Experimental Study on the Characteristics of Temperature Field of Fire Room

Size: px
Start display at page:

Download "Experimental Study on the Characteristics of Temperature Field of Fire Room"

Transcription

1 Experimental Study on the Characteristics of Temperature Field of under Stack Effect in a Scaled High-rise Building Model WENXI SHI 1,2, JIE JI 1*, JINHUA SUN 1, SIUMING LO 2, LINJIE LI 1 and XIANGYONG YUAN 1 1 State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei , China 2 Department of Civil and Architectural Engineering, City University of Hong Kong, Hong Kong, China ABSTRACT: A set of experiments were conducted in a scaled building model with 12 floors to study on the temperatures of fire room under stack effect in a high-rise building. The fuel mass loss rate, radiant flux, heat flux and temperatures in the atria and fire room at the first floor were experimentally investigated. The flames of pool fires in room are tilted towards the staircase under the air flow induced by the stack effect. The mass loss rate of fuel is influenced slightly by the position of window opened in the staircase, while the temperature distribution in the atria and fire room is different in the opened and closed staircases. The hot smoke temperatures in the atria and fire room at the first floor increase with an increasing pool size. The upper hot smoke temperatures in the atria are higher than those in the fire room in cases with an opened staircase. Compared different positions of the window opened in the staircase, it can be found that the upper hot smoke temperatures in the atria in cases with the 3 rd floor window opened are the highest due to the weaker stack effect. In the closed staircases, the upper hot smoke temperatures in the fire room are great higher than these in the atria at the first floor. Besides, the radiant flux and heat flux of the left sidewalls of staircase in an opened staircase are higher than those in a closed staircase, due to the tilted flame. The results obtained in this paper may be used for the safety design of the room in high-rise buildings. KEYWORDS:stack effect, high-rise building, compartment fire, temperature distribution, radiation. INTRODUCTION More and more high-rise buildings have been constructed in the world. Fire safety of these high-rise buildings has been attracted public attention owing to many catastrophic fire accidents [1-3]. The hot smoke produced by fire source may flow into the staircases and spread upward rapidly by stack effect in the high-rise building. Stack effect [4-5] is the phenomenon, with air entering through openings in lower floors, flowing upward in the building, and leaving through openings in upper floors, which results from density difference between hot inside air and cold outside air [6]. If a fire occurs in a high-rise building, not only the smoke movement will be accelerated by stack effect in those vertical shafts, seriously threatening to personnel safety evacuation, but also the air flow pattern in the room adjacent to a staircase is affected by the stack effect, and a plenty of fresh air is sucked into the fire room by the stack effect, providing sufficient oxygen for combustion. Many researchers have studied smoke movement induced by the stack effect in shafts and staircases of high-rise building spaces in the past few years [7-18], including neutral plane position prediction [7, 8], hot smoke movement mechanism [9-14], rise-time of buoyant plumes [15, 16] and pressure and temperature distribution [17, 18]. Little attention has been focused on the influence of the airflow induced by stack effect on the fire. Satoh et al. [19, 20] investigated the interaction between the airflow induced by stack effect and the flame of gas fire located on the ground at the center of shaft in a reduced shaft model, and discussed the effect of the inlet opening arrangements on flame tilt direction, flame tilt angle and flame length. Actually, it is also a very common scenario when the fire occurs in the room adjacent to a staircase in a high-rise building. The characteristics of temperature field of fire room are are significant for the safety design in the high-rise buildings, while, these parameters in the fire room under stack effect have not been studied in this circumstance. Besides, generally, many windows are fixed in the staircase to connect to the ambient environment for lighting and ventilation. The positions of these windows opened influence the stack effect magnitude in the staircases, which further affects the air flow pattern and temperature distribution in the fire room. In this paper, to study the influence of the height of window opened on the temperature distribution of the fire room adjacent to the staircase, a set of experiments were conducted in a 1/3 scaled building model. 419

2 EXPERIMENTAL FACILITY The 1/3 scale building model [18] was established in 2009 according to the principle of similitude [21, 22], as shown in Fig. 1 [23]. This model with 12 floors is 12.2 m (high) 2.6 m (long) 1.5 m (wide). The ground floor is m in height and the other floors are m in height. The back wall of staircase of each floor has a window connected to outside with the size of 0.9 m high 0.7 m wide. The first floor has three doors with the size of m high m wide. The left and front sidewalls of model are made of fire-resistant glass with 12 mm thickness for observation, and the other parts of staircase are made of steel plate with 2 mm thick. The additional 8 mm thick fireboard is used as the inner lining of fire room and atria at the first floor for thermal insulation. 12F 12.2m 12F Window 11F 1m Window Size: 0.9 m 0.7 m 10F 1m 9F Window 9F 9.2m 8F 8.2m 7F 7.2m 12.2m 6F Window 6F 6.2m 5F 5.2m 4F 4.2m 3F 3.2m 2F 2.2m 3F Window z y x 1F m Staircase Room 1.5m 1F-Door3 Size: m m m m m m Staircase Room Fig. 1. Schematic of 1/3 scaled staircase building model [23] The temperatures of hot gases in the room and atria at the first floor were measured by K-type fine wire thermocouples with the diameter of 1 mm. Three velocity probes of hot-wire anemometers (Kanomax, KA12) at a 15 cm vertical interval were installed 5 cm away from the right of door 3 to measure airflow speed with sampling intervals of 1 s. The radiant flux sensor (Captec Enterprise TS-30) and heat flux sensor (Captec Enterprise HS-30B) were located closed to the left sidewalls of staircase at a height of 0.3 m to measure the total radiant flux and total heat flux from the hot smoke and flame. The heat flux sensor measured the total radiation heat and the convective heat from the flame and hot smoke, while the radiant flux sensor just measured the total radiation heat. The detailed locations of these thermocouples, velocity probes, radiant flux sensor and heat flux sensor are shown in Fig. 2. Pool fires were set as fire sources, and heptane was used as fuel. The size of square pool is 10 cm, 15 cm, 20 cm and 25 cm. These pools were made by 2 mm thick steel board. Their depths were all 4 cm, and the initial thickness of the fuel was 2 cm for each case. The mass of burning pool fires were recorded by a digital electronic balance with an accuracy of 0.01 g. A Digital Vidicon and a Digital Camera were used to record the flame development in the room. Three doors in the first floor were always opened in 420

3 each case. The windows at the 3 rd, the 6 th, the 9 th and the 12 th floor were selectively opened, respectively. Only one window was opened to connect the outside and other windows were closed in each case. Ambient temperature was about C. Each case was repeated once, and the results showed that the repeatability was good. For this series of experiments, we have investigated the smoke movement mechanisms in the staircase [23]. In this paper, we focus on discussion the temperature distribution and radiation of the fire room under stack effect in a staircase. 1.5 m 0.7 m Window Y X Heat flux sensor Radiant flux sensor Thermocouples Velocity measuring points Distance from the left side of staircase (m) Staircase m V1-V Door1 Door2 Door3 m m m m (a) top view Staircase-12F Z m X 12.2 m Heat flux sensor Radiant flux sensor Thermocouples Velocity measuring points Staircase-1F T1 T2 T3 T4 T5 T6 m 0.3 m T3 V1 V Electronic V3 Door Door 1 balance Door 1 m m m (b) side view Fig. 2. Locations of the measured points 421

4 RESULTS AND DISCUSSION Typical Fire Behavior in the Room The development of flame shapes of different pool fires was recorded in each case. The typical flame shapes of 20 cm pool size at the fully developed period are show in Fig. 3. The rectangular black area in the middle of the pictures is the connection part of fire room and atria at the first floor. The flames tilt toward the staircase owing to the airflow induced by the stack effect in cases with an opened staircase, as shown in Fig. 3 (a), (b), (c), and (d). By comparing these four pictures, it can be found that the flame length in case with the 12 th floor window opened is slightly longer, due to a larger induced wind speed V avg through door 3 on the right side of the fire room. Whereas the flame tilt angle (the angle between the centerline of flame region and vertical direction) in case with the 3 rd floor window opened is slightly smaller owing to lesser wind speed V avg. In cases with a closed staircase, the flame tilts slightly toward the staircase because of the lack of stack effect, as shown in Fig. 4. The flame shape of 20 cm pool size ejects from the door 2 at the left of fire room. By contrast, the flame of 25 cm pool size fills the entire room and part of the flame spread towards the door 3, resulting from more fresh air required to maintain the combustion of the bigger pool. At the same time, plenty of black smoke was produced due to insufficient oxygen and the flame tip located in the upper part of the fire room could almost not be seen. 20 cm V avg =8 m/s (a) Flame shape of 20 cm pool size with the 12 th (12.2 m) floor window opened at t=350 s 20 cm V avg =4 m/s (b) Flame shape of 20 cm pool size with the 9 th (9.2 m) floor window opened t=350 s 20 cm V avg =1 m/s (c) Flame shape of 20 cm pool size with the 6 th (6.2 m) floor window opened at t=350 s 422

5 20 cm V avg =0.99 m/s (d) Flame shape of 20 cm pool size with the 3 rd (3.2 m) floor window opened at t=350 s Fig. 3. Typical flame shapes of 20 cm pool size in the opened staircases 20 cm 25 cm Door 2 Door 3 Door 2 Door 3 (a) Flame shape of 20 cm pool size at t=300 s (b) Flame shape of 25 cm pool size at t=220 s Fig. 4. Typical flame shapes of 20 and 25 cm pool sizes in the closed staircases (all windows closed) Mass Loss Rate The mass loss rates versus time of 20 cm pools are shown in Fig. 5. It can be seen that the mass loss rate is relatively small at the early slow growth period [24]. Then it increases rapidly and reaches a peak at the fully developed period. The maximum in case with a closed staircase is about 4.0 g/s at 330 s, which is higher than that in an open staircase. The reason is that most of the flame of pool fire is within the fire room and the unburned heptane in the pan receives more heat feedback from flame, upper hot smoke and sidewalls, leading to bigger evaporation rate and combustion rate [25]. By comparing the maximum mass loss rates of 20 cm pool size in opened staircase, it can be found that the maximum mass loss rates have slight difference under the action of stack effect, which indicates that the mass loss rate of fuel is influenced slightly by the position of window opened in the staircase. For other pool seizes, the similar results are obtained. More about the fuel mass rate of pool fires under stack effect are presented in the reference [23]. The calculated heat release rate of pool fires at the fully developed period are shown in Table

6 F (12.2 m) window opened 9F (9.2 m) window opened 6F (6.2 m) window opened 3F (3.2 m) window opened Enclosed staircase Mass loss rate (g/s) Time (s) Fig. 5. Fuel mass loss rate versus time of 20 cm pool size in different cases Table 1. Heat release rate of pool fires at the fully developed period Window opened location 10 cm pool 15 cm pool 20 cm pool 25 cm pool The 12 th floor window opened 36.9 kw 63.1 kw 93 kw kw The 9 th floor window opened 33.5 kw 59.2 kw 89.9 kw kw The 6 th floor window opened 32.4 kw 56.6 kw 89.8 kw kw The 3 rd floor window opened 28.4 kw 56.9 kw 87 kw kw Enclosed staircase 38.3 kw 79 kw kw kw Temperatures in and The thermocouples T1-T6 were located 5 cm below the ceiling of the atria and fire room at the first floor, respectively. The temperatures of thermocouple T2 and T5 of 20 cm pool sizes in the opened and closed staircases are show in Fig. 6. In a case with the opened staircase, at the early slow growth period, the flame is in the fire room because of the weaker stack effect. Thus the temperature of T5 rises first. As burning time passed, more hot smoke spread into staircase, the stack effect became stronger and the flame tilted toward the atria (the 1 st floor) owing to the wind speed, therefore the temperature of T2 begins to increase and the temperature of T5 starts to decrease, due to the cooling effect of air flow sucked into the fire room [26]. It also can be found that the temperatures of thermocouple T2 and T5 in case with the 3 rd floor window opened are higher than those in case with 9 th floor window opened, resulting from the relatively weaker stack effect. In a case with the closed staircase, the flame tilted slightly toward the atria (the 1 st floor), since the temperatures of T2 and T5 increase successively after ignition, while the temperature of T2 is far less than the temperature of T5. The temperature of T2 increases rapidly from 300 s to 340 s, because the flame ejected into the atria. To compare these three cases, it can be shown that the temperature of the ceiling of fire room is about 100 o C under the action of stack effect in the opened staircase. However, the temperature of the ceiling of fire room is around 650 o C in the closed staircase. 424

7 Temperature ( o C) T2 ()-20 cm pool size, 9F (9.2 m) window opened T2 ()-20 cm pool size, 3F (3.2 m) window opened T2 ()-20 cm pool size, enclosed staircase T5 (Fire room)-20 cm pool size, 9F (9.2 m) window opened T5 (Fire room)-20 cm pool size, 3F (3.2 m) window opened T5 (Fire room)-20 cm pool size, enclosed staircase T2 T5 Fire room Time (s) Fig. 6. Temperatures of thermocouple T2 and T5 versus time of 20 cm pool size in the opened and closed staircases The ceiling temperatures of the atria and fire room (the 1 st floor) of 20 cm pool size with the 9 th window opened are shown in Fig. 7. It can be seen that the temperatures of T4, T5 and T6 in the fire room are similar and almost maintain a constant at the fully developed fire stage (300 s - s), but the temperatures of T1, T2 and T3 in the atria (the 1 st floor) are different. The temperature of T1 is the highest and about 180 o C, while that of T3 is the lowest and about 130 o C, and actually the difference between them is not significant. The reason is that the tilted smoke plume was easy to gather at the top left region of the atria under the action of stack effect. Besides, it is obviously observed that the ceiling temperatures of the atria are constantly changing in the process of the flame tilt toward the atria. As shown in Fig. 7, the temperatures of T1 and T2 reach a peak at 260 s, and then they decrease to a stable state at the fully developed fire stage, and then reach another peak at s. While the temperature of T3 reaches a peak at 260 s, and then maintains almost a constant for a period. The similar results are obtained in other cases with the opened staircases. Temperature ( o C) T1 ()-20 cm pool size, 9F (9.2 m) window opened T2 ()-20 cm pool size, 9F (9.2 m) window opened T3 ()-20 cm pool size, 9F (9.2 m) window opened T4 (Fire room)-20 cm pool size, 9F (9.2 m) window opened T5 (Fire room)-20 cm pool size, 9F (9.2 m) window opened T6 (Fire room)-20 cm pool size, 9F (9.2 m) window opened T1 T2 T3 T4 T5 T6 Fire room Time (s) Fig. 7. The ceiling temperatures of the atria and fire room of 20 cm pool size with the 9 th (9.2 m) window opened When the mass loss rate, total radiant flux and total heat flux reached the maximum and maintained an almost constant value at the fully developed fire stage. The average temperature rise of the atria and fire room (the 1 st floor) during this period in all cases is 425

8 shown in Fig. 8. It can be seen that the temperature distribution in the atria and fire room is different in all cases. In cases with an opened staircase, the lower flame tilts toward the atria owing to the stack effect, and the flame region increase with an increasing pool size. Besides, it can be seen obviously that the upper hot smoke temperatures in the atria are higher than those in the fire room. Taking 20 cm and 25 cm pool sizes for examples, the upper hot smoke temperatures in the atria are more than o C, while those in the fire room are less than o C. The opened window position has a significant effect on the temperature distribution in the atria and fire room. In cases with windows opened at the 12 th, 9 th and 6 th floor, the smoke temperatures of 10, 15, and 20 cm pool sizes in the fire room are all less than 80 o C, resulting from the mixing process between the hot smoke and the cooling air induced by the stack effect, so the hot smoke could be modeled as one zone, while those of 25 cm pool size with larger heat release rate, the upper hot smoke temperatures are higher than the lower air zone, and thus the hot smoke could be modeled as two zones. In the same way, for 10 and 15 cm pool sizes, the smoke temperatures in the left region of the atria are higher than those in the right region, while for 20 and 25 cm pool sizes, the smoke temperatures in the whole atria are similar and could be modeled as one zone. In cases with windows opened at the 3 rd floor, the upper hot smoke temperatures in the fire room are higher than the lower air zone, while the smoke temperatures in the left region of the atria (the 1 st floor) are higher than those in the right region. Besides, comparing with the cases with the other windows opened, the temperature distribution of the atria in cases with the 3 rd window opened is obvious different. For 20 cm pool size, the upper hot smoke temperatures of the atria in case with the 3 rd window opened are more than o C, while those in other cases are all less than o C. A possible explanation for this phenomenon is that the wind speed of 20 cm pool size induced by stack effect is significant minimum in case with the 3 rd window opened, as show in Fig. 3. On one hand, the flame tilt angle is smaller and the hot smoke is easy to gather at the upper of the atria. On the other hand, the air mass flow sucked into the atria is small owing to lesser wind speed V avg and thus the cooling effect is poor. Considering these two aspects, the upper hot smoke temperatures in the atria in cases with the 3 rd window opened are the highest as shown in Fig. 8. In cases with the closed staircases, the upper hot smoke temperatures in the atria and fire room (the 1 st floor) increase with an increasing pool size, and the values are higher than the lower air zone, thus the hot smoke could be modeled as two or more zones. Besides, it is obviously observed that the upper hot smoke temperatures in the fire room are great higher than those in the atria. The flame of 20 cm pool size ejected into the atria as shown in Fig. 4(a), resulting in a significantly larger temperature rise in the atria. For 25 cm pool size, the flame filled the entire room and part of the flame spread towards the outside as shown in Fig. 4(b), so the whole fire room temperatures are very high. The upper hot smoke temperature in the fire room is more than o C, and the temperatures at the upper of door 3 on the right side of fire room is above o C, which indicates the flashover fire may occur in the fire room [27] (10 cm pool size, 12F window opened) (15 cm pool size, 12F window opened) (10 cm pool size, 9F window opened) case B2 (15 cm 9F window opened) 8 426

9 (10 cm pool size, 6F window opened) (15 cm pool size, 6F window opened) (10 cm pool size, 3F window opened) (15 cm pool size, 3F window opened) (10 cm pool size, Enclosed staircase) (15 cm pool size, Enclosed staircase) (20 cm pool size, 12F window opened) (25 cm pool size, 12F window opened) (20 cm pool size, 9F window opened) (25 cm pool size, 9F window opened) 8 427

10 (20 cm pool size, 6F window opened) (25 cm pool size, 6F window opened) (20 cm pool size, 3F window opened) (25 cm pool size, 3F window opened) (20 cm pool size, Enclosed staircase) (25 cm pool size, Enclosed staircase) 8 Fig. 8. Temperature rise of the atria and fire room at the fully developed fire stage in all cases Radiant Flux and Heat Flux Fig. 9 shows the measured total radiant flux and total heat flux versus time of 10 cm and 20 cm pool sizes in the opened and closed staircases. It can be seen that the radiant flux and heat flux maintain a steady stage at the early burning period, and then reach rapidly a peak. In cases with an opened staircase, the radiant flux of 20 cm pool size increases to the maximum first. As shown in Fig. 9(a), the total radiant flux of 10 cm pool size reaches a peak of 0.18 kw/m 2 at 360 s and that of 20 cm pool size reaches a peak of 2 kw/m 2 at 300 s. After reached its maximum, the measured values of 20 cm pool size have a larger fluctuation owing to the influence of the tilted flame oscillation, while those of 10 cm pool size have a smaller fluctuation. The reason is that the flame length of 20 cm pool size is greater and the distance between flame front and radiant flux sensor is relatively shorter. In cases with the closed staircase, the total radiant flux of 20 cm pool size reaches a peak of 2 kw/m 2 at 230 s, and the maximum is lower than that in opened staircase. The total heat flux has a similar variation trend as shown in Fig. 9(b). 428

11 Total Radiant Flux (kw/m 2 ) cm pool size, 9F (9.2 m) window opened 10 cm pool size, enclosed staircase 20 cm pool size, 9F (9.2 m) window opened 20 cm pool size, enclosed staircase Total Heat Flux (kw/m 2 ) cm pool size, 9F (9.2 m) window opened 10 cm pool size, enclosed staircase 20 cm pool size, 9F (9.2 m) window opened 20 cm pool size, enclosed staircase Time (s) (a) Total radiant flux versus time Time (s) (b) Total heat flux versus time Fig. 9. Total radiant flux and heat flux versus time of 10 cm and 20 cm pool sizes in the opened and closed staircases The time-average total radiant flux and total heat flux at the fully developed fire stage in all cases are shown in Fig. 10. It can be seen that the time-average total radiant flux and total heat flux in cases with the opened staircases are higher than those of the closed staircases for the same pool size. In the cases with an opened staircase, the flame tilted toward the staircase owing to the stack effect, and in the meantime, amounts of hot smoke flowed into the staircase. When in the cases with a closed staircase, the stack effect was disappeared, and thus the flame tilted slightly. Only part of hot smoke flowed into the staircase, and the other parts flowed out through the door 3. As a result, the measured values of total radiant flux and total heat flux from the flame and hot smoke in cases with the closed staircases are the lowest. Comparing the total radiant flux and total heat flux of 20 cm and 25 cm pool sizes in the closed staircase, the total radiant flux of 20 cm pool size is higher than that of 25 cm pool size as shown in Fig. 10(a), but the total heat flux has the opposite trend as shown in Fig. 10(b). A possible explanation is that the flame of 20 cm pool size ejected to the atria (Fig. 4(a)) and was closer to the radiant flux sensor, while the flame of 25 cm pool size spread towards the outside (Fig. 4(b)) and was far from the radiant flux sensor. To further analyze the data shown in Fig. 10, the time-average total radiant flux and total heat flux in cases with the 12 th window opened keep the highest, because of longer flame length and higher wind speed as shown in Fig. 3 (a). Besides, for the same pool size, the values in other cases with the opened window at the 9 th, 6 th, and 3 rd floor fall in the range of the cases with the opened window at 12 th floor and the case with the closed staircase, while these values have no obvious variety regulation. Total Radiant Flux (kw/m 2 ) 12F (12.2 m) window opened 9F (9.2 m) window opened 6F (6.2 m) window opened 3F (3.2 m) window opened Enclosed staircase Total Heat Flux (kw/m 2 ) F (12.2 m) window opened 9F (9.2 m) window opened 6F (6.2 m) window opened 3F (3.2 m) window opened Enclosed staircase Pool size (cm) (a) Time-average total radiant flux Pool size (cm) (b) Time-average total heat flux Fig. 10. Time-average total radiant flux and heat flux at the fully developed fire stage in different cases Conclusion In this paper, to study the influence of the height of window opened on the temperature distribution of the fire room adjacent to a 429

12 staircase, a set of experiments were conducted in a 1/3 scaled building model. The temperatures in the atria and fire room (the 1 st floor) have been experimentally investigated. The flames of pool fires in room tilt towards the staircase under the air flow induced by the stack effect. The mass loss rate of fuel is influenced slightly by the position of window opened in the staircase, while the temperature distribution in the atria and fire room is different in the opened and closed staircases. The hot smoke temperatures in the atria and fire room increase with an increasing pool size. In the opened staircase, the upper hot smoke temperatures in the atria are higher than those in the fire room. Compared different positions of the window opened in the staircase, the upper hot smoke temperatures in the atria in cases with the 3 rd window opened are the highest owing to the weaker stack effect. In the closed staircases, the upper hot smoke temperatures in the fire room are great higher than these in the atria. The flame ejects into the atria and the flashover fire may occur in the fire room for the bigger pool sizes. The radiant flux and heat flux of the left sidewalls of staircase are also investigated, and the measured values in an opened staircase are higher than those in a closed staircase, due to the tilted flame. For the cases in the opened staircases, the time-average total radiant flux and total heat flux at the fully developed fire stage in cases with the 12 th window opened keep the highest, because of the longer flame length and higher wind speed induced by the stack effect, while the values in other cases are lower and have no obvious variety regulation. To sum up, the results obtained in this paper may be used for the safety design of the room in the high-rise buildings. Acknowledgement This research was supported by the National Basic Research Program of China (973 Program) under Grant No. 2012CB and the Fundamental Research Funds for the Central Universities under Grant No. WK References: [1] Chow, W.K., (2005) Building fire safety in the Far East, Architectural Science Review 48: , [2] Lo, S.M., Yuen, K.K., Lu, W.Z., and Chen, D.H., (2002) A CFD study of buoyancy effects on smoke spread in a refuge floor of a high-rise building, Journal of Fire Sciences, 20: , [3] Guo, S.D., Yang, R., and Zhang, H., (2002) The zone-particle model for building fire simulation, Chinese Science Bulletin 55: , [4] Klote, J.H., A General Routine for Analysis of Stack Effect, US Department of Commerce, NIST, Gaithersburg, MD, [5] Klote, J.H., and Fothergill, J.W., Design of smoke control systems for buildings, US Department of Commerce, National Bureau of Standards, Washington, D.C., 1983, p [6] Barrett, R.B., and Locklin, D.W., (1969) A computer technique for predicting smoke movement in tall buildings, Fire Technology 5: , [7] Harmathy T.Z., (1998) Simplified Model of Smoke Dispersion in Buildings by Stack Effect, Fire Technology 34: 6-17, [8] Zhang, J.Y., Lu, W.Z., Huo, R., and Feng, R., (2008) A new model for determining neutral-plane position in shaft space of a building under fire situation, Building and Environment 43: , [9] Cannon, J.B., Convective Flows Under Conditions Applicable to Fires in High Rise Buildings, PhD Thesis, California Insitute of Technology, Pasadena, CA, [10] Zukoski, E.E., A Review of Flows Driven by Natural Convection in Adiabatic Shafts. NIST, Gaithersburg, MD, [11] Benedict, N.L., Buoyant flows in vertical channels Relating to Smoke Movement in High Rise Building Fires, PhD Thesis, California Insitute of Technology, Pasadena, CA,

13 [12] Zhang, J.Y., Ji, J., Yuan, H.Y., and Huo R., (2006) A Comparison of Simulation and Experiment on Stack Effect in Long Vertical Shaft, Journal of Fire Sciences 24: , [13] Black, WZ., (2009) Smoke movement in elevator shafts during a high-rise structural fire, Fire Safety Journal 44: , [14] Marshall, N.R., (1986) Air entrainment into smoke and hot gases in open shafts, Fire Safety Journal 10: 37-46, [15] Tanaka, T., Fujita, T., and Yamaguchi, J., (2000) Investigation into rise time of buoyant fire plume fronts, International Journal on Engineering Performance-Based Fire Codes 2: [16] Ji, J., Li, L.J., Shi, W.X., Fan, C.G., and Sun, J.H., (2013) Experimental investigation on the rising characteristics of the fire-induced buoyant plume in stairwells, International Journal of Heat and Mass Transfer, 64: , [17] Chow, W.K., and Zhao, J.H., (2011) Scale modeling studies on stack effect in tall vertical shafts, Journal of Fire Sciences 29: , [18] Sun, X.Q., Studies on smoke movement and control in shafts and stairwell in High-rise Buildings, PhD Thesis, University of Science and Technology of China, Hefei, AnHui, [19] Hiroomi, S., Sugawa, O., Kurioka, K. and Takahash, W., Plume Behavior in a Confined Tall and Narrow Spaces One of Sub-Models of Plume for an Atrium, Fire Safety Science -- Proceedings of the Fourth International Symposium, International Association for Fire Safety Science, 1994, pp [20] Satoh, H., Sugawa, O. and Kurioka, H., Flame Inclination with Induced Wind through Inlet Opening in a Tall and Narrow Atrium, Fire Safety Science -- Proceedings of the Fifth International Symposium, International Association for Fire Safety Science, 1997, pp [21] Quintiere, J.G., (1989) Scaling applications in fire research, Fire Safety Journal 15: 3-29, [22] Ji, J., Gao, Z.H., Fan, C.G., Zhong, W., and Sun, J.H., (2012) A study of the effect of plug-holing and boundary layer separation on natural ventilation with vertical shaft in urban road tunnel fires, International Journal of Heat and Mass Transfer 55(21-22): , [23] Shi, W.X., Ji, J., Lo, S.M., Sun, J.H., Li, L.J., and Yuan, X.Y., (2013) Influence of fire power and window position on smoke movement mechanisms and temperature distribution in an emergency staircase, Energy and Buildings (submit to journal) [24] Drysdale, D., An Introduction to Fire Dynamics, John Wiley and Sons, Chichester, 1985, p [25] Hamins, A., Fischer, S.J., Klashiwagi, T., Klassen, M.E., and Gore, J.P., (1994) Heat Feedback to the Fuel Surface in Pool Fires, Combustion Science and Technology 97: 37-62, [26] Shi, W.X., Ji, J., Sun, J.H., Lo, S.M., Li, L.J., and Yuan, X.Y., (2013) Experimental Study on Influence of Stack Effect on Fire in the Compartment Adjacent to Stairwell of High Rise Building, Journal of Civil Engineering and Management, [27] Waterman, T. E., (1968) Room flashover-criteria and synthesis, Fire Technology, 4: 25-31, 431

NUMERICAL STUDIES ON BARE CABIN FIRES WITH OPERATION OF SMOKE EXTRACTION SYSTEM

NUMERICAL STUDIES ON BARE CABIN FIRES WITH OPERATION OF SMOKE EXTRACTION SYSTEM , Volume 11, Number 2, p.43-48, 2012 NUMERICAL STUDIES ON BARE CABIN FIRES WITH OPERATION OF SMOKE EXTRACTION SYSTEM Q. Kui Institute of Building Fire Research, China Academy of Building Research, Beijing,

More information

EXPERIMENTAL STUDIES ON THE EFFECT OF THE FIRE POSITION ON PLUME ENTRAINMENT IN A LARGE SPACE

EXPERIMENTAL STUDIES ON THE EFFECT OF THE FIRE POSITION ON PLUME ENTRAINMENT IN A LARGE SPACE , Volume, Number 4, p.138-14, 23 EXPERIMENTAL STUDIES ON THE EFFECT OF THE FIRE POSITION ON PLUME ENTRAINMENT IN A LARGE SPACE Yuanzhou Li, Ran Huo, Liang Yi and Guodong Wang State Key Laboratory of Fire

More information

OPTIMIZATION OF VENTILATION MODE OF SMOKE CONTROL SYSTEM IN HIGH-RISE BUILDING FIRE

OPTIMIZATION OF VENTILATION MODE OF SMOKE CONTROL SYSTEM IN HIGH-RISE BUILDING FIRE OPTIMIZATION OF VENTILATION MODE OF SMOKE CONTROL SYSTEM IN HIGH-RISE BUILDING FIRE 1 RU ZHOU, 2 WEI ZHANG 1 School of Urban Construction and Safety Engineering, Nanjing University of Technology, Nanjing

More information

SCALE MODEL STUDIES ON SMOKE MOVEMENT IN INCLINED TUNNEL WITH LONGITUDINAL VENTILATION AND SMOKE BARRIERS

SCALE MODEL STUDIES ON SMOKE MOVEMENT IN INCLINED TUNNEL WITH LONGITUDINAL VENTILATION AND SMOKE BARRIERS , Volume 11, Number 2, p.21-26, 212 SCALE MODEL STUDIES ON SMOKE MOVEMENT IN INCLINED TUNNEL WITH LONGITUDINAL VENTILATION AND SMOKE BARRIERS C.Y. Tso and W.K. Chow Research Centre for Fire Engineering,

More information

LONGITUDINAL VENTILATION FOR SMOKE CONTROL IN A TILTED TUNNEL BY SCALE MODELING

LONGITUDINAL VENTILATION FOR SMOKE CONTROL IN A TILTED TUNNEL BY SCALE MODELING LONGITUDINAL VENTILATION FOR SMOKE CONTROL IN A TILTED TUNNEL BY SCALE MODELING W.K. Chow, and W.Y. Chung Research Centre for Fire Engineering, Department of Building Services Engineering Area of Strength:

More information

ASSESSMENT OF FIRE BEHAVIOUR OF TIMBER PARTITION MATERIALS WITH A ROOM CALORIMETER

ASSESSMENT OF FIRE BEHAVIOUR OF TIMBER PARTITION MATERIALS WITH A ROOM CALORIMETER , Volume 9, Number 1, p.38-58, 2007 ASSESSMENT OF FIRE BEHAVIOUR OF TIMBER PARTITION MATERIALS WITH A ROOM CALORIMETER C.W. Leung and W.K. Chow Department of Building Services Engineering, The Hong Kong

More information

CFD Analysis of Fire Characteristics on Subway Junction Station

CFD Analysis of Fire Characteristics on Subway Junction Station ISGSR27 First International Symposium on Geotechnical Safety & Risk Oct. 18~19, 27 Shanghai Tongji University, China CFD Analysis of Fire Characteristics on Subway Junction Station G. H. Wu, X. Han, Q.Q.

More information

Simulation of Full-scale Smoke Control in Atrium

Simulation of Full-scale Smoke Control in Atrium Available online at www.sciencedirect.com Procedia Engineering 11 (2011) 608 613 The 5 th Conference on Performance-based Fire and Fire Protection Engineering Simulation of Full-scale Smoke Control in

More information

PRELIMINARY STUDIES ON MECHANICAL SMOKE EXHAUSTS IN LARGE SPACE BUILDING FIRES

PRELIMINARY STUDIES ON MECHANICAL SMOKE EXHAUSTS IN LARGE SPACE BUILDING FIRES PRELIMINARY STUDIES ON MECHANICAL SMOKE EXHAUSTS IN LARGE SPACE BUILDING FIRES R. Huo a, Y. Li a, W. Fan a and W. Chow b a. State Key Laboratory of Fire Science, CHINA b. The Hong Kong Polytechnic University

More information

IFireSS International Fire Safety Symposium Coimbra, Portugal, 20 th -22 nd April 2015

IFireSS International Fire Safety Symposium Coimbra, Portugal, 20 th -22 nd April 2015 IFireSS International Fire Safety Symposium Coimbra, Portugal, 20 th -22 nd April 2015 SCALE MODEL EXPERIMENTS ON SMOKE MOVEMENT IN A TILTED TUNNEL photo Author 1 30 mm 40 mm photo Author 2 30 mm 40 mm

More information

Experimental Room Fire Studies with Perforated Suspended Ceiling

Experimental Room Fire Studies with Perforated Suspended Ceiling Experimental Room Fire Studies with Perforated Suspended Ceiling FIONA S.C. TSUI 1, W.K. CHOW 1, N.K. FONG 1, Y. GAO 2, H. DONG 2, and G.W. ZOU 2 1 Research Centre for Fire Engineering Department of Building

More information

and vent height on mechanical smoke exhaust efficiency

and vent height on mechanical smoke exhaust efficiency Experimental investigation on influence of smoke venting velocity and vent height on mechanical smoke exhaust efficiency Ji Jie a, Li Kaiyuan b, Zhong Wei c, *, Huo Ran a a State Key Laboratory of Fire

More information

Analysis of the influence of open door size on fire smoke diffusion law in protective engineering

Analysis of the influence of open door size on fire smoke diffusion law in protective engineering Analysis of the influence of open door size on fire smoke diffusion law in protective engineering Abstract Zheli Xing a, Jinfeng Mao b, Chaofeng Li c and Jin Zhou d PLA University of Science and Technology,

More information

NUMERICAL STUDIES ON SMOKE SPREAD IN THE CAVITY OF A DOUBLE-SKIN FAÇADE

NUMERICAL STUDIES ON SMOKE SPREAD IN THE CAVITY OF A DOUBLE-SKIN FAÇADE JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT ISSN 1392-3730 / eissn 1822-3605 2016 Volume 22(4): 470 479 doi:10.3846/13923730.2014.897992 NUMERICAL STUDIES ON SMOKE SPREAD IN THE CAVITY OF A DOUBLE-SKIN

More information

International Forum on Energy, Environment Science and Materials (IFEESM 2015)

International Forum on Energy, Environment Science and Materials (IFEESM 2015) The Comparison and Analysis of Humidity Environment between Floor and Ceiling Radiant Cooling Systems that Combined with Displacement Ventilation Kai SUN 1 a *, Chuan-hui ZHOU 1 1 College of Urban Construction,

More information

ZONE MODEL VERIFICATION BY ELECTRIC HEATER

ZONE MODEL VERIFICATION BY ELECTRIC HEATER , Volume 6, Number 4, p.284-290, 2004 ZONE MODEL VERIFICATION BY ELECTRIC HEATER Y.T. Chan Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China ABSTRACT Selecting

More information

Multiple fire interactions: A further investigation by burning rate data of square fire arrays

Multiple fire interactions: A further investigation by burning rate data of square fire arrays Available online at www.sciencedirect.com Proceedings of the Combustion Institute xxx (2012) xxx xxx Proceedings of the Combustion Institute www.elsevier.com/locate/proci Multiple fire interactions: A

More information

RADIATION BLOCKAGE EFFECTS BY WATER CURTAIN

RADIATION BLOCKAGE EFFECTS BY WATER CURTAIN , Volume 6, Number 4, p.248-254, 04 RADIATION BLOCKAGE EFFECTS BY WATER CURTAIN C.L. Choi Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China ABSTRACT Water

More information

Smoldering Propagation Characteristics of Flexible Polyurethane Foam under Different Air Flow Rates

Smoldering Propagation Characteristics of Flexible Polyurethane Foam under Different Air Flow Rates Smoldering Propagation Characteristics of Flexible Polyurethane Foam under Different Air Flow Rates Zhou Y., Fei Y.*, Hu S. Q. Nanjing Tech University, College of Fire Safety Science and Engineering &

More information

An experimental study of the impact of tunnel suppression on tunnel ventilation

An experimental study of the impact of tunnel suppression on tunnel ventilation An experimental study of the impact of tunnel suppression on tunnel ventilation Yoon J. Ko and George Hadjisophocleous Civil and Environmental Engineering, Carleton University 1125 Colonel By Drive, Ottawa,

More information

A Numerical study of the Fire-extinguishing Performance of Water Mist in an Opening Machinery Space

A Numerical study of the Fire-extinguishing Performance of Water Mist in an Opening Machinery Space Available online at www.sciencedirect.com Procedia Engineering 31 (2012) 734 738 International Conference on Advances in Computational Modeling and Simulation A Numerical study of the Fire-extinguishing

More information

Sprinklers Modeling for Tunnel Road Fire Fighting

Sprinklers Modeling for Tunnel Road Fire Fighting Sprinklers Modeling for Tunnel Road Fire Fighting P. Ciambelli, M.G. Meo, P. Russo, S. Vaccaro Department of Chemical and Food Engineering, University of Salerno - ITALY 1. INTRODUCTION Loss of lives and

More information

A NETWORK MODEL OF SIMULATING SMOKE MOVEMENT IN BUILDINGS

A NETWORK MODEL OF SIMULATING SMOKE MOVEMENT IN BUILDINGS , Volume 3, Number 4, p.151-157, 2001 A NETWORK MODEL OF SIMULATING SMOKE MOVEMENT IN BUILDINGS F. Liu and X.Z. Fu Faculty of Urban Construction and Environmental Engineering Chongqing University, Chongqing

More information

5B-3 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea

5B-3 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea 5B-3 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea PRACTICAL APPLICATIONS OF FIRE MODELING IN INDUSTRIAL APPLICATIONS By James M. Dewey, Advisor Risk Management

More information

NUMERICAL SIMULATION OF THE NEW SOUTH WALES FIRE BRIGADE COMPARTMENT FIRE BEHAVIOUR TRAINING TEST CELL

NUMERICAL SIMULATION OF THE NEW SOUTH WALES FIRE BRIGADE COMPARTMENT FIRE BEHAVIOUR TRAINING TEST CELL , Volume 9, Number 4, p.154-162, 7 NUMERICAL SIMULATION OF THE NEW SOUTH WALES FIRE BRIGADE COMPARTMENT FIRE BEHAVIOUR TRAINING TEST CELL D. Mackay and T. Barber School of Mechanical and Manufacturing

More information

Simple Equations for Predicting Smoke Filling Time in Fire Rooms with Irregular Ceilings

Simple Equations for Predicting Smoke Filling Time in Fire Rooms with Irregular Ceilings Fire Science and Technorogy Vol.24 No.4(2005) 165-178 165 Simple Equations for Predicting Smoke Filling Time in Fire Rooms with Irregular Ceilings Jun-ichi Yamaguchi 1, Takeyoshi Tanaka 2 1 Technical Research

More information

Tunnel Fire Dynamics and Evacuation Simulations

Tunnel Fire Dynamics and Evacuation Simulations Tunnel Fire Dynamics and Evacuation Simulations James Priest, PhD & James Niehoff DGS-SEE Seminar on Fire Protection for Physics Research Facilities 7 & 8 October 2015 Introduction (Background) Presentation

More information

Hot Issues in Fire Engineering 28 February 2012

Hot Issues in Fire Engineering 28 February 2012 Hot Issues in Fire Engineering 28 February 2012 A Note on Cabin Fire Design for Protecting Large Halls W.K. Chow Research Centre for Fire Engineering, Department of Building Services Engineering The Hong

More information

American Society of Heating, Refrigerating and Air-Conditioning Engineers

American Society of Heating, Refrigerating and Air-Conditioning Engineers Flow Pattern and Thermal Comfort in Office Environment with Active Chilled Beams Journal: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Manuscript ID: Draft Publication:

More information

Fire Research and Education at the University of Maryland

Fire Research and Education at the University of Maryland Fire Research and Education at the University of Maryland J. G. Quintiere Department of Fire Protection Engineering March 7,8 2005 2nd Int. Symp. 21st Century Center of Excellence Program History of FPE

More information

2012 International Symposium on Safety Science and Technology Factor analysis of high-rise building fires reasons and fire protection measures

2012 International Symposium on Safety Science and Technology Factor analysis of high-rise building fires reasons and fire protection measures Available online at www.sciencedirect.com Procedia Engineering 45 (2012 ) 643 648 2012 International Symposium on Safety Science and Technology Factor analysis of high-rise building fires reasons and fire

More information

CFD Model of a Specific Fire Scenario

CFD Model of a Specific Fire Scenario 16 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 27 CFD Model of a Specific Fire Scenario D. Mackay, T. Barber and E. Leonardi School of Mechanical and Manufacturing

More information

STACK EFFECT IN LIGHT WELL OF HIGH RISE APARTMENT BUILDING

STACK EFFECT IN LIGHT WELL OF HIGH RISE APARTMENT BUILDING STACK EFFECT IN LIGHT WELL OF HIGH RISE APARTMENT BUILDING H. Kotani, R. Satoh, T. Yamanaka Dept. of Architectural Engineering, School of Engineering, Osaka University, Osaka, Japan ABSTRACT The purpose

More information

Test One: The Uncontrolled Compartment Fire

Test One: The Uncontrolled Compartment Fire The University of Edinburgh BRE Centre for Fire Safety Engineering One Day Symposium on The Dalmarnock Fire Tests: Experiments & Modelling Test One: The Uncontrolled Compartment Fire Cecilia Abecassis

More information

How to Use Fire Risk Assessment Tools to Evaluate Performance Based Designs

How to Use Fire Risk Assessment Tools to Evaluate Performance Based Designs How to Use Fire Risk Assessment Tools to Evaluate Performance Based Designs 1 ABSTRACT Noureddine Benichou and Ahmed H. Kashef * Institute for Research in Construction National Research Council of Canada

More information

Effect of Parameters on Internal Flow Patterns of a Top Heat Mode Closed-loop Oscillating Heat Pipe with Check Valves (THMCLOHP/CV)

Effect of Parameters on Internal Flow Patterns of a Top Heat Mode Closed-loop Oscillating Heat Pipe with Check Valves (THMCLOHP/CV) Australian Journal of Basic and Applied Sciences, 5(7): 638-643, 2011 ISSN 1991-8178 Effect of Parameters on Internal Flow Patterns of a Top Heat Mode Closed-loop Oscillating Heat Pipe with Check Valves

More information

PRELIMINARY EXPERIMENTAL STUDY OF DOUBLE-SKINNED FAÇADE

PRELIMINARY EXPERIMENTAL STUDY OF DOUBLE-SKINNED FAÇADE , Volume 6, Number 3, p.155-167, 2004 PRELIMINARY EXPERIMENTAL STUDY OF DOUBLE-SKINNED FAÇADE W.K. Chow and W.Y. Hung Department of Building Services Engineering, The Hong Kong Polytechnic University,

More information

ASSESSMENT OF TIMBER PARTITION MATERIALS WITH FIRE RETARDANTS WITH A ROOM CALORIMETER

ASSESSMENT OF TIMBER PARTITION MATERIALS WITH FIRE RETARDANTS WITH A ROOM CALORIMETER , Volume 6, Number 3, p.122-154, 2004 ASSESSMENT OF TIMBER PARTITION MATERIALS WITH FIRE RETARDANTS WITH A ROOM CALORIMETER C.W. Leung, W.K. Chow Department of Building Services Engineering, The Hong Kong

More information

Using FDS Modelling to Establish Performance Criteria for Water Mist Systems on Very Large Fires in Tunnels

Using FDS Modelling to Establish Performance Criteria for Water Mist Systems on Very Large Fires in Tunnels Using FDS Modelling to Establish Performance Criteria for Water Mist Systems on Very Large Fires in Tunnels Jack R. Mawhinney, P. Eng., FSFPE Javier J. Trelles, Ph.D. Authors & acknowledgement J. R. Mawhinney

More information

Max Fire Box Users Guide

Max Fire Box Users Guide Max Fire Box Users Guide 1 Mission Statement Providing a cost effective fire and smoke behavior training aid that allows current and future firefighters the ability to recognize rapid fire events in a

More information

SMOKE MANAGEMENT AND EGRESS ANALYSIS OF A SPORTS ARENA USING THE PERFORMANCE-BASED DESIGN

SMOKE MANAGEMENT AND EGRESS ANALYSIS OF A SPORTS ARENA USING THE PERFORMANCE-BASED DESIGN , Volume 4, Number 2, p.73-83, 2003 SMOKE MANAGEMENT AND EGRESS ANALYSIS OF A SPORTS ARENA USING THE PERFORMANCE-BASED DESIGN K.H. Yang and C.S. Yang Mechanical Engineering Department, National Sun Yat-Sen

More information

Full-scale Experiment of Longitudinal Ventilation Smoke Control System and Central Smoke Exhaust System in City Underwater Tunnel

Full-scale Experiment of Longitudinal Ventilation Smoke Control System and Central Smoke Exhaust System in City Underwater Tunnel Available online at www.sciencedirect.com Procedia Engineering 52 ( 2013 ) 330 335 Full-scale Experiment of Longitudinal Ventilation Smoke Control System and Central Smoke Exhaust System in City Underwater

More information

The Experimental Study and Simplified Model of. Water Mist Absorbing Heat Radiation

The Experimental Study and Simplified Model of. Water Mist Absorbing Heat Radiation Advanced Materials Research Submitted: 2014-06-15 ISSN: 1662-8985, Vols. 1008-1009, pp 886-891 Accepted: 2014-06-16 doi:10.4028/www.scientific.net/amr.1008-1009.886 Online: 2014-08-13 2014 Trans Tech Publications,

More information

Developing a Fire Test Strategy for Storage Protection Under Sloped Ceilings

Developing a Fire Test Strategy for Storage Protection Under Sloped Ceilings Developing a Fire Test Strategy for Storage Protection Under Sloped Ceilings Justin A. Geiman, Noah L. Ryder Fire & Risk Alliance, Rockville, MD, USA André W. Marshall Custom Spray Solutions, Silver Spring,

More information

An Analysis of Compartment Fire and Induced Smoke Movement in Adjacent Corridor

An Analysis of Compartment Fire and Induced Smoke Movement in Adjacent Corridor 2C-1 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea An Analysis of Compartment Fire and Induced Smoke Movement in Adjacent Corridor Soo-Young Kim *, Eung-Sik

More information

Full-Scale Measurement and Numerical Analysis of Liquefied Petroleum Gas Water Heaters with Ventilation Factors in Balcony

Full-Scale Measurement and Numerical Analysis of Liquefied Petroleum Gas Water Heaters with Ventilation Factors in Balcony Journal of Civil Engineering and Architecture 9 (215) 1341-1353 doi: 1.17265/1934-7359/215.11.9 D DAVID PUBLISHING Full-Scale Measurement and Numerical Analysis of Liquefied Petroleum Gas Water Heaters

More information

Experimental Study on Response Sensitivity of Smoke Detectors in High Flow Velocity

Experimental Study on Response Sensitivity of Smoke Detectors in High Flow Velocity Experimental Study on Response Sensitivity of Smoke Detectors in High Flow Velocity QIYUAN XIE 1, GUOFENG SU 2, HONGYONG YUAN 2, and YONGMING ZHANG 1 1 State Key Laboratory of Fire Science University of

More information

Numerical investigation on the effect of channelled and unchannelled screens on smoke contamination in atriums upper balconies with open upstand

Numerical investigation on the effect of channelled and unchannelled screens on smoke contamination in atriums upper balconies with open upstand Numerical investigation on the effect of channelled and unchannelled screens on smoke contamination in atriums upper balconies with open upstand Mohammed Mutafi 1, Mohammad Nasif 1*, William Pao 1 and

More information

SOLAR WATER DISTILLATION BY USING WATER IN THE INNER GLASS EVACUATED TUBES

SOLAR WATER DISTILLATION BY USING WATER IN THE INNER GLASS EVACUATED TUBES Third Southern African Solar Energy Conference 11 13 May 2015 Kruger National Park, South Africa SOLAR WATER DISTILLATION BY USING WATER IN THE INNER GLASS EVACUATED TUBES Shahmohamadi M., Shafii, M.B.and

More information

Smoke movement for sprinklered fires. Lougheed, G.D.; McCartney, C.; Taber, B.C.

Smoke movement for sprinklered fires. Lougheed, G.D.; McCartney, C.; Taber, B.C. Smoke movement for sprinklered fires Lougheed, G.D.; McCartney, C.; Taber, B.C. NRCC-43138 Posting courtesy American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. www.ashrae.org

More information

Simulation study of evacuation in high-rise buildings

Simulation study of evacuation in high-rise buildings Available online at www.sciencedirect.com ScienceDirect Transportation Research Procedia 00 (2014) 000 000 www.elsevier.com/locate/procedia The Conference in Pedestrian and Evacuation Dynamics 2014 (PED2014)

More information

NECESSITY OF CARRYING OUT FULL-SCALE BURNING TESTS FOR POST-FLASHOVER RETAIL SHOP FIRES

NECESSITY OF CARRYING OUT FULL-SCALE BURNING TESTS FOR POST-FLASHOVER RETAIL SHOP FIRES , Volume 5, Number 1, p.20-27, 2003 NECESSITY OF CARRYING OUT FULL-SCALE BURNING TESTS FOR POST-FLASHOVER RETAIL SHOP FIRES W.K. Chow Department of Building Services Engineering, The Hong Kong Polytechnic

More information

CHOOSING A FIRE VENTILATION STRATEGY FOR AN UNDERGROUND METRO STATION

CHOOSING A FIRE VENTILATION STRATEGY FOR AN UNDERGROUND METRO STATION - 165 - CHOOSING A FIRE VENTILATION STRATEGY FOR AN UNDERGROUND METRO STATION Wojciech Węgrzyński, Grzegorz Krajewski, Paweł Sulik Fire Research Department, Building Research Institute (ITB), Poland ABSTRACT

More information

Performance-based Fire Design of Air-supported Membrane Coal Storage Shed

Performance-based Fire Design of Air-supported Membrane Coal Storage Shed Available online at www.sciencedirect.com Procedia Engineering 52 ( 2013 ) 593 601 Performance-based Fire Design of Air-supported Membrane Coal Storage Shed ZHANG Lei a,b, ZHU Guo-qing a,b,*, ZHANG Guo-wei

More information

Study of Numerical Analysis on Smoke Exhaust Performance of Portable Smoke Exhaust Fan

Study of Numerical Analysis on Smoke Exhaust Performance of Portable Smoke Exhaust Fan Open Journal of Fluid Dynamics, 2017, 7, 205-218 http://www.scirp.org/journal/ojfd ISSN Online: 2165-3860 ISSN Print: 2165-3852 Study of Numerical Analysis on Smoke Exhaust Performance of Portable Smoke

More information

Modeling of Ceiling Fan Based on Velocity Measurement for CFD Simulation of Airflow in Large Room

Modeling of Ceiling Fan Based on Velocity Measurement for CFD Simulation of Airflow in Large Room Modeling of Ceiling Fan Based on Velocity Measurement for CFD Simulation of Airflow in Large Room Y. Momoi 1, K. Sagara 1, T. Yamanaka 1 and H. Kotani 1 1 Osaka University, Graduate School of Eng., Dept.

More information

Considerations in the Design of Smoke Management Systems for Atriums

Considerations in the Design of Smoke Management Systems for Atriums Construction Technology Update No. 48 Considerations in the Design of Smoke Management Systems for Atriums by G.D. Lougheed This Update discusses the use of an engineered approach to the design of smoke

More information

Experimental Study on Match for Indoor and Outdoor Heat Exchanger of Residential Airconditioner

Experimental Study on Match for Indoor and Outdoor Heat Exchanger of Residential Airconditioner Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2014 Experimental Study on Match for Indoor and Outdoor Heat Exchanger of Residential

More information

CHAPTER I INTRODUCTION. In the modern life, electronic equipments have made their way

CHAPTER I INTRODUCTION. In the modern life, electronic equipments have made their way 1 CHAPTER I INTRODUCTION In the modern life, electronic equipments have made their way in to practically every part, which is from electronic gadgets to high power computers. Electronic components have

More information

The Research of Performance Comparison of Displacement and Mixing Ventilation System in Catering Kitchen *

The Research of Performance Comparison of Displacement and Mixing Ventilation System in Catering Kitchen * Journal of Environmental Protection, 2013, 4, 638-646 http://dx.doi.org/10.4236/jep.2013.46073 Published Online June 2013 (http://www.scirp.org/journal/jep) The Research of Performance Comparison of Displacement

More information

Experimental Study on the Characteristics of Fire Smoke Movement in Ultra Thin and Tall Atriums by Hot Smoke Test

Experimental Study on the Characteristics of Fire Smoke Movement in Ultra Thin and Tall Atriums by Hot Smoke Test Experimental Study on the Characteristics of Fire Smoke Movement in Ultra Thin and Tall Atriums by Hot Smoke Test Hao Zhang 1,, Cuifeng Du 1,*, Jingji Li, Jian Chen and Hongwen Li 1 University of Science

More information

A study for a fire spread mechanism of residential buildings with numerical modeling

A study for a fire spread mechanism of residential buildings with numerical modeling Safety and Security Engineering IV 185 A study for a fire spread mechanism of residential buildings with numerical modeling C.-S. Ahn & J.-Y. Kim Fire Safety Research Division, Korea Institute of Construction

More information

A Monte Carlo Approach for the Design of Thermal Fire Detection System

A Monte Carlo Approach for the Design of Thermal Fire Detection System A Monte Carlo Approach for the Design of Thermal Fire Detection System Walter W. Yuen Department of Mechanical & Environmental Engineering University of California at Santa Barbara California, USA and

More information

Heat Release Rate of an Open Kitchen Fire of Small Residential Units in Tall Buildings

Heat Release Rate of an Open Kitchen Fire of Small Residential Units in Tall Buildings 2014 Purdue Compressor/Refrigeration and Air Conditioning and High Performance Buildings Conference West Lafayette, IN, USA 14-17 July 2014 Heat Release Rate of an Open Kitchen Fire of Small Residential

More information

Experimental Analysis of Open, Simple and Modified Greenhouse Dryers for Drying Potato Flakes under Forced Convection

Experimental Analysis of Open, Simple and Modified Greenhouse Dryers for Drying Potato Flakes under Forced Convection RESEARCH ARTICLE OPEN ACCESS Experimental Analysis of Open, Simple and Modified Greenhouse Dryers for Drying Potato Flakes under Forced Convection Tanuj Kumar Sahu 1, Vishal Gupta 2, Ajay Kumar Singh 3

More information

Advantages and Disadvantages of Fire Modelling

Advantages and Disadvantages of Fire Modelling Advantages and Disadvantages of Fire Modelling Dr Guillermo Rein School of Engineering University of Edinburgh & Imperial College London Dr Guillermo Rein 9 May 2012 Chief Fire Officers Association Annual

More information

Modeling a real backdraft incident fire

Modeling a real backdraft incident fire Advanced Computational Methods in Heat Transfer IX 279 Modeling a real backdraft incident fire A. Tinaburri 1 & M. Mazzaro 2 1 Central Direction for Prevention and Technical Safety, Firefighters, Public

More information

Internal flow Patterns of the Horizontal Heat Mode Closed-Loop Oscillating Heat Pipe with Check Valves (HHMCLOHP/CV)

Internal flow Patterns of the Horizontal Heat Mode Closed-Loop Oscillating Heat Pipe with Check Valves (HHMCLOHP/CV) Research Journal of Applied Sciences, Engineering and Technology 5(3): 865-869, 2013 ISSN: 2040-7459; E-ISSN: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: June 13, 2012 Accepted: July 09,

More information

Aspirating Gas Detection CFD Modelling Predicts Application Performance

Aspirating Gas Detection CFD Modelling Predicts Application Performance Aspirating Gas Detection CFD Modelling Predicts Application Performance Yun Jiang Xtralis, Bentleigh East, Australia Claudio Groppetti Xtralis, Avon, MA, USA Abstract Historically gas detection has utilized

More information

Fire Test Evaluation using the Kerosene and Aviation Fuel

Fire Test Evaluation using the Kerosene and Aviation Fuel Fire Test Evaluation using the Kerosene and Aviation Fuel K. S. Bang, J.C. Lee, C. S. Seo, K. S. Seo, H. J. Kim* Korea Atomic Energy Research Institute, 15 Dukjin-Dong, Yuseung-gu, Daejeon, Korea 35-353

More information

REVIEW ON WATER MIST FIRE SUPPRESSION SYSTEM

REVIEW ON WATER MIST FIRE SUPPRESSION SYSTEM , Volume 5, Number 4, p.170-175, 2003 REVIEW ON WATER MIST FIRE SUPPRESSION SYSTEM N. Zhu Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China ABSTRACT Water

More information

Predictions of Railcar Heat Release Rates

Predictions of Railcar Heat Release Rates Predictions of Railcar Heat Release Rates John Cutonilli & Craig Beyler Hughes Associates, Inc 361 Commerce Dr, Suite 817 Baltimore, MD 21227 USA Email: jcutonilli@haifire.com, cbeyler@haifire.com KEYWORDS:

More information

SIMULATION OF A COMPARTMENT FLASHOVER FIRE USING HAND CALCULATIONS, ZONE MODELS AND A FIELD MODEL

SIMULATION OF A COMPARTMENT FLASHOVER FIRE USING HAND CALCULATIONS, ZONE MODELS AND A FIELD MODEL Reference : Spearpoint M J, Mowrer F W, McGrattan K. Simulation of a single compartment flashover fire using hand calculations, zone models and a field model. Proc. 3 rd International Conference on Fire

More information

Heat Transfer in Evacuated Tubular Solar Collectors

Heat Transfer in Evacuated Tubular Solar Collectors Heat Transfer in Evacuated Tubular Solar Collectors Graham L. Morrison, Indra Budihardjo and Masud Behnia School of Mechanical and Manufacturing Engineering University of New South Wales Sydney 2052 Australia

More information

Ventilation Effects on Fire Patterns during Post Flashover Burning

Ventilation Effects on Fire Patterns during Post Flashover Burning Ventilation Effects on Fire Patterns during Post Flashover Burning By Matthew Obach, M.A.Sc., EIT, CFEI In order to determine the origin of a fire, fire investigators analyze fire patterns that remain

More information

MULTI-CHANNEL R134A TWO-PHASE FLOW MEASUREMENT TECHNIQUE FOR AUTOMOBILE AIR-CONDITIONING SYSTEM

MULTI-CHANNEL R134A TWO-PHASE FLOW MEASUREMENT TECHNIQUE FOR AUTOMOBILE AIR-CONDITIONING SYSTEM Proceedings of ASME FEDSM 3 4 th ASME_JSME Joint Fluids Engineering Conference Honolulu, Hawaii, USA, July 6-1, 23 MULTI-CHANNEL R134A TWO-PHASE FLOW MEASUREMENT TECHNIQUE FOR AUTOMOBILE AIR-CONDITIONING

More information

NECESSITY OF IN-DEPTH EVALUATION OF LONG-THROW SPRINKLER INSTALLATION AT TALL ATRIA STORING HIGH AMOUNTS OF COMBUSTIBLES

NECESSITY OF IN-DEPTH EVALUATION OF LONG-THROW SPRINKLER INSTALLATION AT TALL ATRIA STORING HIGH AMOUNTS OF COMBUSTIBLES , Volume 11, Number 1, p.4-10, 2012 NECESSITY OF IN-DEPTH EVALUATION OF LONG-THROW SPRINKLER INSTALLATION AT TALL ATRIA STORING HIGH AMOUNTS OF COMBUSTIBLES W.K. Chow Research Centre for Fire Engineering,

More information

Simulation of Evacuation Process in a Supermarket with Cellular Automata

Simulation of Evacuation Process in a Supermarket with Cellular Automata Available online at www.sciencedirect.com Procedia Engineering 52 (2013 ) 687 692 Simulation of Evacuation Process in a Supermarket with Cellular Automata ZHONG Wei a, TU Rui a, YANG Jian-peng b, LIANG

More information

INFLUENCE OF SOLAR RADIATION AND VENTILATION CONDITIONS ON HEAT BALANCE AND THERMAL COMFORT CONDITIONS IN LIVING-ROOMS

INFLUENCE OF SOLAR RADIATION AND VENTILATION CONDITIONS ON HEAT BALANCE AND THERMAL COMFORT CONDITIONS IN LIVING-ROOMS INFLUENCE OF SOLAR RADIATION AND VENTILATION CONDITIONS ON HEAT BALANCE AND THERMAL COMFORT CONDITIONS IN LIVING-ROOMS Staņislavs GENDELIS, Andris JAKOVIČS Laboratory for mathematical modelling of environmental

More information

STUDY ON TEMPERATURE, RH AND AIR FLOW VELOCITY DISTRIBUTION INSIDE THE GREENHOUSE EFFECT SOLAR DRYER

STUDY ON TEMPERATURE, RH AND AIR FLOW VELOCITY DISTRIBUTION INSIDE THE GREENHOUSE EFFECT SOLAR DRYER STUDY ON TEMPERATURE, RH AND AIR FLOW VELOCITY DISTRIBUTION INSIDE THE GREENHOUSE EFFECT SOLAR DRYER WULANDANI, D., K. ABDULLAH, E. HARTULISTIYOSO Department of Agricultural Engineering, Faculty of Agricultural

More information

EXPERIMENTAL AND CFD STUDIES ON SURFACE CONDENSATION

EXPERIMENTAL AND CFD STUDIES ON SURFACE CONDENSATION Eighth International IBPSA Conference Eindhoven, Netherlands August 11-14, 2003 EXPERIMENTAL AND CFD STUDIES ON SURFACE CONDENSATION Liu Jing 1, Yoshihiro Aizawa 2, Hiroshi Yoshino 3 1 School of Municipal

More information

6B-2 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea

6B-2 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea 6B-2 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea CONDUCTING A FULL-SCALE EXPERIMENT ON A RAIL PASSENGER CAR ABSTRACT N. White and V.P. Dowling CSIRO Fire

More information

Available online at ScienceDirect. Procedia Engineering 84 (2014 )

Available online at  ScienceDirect. Procedia Engineering 84 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 84 (2014 ) 553 557 2014ISSST, 2014 International Symposium on Safety Science and Technology Research on fire endurance of tempered

More information

EFFECTS OF VARIABLES ON NATURAL CONVECTIVE HEAT TRANSFER THROUGH V-CORRUGATED VERTICAL PLATES

EFFECTS OF VARIABLES ON NATURAL CONVECTIVE HEAT TRANSFER THROUGH V-CORRUGATED VERTICAL PLATES International Journal of Mechanical and Materials Engineering (IJMME), Vol. 2 (2007), No. 2, 109--117. EFFECTS OF VARIABLES ON NATURAL CONVECTIVE HEAT TRANSFER THROUGH V-CORRUGATED VERTICAL PLATES M. Hasanuzzaman

More information

Numerical Stability Analysis of a Natural Circulation Steam Generator with a Non-uniform Heating Profile over the tube length

Numerical Stability Analysis of a Natural Circulation Steam Generator with a Non-uniform Heating Profile over the tube length Numerical Stability Analysis of a Natural Circulation Steam Generator with a Non-uniform Heating Profile over the tube length HEIMO WALTER Institute for Thermodynamics and Energy Conversion Vienna University

More information

Recent BRANZFIRE enhancements and validation

Recent BRANZFIRE enhancements and validation Recent BRANZFIRE enhancements and validation Michael Spearpoint University of Canterbury Summary BRANZFIRE is a multi-compartment fire zone model that has been under development since 1996 predominately

More information

Preliminary investigations of smoke movement through HVAC systems and duct smoke detectors. Lougheed, G.D.; McCartney, C.; Carpenter, D.W.

Preliminary investigations of smoke movement through HVAC systems and duct smoke detectors. Lougheed, G.D.; McCartney, C.; Carpenter, D.W. Preliminary investigations of smoke movement through HVAC systems and duct smoke detectors Lougheed, G.D.; McCartney, C.; Carpenter, D.W. NRCC-46405 A version of this document is published in / Une version

More information

Studies of Cooling Effects of Sprinkler Spray on Smoke Layer

Studies of Cooling Effects of Sprinkler Spray on Smoke Layer Studies of Cooling Effects of Sprinkler Spray on Smoke Layer S.C. Li 1,2, D. Yang 1, R. Huo 1 *, L.H. Hu 1 *, Y.Z. Li 1, K.Y. Li 1 and H.B. Wang 1 1. State Key Laboratory of Fire Science University of

More information

A Study on the Fire Safety Issues for Large Window Openings in Supertall Residential Buildings in Hong Kong

A Study on the Fire Safety Issues for Large Window Openings in Supertall Residential Buildings in Hong Kong Purdue University Purdue e-pubs International High Performance Buildings Conference School of Mechanical Engineering 2014 A Study on the Fire Safety Issues for Large Window Openings in Supertall Residential

More information

Experimental Research On Gas Injection High Temperature Heat Pump With An Economizer

Experimental Research On Gas Injection High Temperature Heat Pump With An Economizer Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2014 Experimental Research On Gas Injection High Temperature Heat Pump With

More information

Shuzo Murakami, Shinsuke Kato, and Taeyeon Kim Institute of Industrial Science, University of Tokyo Tokyo, Japan

Shuzo Murakami, Shinsuke Kato, and Taeyeon Kim Institute of Industrial Science, University of Tokyo Tokyo, Japan INDOOR CLIMATE DESIGN BASED ON FEEDBACK CONTROL OF HVAC COUPLED SIMULATION OF CONVECTON, RADIATION, AND HVAC CONTROL FOR ATTAINING GIVEN OPERATIVE TEMPERATURE Shuzo Murakami, Shinsuke Kato, and Taeyeon

More information

Numerical Simulation of Thermal Comfort Degree in Radiant Floor Cooling Room. Architecture, Beijing , China

Numerical Simulation of Thermal Comfort Degree in Radiant Floor Cooling Room. Architecture, Beijing , China Numerical Simulation of Thermal Comfort Degree in Radiant Floor Cooling Room Yanli Ren 1 ; Deying Li 2 ; Yufeng Zhang 1 1 School of Environment Science and Engineering, Tianjin University, Tianjin 300072,

More information

WATER MIST FIRE PROTECTION SYSTEMS FOR INDUSTRIAL CABLE TUNNELS AND TURBINE HALLS

WATER MIST FIRE PROTECTION SYSTEMS FOR INDUSTRIAL CABLE TUNNELS AND TURBINE HALLS WATER MIST FIRE PROTECTION SYSTEMS FOR INDUSTRIAL CABLE TUNNELS AND TURBINE HALLS Jukka Vaari 1, Amit Lior 2 1 2 VTT Technical Research Centre of Finland, Espoo, Finland Marioff Corporation Oy, Vantaa,

More information

CFD ASSESSMENT OF RAILWAY TUNNEL TRAIN FIRE SCENARIOS

CFD ASSESSMENT OF RAILWAY TUNNEL TRAIN FIRE SCENARIOS CFD ASSESSMENT OF RAILWAY TUNNEL TRAIN FIRE SCENARIOS Yunlong Liu*, Xijuan Liu and Bradley Paroz Fire Science and Technology Laboratory CSIRO Manufacturing and Infrastructure Technology PO Box 310 North

More information

Experimental Study on the Effects of Compression Parameters on Molding Quality of Dried Fish Floss

Experimental Study on the Effects of Compression Parameters on Molding Quality of Dried Fish Floss Experimental Study on the Effects of Compression arameters on Molding Quality of Dried Fish Floss Hongmei Xu, Li Zong, Ling Li, and Jing Zhang College of Engineering and Technology, Huazhong Agricultural

More information

Edward K. Budnick Hughes Associates, Inc. Wheaton, Maryland, U.S.A SUMMARY. that is entrained or otherwise mixed into the mass.

Edward K. Budnick Hughes Associates, Inc. Wheaton, Maryland, U.S.A SUMMARY. that is entrained or otherwise mixed into the mass. THE CAPABILITIES OF SMOKE CONTROL: FUNDAMENTALS AND ZONE SMOKE CONTROL John H. Klote Center for Fire Research National Institute of Standards and Technology Gaithersburg, Maryland, U.S.A. 20899 Edward

More information

Development of a Transient Simulation Model of a Freezer Part II: Comparison of Experimental Data with Model

Development of a Transient Simulation Model of a Freezer Part II: Comparison of Experimental Data with Model Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 199 Development of a Transient Simulation Model of a Freezer Part II: Comparison

More information

Laboratory fire experiments with a 1/3 train carriage mockup

Laboratory fire experiments with a 1/3 train carriage mockup SP Technical Research Institute of Sweden Laboratory fire experiments with a 1/3 train carriage mockup Alexander Claesson, Anders Lönnermark, Haukur Ingason, Johan Lindström, Ying Zhen Li and Mia Kumm

More information

2012 International Symposium on Safety Science and Technology Investigation on compressed air foams fire-extinguishing model for oil pan fire

2012 International Symposium on Safety Science and Technology Investigation on compressed air foams fire-extinguishing model for oil pan fire Available online at.sciencedirect.com Procedia Engineering 45 (212 ) 663 668 212 International Symposium on Safety Science and Technology Investigation on compressed air foams fire-extinguishing model

More information

Evaluation on Combustion Characteristics of Finishing Materials for Exterior Walls

Evaluation on Combustion Characteristics of Finishing Materials for Exterior Walls Journal of Mechanics Engineering and Automation 5 (2015) 465-471 doi: 10.17265/2159-5275/2015.08.007 D DAVID PUBLISHING Evaluation on Combustion Characteristics of Finishing Materials for Exterior Walls

More information