATION No. 3 VERSION 1.9 March 1, 2011 SECTION 1: DESCRIPTION Grass channels can provide a modest amount of runoff filtering and volume attenuation within the stormwater

More information

New Development Stormwater Guidelines

New Development Stormwater Guidelines New Development Stormwater Guidelines CITY OF MOUNTLAKE TERRACE Table of Contents Introduction... 2 Ecology s Minimum Requirements for stormwater management... 2 Description of the 9 Minimum Requirements...

More information

STORMWATER GREEN INFRASTRUCTURE AND PLANNING/ZONING BOARDS

STORMWATER GREEN INFRASTRUCTURE AND PLANNING/ZONING BOARDS STORMWATER GREEN INFRASTRUCTURE AND PLANNING/ZONING BOARDS Source: Center for Watershed Protection, 2007 Southern Tier Central Regional Planning & Development Board Chemung County Stormwater Team OUTLINE

More information

Article 20 Stormwater Management

Article 20 Stormwater Management Article 20 Section 20.01 Intent Article 20 The purpose of this Article is to protect the health, safety, and general welfare of the citizens by requiring compliance with accepted standards and practices

More information

Draft Rhode Island Stormwater Design and Installation Standards Manual

Draft Rhode Island Stormwater Design and Installation Standards Manual Draft Rhode Island Stormwater Design and Installation Standards Manual Summary The May 2009 Public Review Draft version of the RI Stormwater Design and Installation Standards Manual consists of approximately

More information

New Tools/Resources for

New Tools/Resources for New Tools/Resources for C.3 Stormwater Compliance Laura Prickett, AICP, EOA, Inc. Santa Clara Valley Urban Runoff Pollution Prevention Program Outline of Presentation Updated C.3 Handbook Handbook outline

More information

Update on Homeowner BMPs

Update on Homeowner BMPs Update on Homeowner BMPs Homeowner BMP Crediting UNM Plan for 9200 Bradford Pear Lane: 0.5 acres 1 Get Expert Lawn Advice 2 Maintain Dense Cover on Turf 3 Choose NOT to fertilize 4 Recycle Lawn Clippings

More information

Map Reading 201: Where Does the Water Go?? Map Reading Map Reading 201. Interconnected Systems

Map Reading 201: Where Does the Water Go?? Map Reading Map Reading 201. Interconnected Systems Map Reading 201: Where Does the Water Go?? Today s Presenters: John Rozum, NEMO Program Paula Stahl, Green Valley Institute A Key Skill for Land Use Commissioners As the map is rolled out at the P&Z meeting...

More information

APPENDIX A. Proposed Guidance and LID checklists for UConn and Town of Mansfield

APPENDIX A. Proposed Guidance and LID checklists for UConn and Town of Mansfield APPENDIX A. Proposed Guidance and LID checklists for UConn and Town of Mansfield 22 Guidance Document for Low Impact Development Best Management Practices for UConn June, 2011 In 2007, the Connecticut

More information

Grass Buffer T-1. Description. Site Selection. Designing for Maintenance

Grass Buffer T-1. Description. Site Selection. Designing for Maintenance Description Grass buffers are densely vegetated strips of grass designed to accept sheet flow from upgradient development. Properly designed grass buffers play a key role in LID, enabling infiltration

More information

6.2 Flow-Through Planter

6.2 Flow-Through Planter SAN MATEO COUNTYWIDE WATER POLLUTION PREVENTION PROGRAM 6.2 Flow-Through Planter Figure 6-8: At-grade flow-through planter. Source: City of Emeryville Best uses Treating roof runoff Next to buildings Dense

More information

92 Minnesota Stormwater Manual

92 Minnesota Stormwater Manual 92 Minnesota Stormwater Manual E. Landscaping Many of the previous practices could also be included in a general category that stresses the importance of stable landscapes with native vegetation. In many

More information

Use of Best Management Practices

Use of Best Management Practices Use of Best Management Practices Presented at the ANJEC Flood Hazard Workshop Bordentown, NJ March 13, 2008 Stormwater BMPs "a technique, measure or structural control that is used for a given set of conditions

More information

West Norriton Township

West Norriton Township West Norriton Township Earth Disturbance and Drainage Permit Application 1630 W. Marshall Street Norristown, PA 19403 Phone: (610) 631-0450 Fax: (610) 630-0304 www.westnorritontwp.org A stormwater permit

More information

Low Impact Development Guidance Manual

Low Impact Development Guidance Manual May 2009 TABLE OF CONTENTS Section 1 Introduction 1 Overview 2 Definitions 4 2 Conservation Design Practices 5 Cluster Development 6 Minimize Pavement Widths 8 Minimize Setbacks & Frontages 10 Open Space

More information

State Water Board s Post Construction Stormwater Calculator. Instructions for El Centro

State Water Board s Post Construction Stormwater Calculator. Instructions for El Centro State Water Board s Post Construction Stormwater Calculator Instructions for El Centro Important: This workbook must be completed for each Drainage Management Area (DMA) in the project site. For example,

More information

Inspection and Maintenance of Stormwater Best Management Practices

Inspection and Maintenance of Stormwater Best Management Practices FAC T S H E E T Inspection and Maintenance of Stormwater Best Management Practices is a general term that refers to vegetated stormwater best management practices (BMPs) that temporarily store rainwater

More information

NON-PRIORITY PROJECT WATER QUALITY PLAN (NPP)

NON-PRIORITY PROJECT WATER QUALITY PLAN (NPP) NON-PRIORITY PROJECT WATER QUALITY PLAN (NPP) For: (Insert Project Name) (Site Address or Tract/Lot Number) Prepared for: (Insert Owner/Developer Name) (Insert Address) (Insert City, State, ZIP) (Insert

More information

State of Rhode Island Stormwater Management Guidance for Individual Single-Family Residential Lot Development

State of Rhode Island Stormwater Management Guidance for Individual Single-Family Residential Lot Development State of Rhode Island Stormwater Management Guidance for Individual Single-Family Residential Lot Development Section 300.6 of the RI Coastal Resources Management Program (RICRMP) and Rule 7.12 of the

More information

n1. Design 5.4.6a Urban Bioretention 5.4.6a Urban Bioretention Variations: Planter box, Extended tree pits, Stormwater curb extensions.

n1. Design 5.4.6a Urban Bioretention 5.4.6a Urban Bioretention Variations: Planter box, Extended tree pits, Stormwater curb extensions. 5.4.6a Urban Bioretention Variations: Planter box, Extended tree pits, Stormwater curb extensions. Description: Urban bioretention SCM are similar in function to regular bioretention practices except they

More information

Karen Wiggen, RLA PGM/Planning Bob Harrington, P.E. PGM/CPIS Michael Clar, P.E. - ECOSITE

Karen Wiggen, RLA PGM/Planning Bob Harrington, P.E. PGM/CPIS Michael Clar, P.E. - ECOSITE Karen Wiggen, RLA PGM/Planning Bob Harrington, P.E. PGM/CPIS Michael Clar, P.E. - ECOSITE Presentation Highlights Background of Grant Award What are the County s grant requirements? Maryland Stormwater

More information

SHEET FLOW TO A VEGETATED FILTER STRIP OR CONSERVED OPEN SPACE

SHEET FLOW TO A VEGETATED FILTER STRIP OR CONSERVED OPEN SPACE VIRGINIA DCR DEQ STORMWATER DESIGN SPECIFICATION No. 2 SHEET FLOW TO A VEGETATED FILTER STRIP OR CONSERVED OPEN SPACE VERSION 2.0 January 1, 2013 SECTION 1. DESCRIPTION Filter strips are vegetated areas

More information

Kearney Post-Construction Stormwater Program

Kearney Post-Construction Stormwater Program Kearney Post-Construction Stormwater Program Stormwater Treatment Facilities (STFs) Kearney Public Works Office August 10 and 17, 2017 Stormwater Treatment Facility (STF) Session Goals Understand STF Function

More information

FACT SHEET: Pervious Pavement with Infiltration

FACT SHEET: Pervious Pavement with Infiltration FACT SHEET: Pervious Pavement with Infiltration DESCRIPTION Pervious pavement is a Green Infrastructure (GI) technique that combines stormwater infiltration, storage, and structural pavement consisting

More information

Guide to Our Webcasts For Technical Support click the Help button

Guide to Our Webcasts For Technical Support click the Help button Tools & Guidance for Developing Your Post- Construction Stormwater Management Program September 3, 2008 David J. Hirschman, Center for Watershed Protection John Kosco, Tetra Tech, Inc. Steven Hubble, Stafford

More information

BIORETENTION FACILITY

BIORETENTION FACILITY ILLINOIS URBAN MANUAL PRACTICE STANDARD BIORETENTION FACILITY (feet) CODE 800 Source: Jessica Cocroft, Winnebago Soil and Water Conservation District DEFINITION Facility that utilizes a soil media, mulch,

More information

Impervious Cover Reduction Action Plan for Hampton Township, Sussex County, New Jersey

Impervious Cover Reduction Action Plan for Hampton Township, Sussex County, New Jersey Impervious Cover Reduction Action Plan for Hampton Township, Sussex County, New Jersey Prepared for Hampton Township by the Rutgers Cooperative Extension Water Resources Program November 8, 2016 Table

More information

4.6. Low Impact and Retentive Grading

4.6. Low Impact and Retentive Grading 4.6. Low Impact and Retentive Grading Low Impact Grading techniques focus on utilizing existing topography during Site layout to minimize cost. Proposing structures, roads, and other impervious surfaces

More information

4. CONCEPT PLAN DEVELOPMENT

4. CONCEPT PLAN DEVELOPMENT 4. CONCEPT PLAN DEVELOPMENT Concept Plan Step 1: Identify Site Constraints and Opportunities Review the existing site to identify constraints and opportunities for GI Practices to meet the RRv. Constraints

More information

Stormwater Technical Guide

Stormwater Technical Guide Stormwater Technical Guide Compliance with Stormwater Post-Construction Requirements in Santa Barbara County Dan Cloak, Principal Dan Cloak Environmental Consulting January 9, 2014 Introduce yourself Name

More information

Homeowners Guide to Stormwater BMP Maintenance

Homeowners Guide to Stormwater BMP Maintenance Homeowners Guide to Stormwater BMP Maintenance What You Need to Know to Take Care of Your Property Rain Barrel Dry Well Rain Garden Pervious Asphalt Porous Pavers City of El Monte Stormwater BMP Management

More information

Appendix E: Illustrative Green Infrastructure Examples

Appendix E: Illustrative Green Infrastructure Examples Appendix E: Illustrative Green Infrastructure Examples Integrating LID into San Francisco s Urban Landscape Figure E. High-density Residential Figure E. Low-density Residential Figure E. Mixed Use 7 Figure

More information

Introduction to Low Impact Development. Fred Milch. East Central Florida Regional Planning Council

Introduction to Low Impact Development. Fred Milch. East Central Florida Regional Planning Council Introduction to Low Impact Development Fred Milch East Central Florida Regional Planning Council Low Impact Development (LID) Low impact development (LID) is a term used to describe a land planning and

More information

Types and Basic Design of Post-Construction BMPs

Types and Basic Design of Post-Construction BMPs Types and Basic Design of Post-Construction BMPs F O R R E S I D E N T I A L L A N D S C A P E R S D A N B O G O E V S K I O H I O E P A N O R T H E A S T D I S T R I C T O F F I C E J U L Y 9, 2 0 1 3

More information

Impervious Cover Reduction Action Plan for City of Vineland, Cumberland County, New Jersey

Impervious Cover Reduction Action Plan for City of Vineland, Cumberland County, New Jersey Impervious Cover Reduction Action Plan for City of Vineland, Cumberland County, New Jersey Prepared for the City of Vineland by the Rutgers Cooperative Extension Water Resources Program May 23, 2016 Table

More information

Attachment 2: Permeable Pavement Design Guidelines

Attachment 2: Permeable Pavement Design Guidelines Attachment 2: Permeable Pavement Design Guidelines Design of permeable pavement systems is critical if they are to function properly and efficiently. The area and shape are dependent on the site design,

More information

Green City, Clean Waters

Green City, Clean Waters Green City, Clean Waters Green Infrastructure Maintenance Manual Consent Order & Agreement Deliverable VIII City of Philadelphia Combined Sewer Overflow Long Term Control Plan Update Submitted to The Commonwealth

More information

Green Infrastructure & Low Impact Development

Green Infrastructure & Low Impact Development Green Infrastructure & Low Impact Development CITY OF COVINGTON STORMWATER MANAGEMENT WHAT IS GREEN INFRASTRUCTURE? Green infrastructure uses vegetation, soils and natural processes to manage water and

More information

Selecting Appropriate Stormwater Control Measures for Your Development Project

Selecting Appropriate Stormwater Control Measures for Your Development Project Phase II Post-Construction Stormwater Requirements Workshop - February 10, 2014 Selecting Appropriate Stormwater Control Measures for Your Development Project Jill Bicknell, P.E., EOA, Inc. Outline of

More information

Low Impact Development in Northern Nevada: Bioretention

Low Impact Development in Northern Nevada: Bioretention Nonpoint Education for Municipal Officials www.unce.unr.edu/nemo Protecting water quality through community planning Low Impact Development in Northern Nevada: Bioretention Fact Sheet FS-09-25 Benefits

More information

Green Infrastructure and Low-Impact Development Technologies

Green Infrastructure and Low-Impact Development Technologies Green Infrastructure and Low-Impact Development Technologies The guiding principles of these technologies is to manage stormwater at their sources using natural means, and establish conditions so that

More information

ORDINANCE APPENDIX A SIMPLIFIED APPROACH TO STORMWATER MANAGEMENT FOR SMALL PROJECTS. Appendix A

ORDINANCE APPENDIX A SIMPLIFIED APPROACH TO STORMWATER MANAGEMENT FOR SMALL PROJECTS. Appendix A ORDINANCE APPENDIX A SIMPLIFIED APPROACH TO STORMWATER MANAGEMENT FOR SMALL PROJECTS Appendix A Appendix A Simplified Approach to Stormwater Management for Small Projects Appendix A.1 Applicability, Submittal

More information

Draft. Impervious Cover Reduction Action Plan for Dunellen Borough, Middlesex County, New Jersey

Draft. Impervious Cover Reduction Action Plan for Dunellen Borough, Middlesex County, New Jersey Draft Impervious Cover Reduction Action Plan for Dunellen Borough, Middlesex County, New Jersey Prepared for Dunellen Borough by the Rutgers Cooperative Extension Water Resources Program September 22,

More information

Directors Rules for Seattle Municipal Code, Chapters Stormwater Code

Directors Rules for Seattle Municipal Code, Chapters Stormwater Code Directors Rules for Seattle Municipal Code, Chapters 22.800 22.808 Stormwater Code Requirements for Green Stormwater Infrastructure to the Maximum Extent Feasible for Single-Family Residential and Parcel-Based

More information

Example Stormwater Control Plan For a Residential Subdivision Project. Whispering Pines Lane Anytown, USA. February 21, 2018

Example Stormwater Control Plan For a Residential Subdivision Project. Whispering Pines Lane Anytown, USA. February 21, 2018 Example Stormwater Control Plan For a Residential Subdivision Project Whispering Pines Lane Anytown, USA February 21, 2018 XYZ Corporation Jane Jones, 925-555-1212 This example prepared by Dan Cloak Environmental

More information

Technical Guidance for Stormwater Treatment and Site Design Measures

Technical Guidance for Stormwater Treatment and Site Design Measures Chapter 6 Technical Guidance for Stormwater Treatment and Site Design Measures In this Chapter, technical guidance is provided for the stormwater treatment measures allowed by permit requirements as well

More information

Going Green with the NYS Stormwater Design Standards

Going Green with the NYS Stormwater Design Standards Going Green with the NYS Stormwater Design Standards Shohreh Karimipour, P.E. NYSDEC History of Stormwater Management Ancient Greek Cisterns Water Cistern Systems in Greece from Minoan to Hellenistic Period,

More information

INTRODUCTION TO GREEN INFRASTRUCTURE HOW WE CAN PROTECT OUR COMMUNITIES AND OUR WATERS Maywood Public Library Bergen County, New Jersey

INTRODUCTION TO GREEN INFRASTRUCTURE HOW WE CAN PROTECT OUR COMMUNITIES AND OUR WATERS Maywood Public Library Bergen County, New Jersey INTRODUCTION TO GREEN INFRASTRUCTURE HOW WE CAN PROTECT OUR COMMUNITIES AND OUR WATERS Maywood Public Library Bergen County, New Jersey Jeremiah D. Bergstrom, LLA, ASLA Rutgers Cooperative Extension Water

More information

Appendix A.2 Simplified Approach to Stormwater Management for Small Projects - Handbook

Appendix A.2 Simplified Approach to Stormwater Management for Small Projects - Handbook Appendix A.2 Simplified Approach to Stormwater Management for Small Projects - Handbook Errata Notes: The following corrections are noted for Figure 6: 1. Label for BMP #1 Cistern should read (166 Gallons)

More information

Proposed Credit Program

Proposed Credit Program Proposed Credit Program What is the credit program? The proposed credit program will provide property owners with the opportunity to reduce their annual Stormwater Utility bill by up to 40% by managing

More information

Certain areas of your yard or property may not represent a good location for your rain garden. Don t plant your rain garden:

Certain areas of your yard or property may not represent a good location for your rain garden. Don t plant your rain garden: P OGA M T O O What is a rain garden and why should you plant one? C TO A rain garden is simply a garden that is designed specifically to capture, store and clean storm water runoff from your roof, driveway,

More information

What Are We Inspecting? Stormwater Treatment Measure Type and Design

What Are We Inspecting? Stormwater Treatment Measure Type and Design What Are We Inspecting? Stormwater Treatment Measure Type and Design Jill Bicknell, P.E., EOA, Inc. Santa Clara Valley Urban Runoff Pollution Prevention Program December 16, 2013 Outline of Presentation

More information

5. LOW IMPACT DEVELOPMENT DESIGN STANDARDS

5. LOW IMPACT DEVELOPMENT DESIGN STANDARDS 5. LOW IMPACT DEVELOPMENT DESIGN STANDARDS Low Impact Development (LID) requires a shift in stormwater management away from conveying runoff to a small number of downstream points through hydraulically

More information

Draft Impervious Cover Reduction Action Plan for Newark, Essex County, New Jersey Volume 2

Draft Impervious Cover Reduction Action Plan for Newark, Essex County, New Jersey Volume 2 Draft Impervious Cover Reduction Action Plan for Newark, Essex County, New Jersey Volume 2 Prepared for the City of Newark by the Rutgers Cooperative Extension Water Resources Program April 16, 2018 Table

More information

Sustainable Stormwater Retrofit Best Practices

Sustainable Stormwater Retrofit Best Practices Sustainable Stormwater Retrofit Best Practices Presenter Zach Sample, PE Stormwater Products Manager XP Solutions XP Solutions has a long history of Providing original, high-performing software solutions

More information

How to Update a Storm Water Management Program (SWMP) to Incorporate Total Maximum Daily Load (TMDL) BMPs

How to Update a Storm Water Management Program (SWMP) to Incorporate Total Maximum Daily Load (TMDL) BMPs How to Update a Storm Water Management Program (SWMP) to Incorporate Total Maximum Daily Load (TMDL) BMPs Janine Rybka Cuyahoga Soil & Water Conservation District About Habitat Habitats are the places

More information

City of Petersburg, Virginia Stormwater Utility Program Residential Fee Credit Manual (Revised March 2014)

City of Petersburg, Virginia Stormwater Utility Program Residential Fee Credit Manual (Revised March 2014) City of Petersburg, Virginia Stormwater Utility Program Residential Fee Credit Manual (Revised March 2014) DEPARTMENT OF PUBLIC WORKS City Hall Annex- 103 West Tabb Street Petersburg, VA 23803 (804) 733

More information

Inspection Protocols for Maintaining and Verifying LID Practices

Inspection Protocols for Maintaining and Verifying LID Practices Inspection Protocols for Maintaining and Verifying LID Practices Welcome to the Webcast To Ask a Question Submit your question in the chat box located to the left of the slides. We will answer as many

More information

12/31/2014 County of Mendocino s Low Impact Design Standards Manual v1.0 A P P E N D I X 8. Site Design Measures. 32 P a g e

12/31/2014 County of Mendocino s Low Impact Design Standards Manual v1.0 A P P E N D I X 8. Site Design Measures. 32 P a g e 12/31/2014 County of Mendocino s Low Impact Design Standards Manual v1.0 A P P E N D I X 8 Site Design Measures 32 P a g e Rooftop and Impervious Area Disconnection (Self-retaining areas) Description Disconnection

More information

Bioretention. Matt Scharver Northeast Ohio Regional Sewer District. #ProjectCleanLake

Bioretention. Matt Scharver Northeast Ohio Regional Sewer District. #ProjectCleanLake Bioretention Matt Scharver Northeast Ohio Regional Sewer District Stormwater Management Training for MS4 Municipal Employees Training Session Agenda Pre-Training Survey Presentation & Site Visit Post-Training

More information