Evaluation of the NFPA 72 Spacing Requirements for Waffle Ceilings

Size: px
Start display at page:

Download "Evaluation of the NFPA 72 Spacing Requirements for Waffle Ceilings"

Transcription

1 Evaluation of the NFPA 72 Spacing Requirements for Waffle Ceilings Stephen M. Olenick 1, Richard J. Roby, Douglas J. Carpenter, and Adam Goodman Combustion Science & Engineering, Inc Old Annapolis Road, Suite L Columbia, Maryland (410) Abstract The National Fire Alarm Code (NFPA 72), 2007 edition, is the authoritative document on smoke detector placement in the United States. Referenced in the model building codes and adopted in most jurisdictions at the local, state, and federal levels, it lays the groundwork for safe placement of smoke detectors for optimum fire safety. Based upon research conducted for the National Fire Protection Research Foundation, the spacing of smoke detectors for waffle ceilings was changed in the 2007 edition of the code. Depending upon the height of the ceiling, depth of the beams forming the waffle pattern, and size of the pockets, certain configurations allow the designer to space smoke detectors as if the ceiling were smooth instead of previous versions of the code that required a smoke detector in each pocket. The rational for the change was the results of the Research Foundation funded project that determined that a reservoir effect was causing the pockets to be beneficial to earlier smoke detector activation. Peer-review of this Research Foundation work, utilizing the new smoke detector activation algorithm present in Fire Dynamics Simulator (FDS version 5.0.0), indicates that the code change as written may be resulting in delayed activation of the smoke detectors. A specific example of a 2007 NFPA 72 code compliant design was analyzed utilizing FDS to demonstrate the difference in activation times of real smoke detectors on waffle ceilings. This example shows that smoke detector activation time is substantially delayed under some waffle ceiling scenarios if the smooth ceiling spacing is used. Background A recent change in detector spacing for beamed and waffle-type ceilings was approved in the 2007 edition of NFPA 72: National Fire Alarm Code. This new code eliminates the requirement that a smoke detector be placed in every beam pocket and waffle indentation for many textured ceilings. The revisions to the code allow smooth ceiling detector spacing to be used when the beams are less than 2 deep and no greater than 12 spacing in both directions. This change in the code was justified on the notion that a large beamed-ceiling room would be required to have an inordinate number of smoke detectors if a detector was required in every pocket. The technical justification for this change in the smoke detector spacing requirements in corridors and on beamed and waffle-type ceilings was provided by Computational Fluid Dynamics (CFD) modeling performer as part of a NFPA Research Foundation project [10]. As a result of the CFD modeling, it was determined that for ceiling pockets created by certain sized beams of a given spacing and depth, the smoke detector spacing for flat ceilings can be used, as 1 Corresponding author: solenick@csefire.com

2 opposed to the requirement of a detector in every pocket, with no significant reduction in safety. Summary of Seminal Work In order to justify the change in the code, Fire Dynamics Simulator (FDS) was used to run a series of computer models of fires in corridors and waffle ceiling rooms. However, the analysis presented here only examines the work on waffle ceilings. Computer simulations were run with ceiling heights of 12, 18 and 24 and used beam depths of 1 and 2. The beams were spaced at 3, 6, and 12 intervals, on center. Smoke detectors or monitoring stations were placed in the center of each pocket in the model, as was previously required in NFPA 72 (2002). Sensing stations were also placed on the ceiling and on the underside of the beams at the spacing currently approved under NFPA 72 (2007) for smooth ceilings. The 2007 requirement is that detectors must be spaced at 30 intervals, detector to detector. Therefore, in a worst-case scenario, a detector could be 15 in both the x and y directions from the centerline of a fire, resulting in a total maximum distance from the fire to the detector of approximately 21. A view of the model geometry used for a 12 ceiling simulation with beams at 12 on center and 2 deep from the ceiling is shown in Figure 1. A C B Figure ceiling, 2 beam depth, 12 beam spacing geometry. As can be seen from Figure 1, Detector A represents the location required by the previous edition of NFPA 72 (2002), where the nearest detector to the fire would be on the ceiling at the center of the first beam pocket. Since this detector is closest to the fire,

3 presumably this detector would alarm first to the fire. According to the new changes to the code in NFPA 72 (2007 edition), a detector spaced according to smooth ceiling spacing could be located sufficiently far from the fire to be in the second beam pocket, shown as Detector B in Figure 1. A detector on the bottom of the first beam (Detector C) could also satisfy the new requirements. However, the Detector B location is the worstcase scenario, because it is farthest from the fire and is located behind the barrier created by the beamed ceiling. For comparison, a model was also run with the same inputs, but with a smooth ceiling configuration (i.e., the beams no longer present). It should be noted that the second pocket, where detector B was located, was only modeled as a partial pocket in the previous analysis in some of the scenarios depending on the spacing of the pockets. As can be seen in Figure 1, the partial second beam pocket extends to the edges of the computational domain and therefore is open on two of the four sides, allowing smoke to simply exit the domain with no buildup. In the previous work, the Geiman and Gottuk optical density thresholds [4] were used as the primary means to determine when the smoke detectors activated. A secondary means of determining time to detector activation, a critical velocity along with a temperature correlation as surrogate conditions to confirm activation, was also used. The critical velocity used was 0.13 m/s m/s, and the temperature correlation used was a 4 C temperature rise for ionization detectors and a 13 C temperature rise for photoelectric detectors. In the initial analysis, it was established that a 60 second difference between activation of the detectors with beams present when compared to a smooth ceiling as the threshold of a significant activation time difference. No justification for the use of a 60 second threshold was provided in the report. The initial work examined smoke detector activation times for both a beamed and a smooth ceiling, based on the maximum spacing of detectors allowed for a smooth ceiling configuration (21 ). According to the report, the detector activation times for the case with beams and the case without beams were within 60 seconds of each other. Based on this activation time difference of less than 60 seconds, it was concluded that the presence of ceiling beams made no significant difference in detector activation time. However, as reported in the report, the detector placed in the second beam pocket according to the smooth ceiling spacing for a 12 on center beam spacing and 2 deep beams (Detector B) never reached the alarm threshold. The report explained the failure of the detector to alarm by the lack of a reservoir effect. According to the report, the reservoir effect occurs when a beam pocket causes the smoke to accumulate within that pocket before spilling over into the next pocket. As can be seen in Figure 1, if the smooth ceiling spacing is used, the detector nearest to the fire becomes Detector B, which is in the second beam pocket. Since in the model for this scenario the second pocket was only a partial pocket, smoke flowed out of the domain instead of accumulating as it would if the pocket were complete on all sides. According to the initial report, the detector in this pocket, Detector B, failed to alarm because the model domain was not extended sufficiently to create a completely enclosed pocket around Detector B, not because the smooth ceiling detector spacing was inappropriate. Based on the modeling, it was determined that the ceiling beams will not significantly impact the time to smoke detector activation if the flat ceiling detector spacing is used. The work was presented to the NFPA 72 committee responsible for this section of the code dealing with the placement of smoke detectors, and the work was

4 accepted, resulting in the change in NFPA 72, 2007 edition. The reasoning for the change in the code is that while the beams may block some of the ceiling jet, the pockets will allow for greater temperature rise and buildup of smoke, and create greater smoke velocity due to the smoke spilling out of each pocket into adjacent pockets. The trapping of smoke and heat in the pockets was termed the reservoir effect. Comparison Models In order to evaluate the present day accuracy and reproducibility of the initial work, the authors of this paper performed a series of FDS modeling runs using the new, validated, Smoke Detector Activation Algorithm (SDAA), as well as the Geiman and Gottuk and temperature correlations. The ultimate goal of this work was to determine independently, based on modeling and analysis, whether the conclusions of the initial work are justified. For this analysis, a geometry where the ceiling was 12 high and the beams were 1 or 2 deep and spaced 12 on center was used. According to the new changes in NFPA 72, these geometries would qualify for smooth ceiling spacing of smoke detectors. Smoke detectors were included in the first beam pocket (Detector A) according to the previous NFPA 72 requirements, and then included in the second beam pocket according to smooth ceiling spacing (Detector B) allowed under the current NFPA 72 code. Smoke detectors utilizing realistic lag time coefficients, termed Cleary I1, Cleary I2, and Heskestad L=1.8m detectors, were implemented in this model because they represent real detectors that would be expected to be found installed in buildings, based on testing done by Cleary [3] and by Heskestad [6]. Two different heat release rates were examined: a fixed 100 kw heat release rate and a variable heat release rate based on a medium t-squared fire. According to the initial report, this 100 kw fire should be detectable for a 12 ceiling, with or without beams. In both cases, the fuel was Methyl Methacrylate (MMA), a fuel that has a relatively large soot yield of kg/kg fuel as defined in the FDS material database, when compared to other ordinary combustibles such as wood, paper, or cloth. This high soot yield will lead to earlier detector activations than would be observed with other ordinary combustibles. Therefore, the use of this high soot yield fuel will tend to reduce the time to detector activations in both the smooth and beamed ceiling cases. In order to test the observation in the initial report that the partial pocket was responsible for the detector failing to alarm in the second pocket (Detector B) for this particular scenario, for the current simulations, the domain was extended to ensure that this pocket was fully enclosed, allowing for the so-called reservoir effect to occur. A depiction of the extended domain as used in this modeling is shown as Figure 2.

5 A C B Figure ceiling, 2 beam depth, 12 beam spacing geometry. Note that the furthest pocket is surrounded on all sides, allowing buildup and the reservoir effect. For this analysis, simulations were run with the 12 ceiling and 12 beam spacing. Two different iterations were performed, one with the beams 2 deep, and the other with the beams 1 deep. The 2 beam depth is larger than the estimated ceiling jet depth (10% of 12 or 1.2 ft.), while the 1 beam depth should not be sufficient to fully block the ceiling jet, based on its estimated depth. Model Results The first significant result from the current modeling is that when the second beam pocket is completed and the 100 kw heat release rate is used for this particular scenario, the detector in the second pocket never reaches the alarm threshold. This result is in stark contrast with the assertion in the initial report, which states that this 100 kw fire should result in alarm of the detector in the second beam pocket if the complete pocket is modeled. This result can be clearly seen in Table 1 where detection times for the smooth ceiling spacing are given for three cases: no beams, 1 beams, and 2 beams.

6 Detector Cleary 1 Activation Cleary 2 Activation Heskestad L=1.8m activation time (s) Baseline 15 spacing ft beams Detector (A) ft beams Detector (B) > 600 > 600 > ft beams Detector (A) ft beams Detector (B) > 600 > 600 > 600 Table kw fire, 12 ceiling, 12 beam spacing results, 4%/ft sensitive detectors. As can be seen from the results, the smoke detectors at an x and y distance of 15 from the plume centerline in the baseline smooth ceiling case activated in seconds after ignition. However, in both the 1 beam case and the 2 beam case, the detectors in the second beam pocket (Detector B) at the same distance from the fire as the smooth ceiling case failed to alarm within 600 seconds. Thus, even when a complete second pocket geometry is included to create the reservoir effect, the detector at the 15 spacing does not activate when either 1 or 2 beams are present. These results contradict the findings of the initial report, since the current modeling shows that the beams result in a substantially longer time to detector alarm than the baseline smooth ceiling case. The differences shown in Table 1 between the smooth ceiling case and the beamed ceiling case, when the smooth ceiling spacing is used as allowed in the revised version of NFPA 72 (2007 edition), are clearly outside the 60 seconds criterion that the initial work deemed to be significant. Therefore, the smooth ceiling spacing does not provide adequate safety for beamed ceilings in this configuration. However, as can be seen from Table 1, if a detector were included in every beam pocket (Detector A), as previously required by NFPA 72 (2002 edition), these detectors would alarm earlier than the detectors placed according to the smooth ceiling spacing. To further investigate the analysis of the initial work, the temperature threshold that was used as a surrogate for smoke detector activation was examined through the current models. Figure 3 shows plots of temperature rise vs. time for the three cases investigated with the 15 detector spacing. As can be seen in the figure, the top curve is for the baseline case of a smooth ceiling, the middle curve shows the temperature rise vs. time for the 1 beam case, and the bottom curve gives the temperature rise history for the 2 beam case. Also shown in the figure are the lower activation bound of 4 C temperature rise and the upper activation bound of 13 C temperature rise that was used for the temperature correlation. When the change in temperature at the smoke detector location reaches these thresholds, activation by smoke particles is assumed to have occurred.

7 Baseline - on ceiling 1ftbeams - on ceiling 2ftbeams - on ceiling Upper activation bound Lower activation bound Temperature Rise ( C) Figure kw 12 ceiling, 12 beam spacing temperature results at the 15 spacing detector (Detector B). An examination of the three plots in Figure 3 shows that the baseline case exceeds both the lower and upper activation bounds within the first seconds of the fire. The temperature plot for the 1 beam case exceeds the lower bound in approximately 15 seconds, but never exceeds the upper bound. In contrast, the temperature plot for the 2 beam case never exceeds the lower or upper bound for activation. Thus, these results show a significantly different outcome for the smooth ceiling case when compared with the beamed ceiling case. Similar to the results from the Smoke Detector Activation Algorithm, these temperature correlation results show that the smoke detector will quickly alarm for a smooth ceiling but likely will not alarm for a beamed ceiling if the smooth ceiling spacing is used. Again, this result contradicts the conclusion in the initial work that no significant difference in smoke detector alarm time will occur for the 15 spacing whether the beams are in place or not. Similarly, the authors of this paper examined activation times for the 15 spacing (Detector B) using the Geiman and Gottuk optical density correlation. Figure 4 provides a graph of optical density vs. time for the baseline smooth ceiling case and the two beamed ceiling cases. In addition, Figure 4 shows the upper and lower bounds for activation based on an ionization detector, as well as those for a photoelectric detector. The upper plot in Figure 4 shows the results for the baseline smooth ceiling case, the middle plot shows the results for the 1 beam case, and the lower plot shows the results for the 2 beam case.

8 Optical Density (OD/m) Baseline - on ceiling 1ftbeams - on ceiling 2ftbeams - on ceiling Upper Ionization Bound Lower Ionization Bound Upper Photoelectric Bound Lower Photoelectric Bound Figure kw 12 ceiling, 12 beam spacing optical density results at the 15 spacing detector. As can be seen from the figure, for the smooth ceiling case, the optical density of the smoke at the Detector B location exceeds both the photoelectric and ionization lower bounds within 20 seconds. However, for the 1 beam case, although the detector exceeds the lower bound for the photoelectric detector, it never exceeds the bounds for the ionization detector. In the 2 beam case, the optical density never reaches the lower bound for either the ionization or the photoelectric detector. Thus, similar to the previous results for the Smoke Detector Activation Algorithm and the temperature correlation, the current model shows that while the smooth ceiling detector will quickly alarm, the detector in the second pocket (Detector B) is unlikely to alarm in the presence of either 1 or 2 beams. These results show that conclusion in the initial work that the detectors did not alarm in their model of this scenario because of the incomplete pocket, i.e., lack of a reservoir effect, is unfounded. As the current model demonstrates, when a second full pocket is included and a 100 kw fire is used, the detectors still do not alarm based on a 15 spacing when either 1 or 2 beams are included, regardless of whether the SDAA, the temperature correlation, or the Geiman and Gottuk correlation is used. These results do not confirm the conclusion that the smooth ceiling spacing can be used for smoke detectors even when ceiling beams are present with no significant delay in detector activation, at least for this scenario. Further evidence that the detectors do not activate in the presence of ceiling beams when the smooth ceiling spacing is used is provided below by Figures 5 and 6. Figure 5 shows the exterior and interior detector chamber smoke obscurations in the

9 baseline case, along with the velocity. Figure 6 shows a similar plot for the case with 2 deep beams. All of the results above are for detectors that activate at 13%/m (4%/ft.) obscuration, which is an allowable threshold per UL 217. No beams (baseline) 15' Smoke Obscuration (%/m) Activation Threshold Baseline Exterior Smoke - 15' Baseline Heskestad 1.8m L Baseline Cleary I1 Baseline Cleary I2 Baseline Exterior Velocity Velocity (m/s) Figure kw 12 ceiling, baseline results at the 15 spacing detector (Detector (B)), both inside and outside the detectors.

10 2 ft beams (2-7a) In pocket 15' (Detector (B)) Smoke Obscuration (%/m) a Exterior Smoke - in pocket 15' 2-7a In pocket Heskestad 1.8m L 2-7a In pocket Cleary I1 2-7a In pocket Cleary I2 2-7a Exterior Velocity Activation Threshold Velocity (m/s) Figure kw 12 ceiling, 2 beam depth results at the 15 spacing detector, both inside and outside the detectors. As can be seen from Figures 5 and 6 above, the smoke obscuration at the smooth spacing ceiling detector (Detector B) in the baseline case reaches adequate smoke obscurations both inside and outside the detector. Conversely, in the 2 beams case, the smoke external and internal to Detector B does not reach adequate thresholds (13%/m or 4%/ft). This lack of adequate smoke at detector location B in the beamed ceiling cases is likely because the beams act to divert the flow of smoke away from detector location B to other adjacent pockets, so there is never a chance for these detectors to alarm to this fire. As discussed previously, a fire that ramps up instantaneously to 100 kw but then does not continue to grow may not provide the appropriate test for detector spacing. Therefore, the above analysis was repeated with a realistic medium t-squared fire. For these t-squared fire models, every other variable was left unchanged from the 100 kw case, except for the fire size and growth rate. Similar to the 100 kw cases, Table 2 shows the activation time results using the SDAA for the medium t-squared growth fire. Figures 7 and 8 show the activation times from the temperature correlation and Geiman and Gottuk s optical density method, respectively, using the smooth ceiling detector spacing location for both the baseline ceiling and the beamed ceilings.

11 Detector Cleary 1 Activation Cleary 2 Activation Heskestad L=1.8m activation time (s) Baseline 15 spacing ft beams Detector (A) ft beams Detector (B) ft beams Detector (A) ft beams Detector (B) Table ceiling, 12 beam spacing results for a medium t-squared fire, 4%/ft sensitive detectors Baseline - on ceiling 1ftbeams - on ceiling 2ftbeams - on ceiling Upper activation bound Lower activation bound 14 Temperature Rise ( C) Figure ceiling, 12 beam spacing temperature results at the 15 spacing detector (Detector (B)) for a medium t-squared fire.

12 Baseline - on ceiling 1ftbeams - on ceiling 2ftbeams - on ceiling Upper Ionization Bound Lower Ionization Bound Upper Photoelectric Bound Lower Photoelectric Bound Optical Density (OD/m) Figure ceiling, 12 beam spacing optical density results at the 15 spacing detector (Detector (B)) for a medium t-squared fire. As can be seen from the graphs above, the results from the temperature and the Geiman and Gottuk correlations do not vary substantially from the SDAA results. For all three methods, in the baseline case, the detector at the smooth ceiling spacing (Detector B) activates at approximately seconds, the detector in the 1 beam depth at the same location activates at approximately seconds, and the detector in the 2 beam depth at the same location activates at approximately seconds. Using the average activation time for each of these cases, the t-squared fire size can be calculated at the time of detector activation. On average, the fire sizes at activation in the three scenarios are presented in Table 3. Scenario Average Smooth Ceiling Spacing Activation Heat Release Rate at Activation (kw) Baseline (no beams) deep beams deep beams Table ceiling, 12 beam spacing results for a medium t-squared fire showing fire size at activation as a function of beam depth. As can be seen from the table, if no beams are present, the fire is detected at a heat release rate of approximately 60 kw. But if 1 beams are included, the fire is not detected until almost 60 seconds later with a fire size over 3 times larger at approximately

13 200 kw. Finally, if 2 beams are included, the fire is not detected until over 90 seconds after the smooth ceiling case, and the fire size is over 5 times larger than if no beams were present, at over 300 kw. As a comparison, in Table 4 below, the activation times if a detector is placed in every beam pocket, as was previously required by NFPA 72, are displayed. Scenario Average Smooth Ceiling Spacing Activation Heat Release Rate at Activation (kw) Baseline (no beams) deep beams in every pocket deep beams in every pocket Table ceiling, 12 beam spacing results for a medium t-squared fire showing fire size at activation if a detector is placed in every beam pocket. Table 4 shows that for the scenario of a 12 ceiling height and 12 beam spacing, if a detector is placed in every pocket, the activation time of that detector is approximately the same as that for a smooth ceiling spacing. Thus, if the old code spacing requirement were used, the time to alert occupants of a fire would be approximately the same for the beamed ceiling case as for the smooth ceiling case. Moreover, the fire size at activation would be approximately the same, regardless of whether the ceiling was smooth or had beams. This result is in sharp contrast with the previous result where the 2 beamed case resulted in activation more than two minutes later and only after the fire had grown to more than 5 times larger than the smooth ceiling case. Thus, the requirement of a detector in every pocket results not only in a time to detector activation as short as the smooth ceiling case, but also in detector activation at the same small fire size as the smooth ceiling case. Based on these results, the previous code provides much greater safety for occupants of a beamed ceiling room than the new version of the code provides. Summary and Conclusions Based on the results of the initial study, it was concluded that smooth ceiling detector spacing could be used for beamed ceilings with up to 2 deep beams without a significant reduction in time to detector activation. The authors of the current study chose one of the scenarios (12 ceiling, 12 center on center spacing) that would qualify under the new NFPA 72 requirements, modeled this scenario with smooth ceiling spaced detectors, and evaluated the difference in detector activation times for the beamed ceilings as compared to the smooth ceilings. The new model extended the geometry to include an entire second beam pocket. When these changes were made and the scenario was rerun with the current state of the art smoke detection sub-model (SDAA), significantly different results were obtained than those reported in the initial report. Specifically, when a 100 kw fire was modeled, one that the initial work indicates should be detectable within 60 seconds of when it would be detected if the beams were not present, the fire was never detected with the beams in place.

14 For a more realistic fire scenario such as a medium t-squared fire, the authors determined that a detector in every pocket will detect the fire in less time than the smooth ceiling configuration. Furthermore, if smooth ceiling spacing is used and the beams are in place, the fire at the time of detection will be at least (depending on single- or multiblock) 3 times larger if the beams are 1 in depth and will be more than 5 times larger if 2 beams are in place. The fire in the 1 beam case would be ~200 kw and in the 2 beam case would be ~300 kw, both of which are far larger than the 100 kw fire that was assumed should be detectable. As a result of this peer-review modeling and analysis utilizing the new SDAA in FDS, the new requirements in NFPA 72 (2007) that allow smooth ceiling spacing for some beamed ceilings should be reevaluated. References 1. Beyler, C. and DiNenno, P., Letters to the Editor, Fire Technology, v. 27, n. 2, Cholin, J.M. and Marrion, C., Performance Metrics for Fire Detection, Fire Protection Engineering, n.11, Cleary, T., Chernovsky, A., Grosshandler, W., and Anderson, M., Particulate Entry Lag in Spot-Type Smoke Detectors, Fire Safety Science - Proceedings of the Sixth International Symposium, Geiman, J.A. and Gottuk, D.T, Alarm Thresholds for Smoke Detector Modeling, Proceedings of the Seventh International Symposium on Fire Safety Science, Gottuk, D.T., Hill, S.A., Schemel, C.F., Strehlen, B.D., Rose-Phersson, S.L., Shaffer, R.E.., Tatem, P.A. and Williams, F.W., Identification of Fire Signatures for Shipboard Multi-criteria Fire Detection Systems, Naval Research Laboratory Memorandum Report , Heskestad, G., Generalized Characterization of Smoke Entry and Response for Products of Combustion Detectors, Proceedings of the Fire Detection for Life Safety Symposium, Luck, H. and Sievert, U., Does an Over-All Modeling Make Any Sense in Automatic Fire Detection? AUBE 99 Proceedings of the 11 th International Conference on Automatic Fire Detection, McGrattan, K. B. and G. P. Forney. Fire Dynamics Simulator (Version 4), User s Guide. NIST Special Publication 1019, National Institute of Standards and Technology September, Mowrer, F.W. and Friedman, J., Experimental Investigation of Heat and Smoke Detector Response, Proceedings of the Fire Suppression and Detection Research Application Symposium, 1998.

15 10. O Connor, D.J., Cui, E., Klaus, M. J., Lee, C.H., Su, C., Sun, Z., He, M., Jiang, Y., Vythoulkas, J., Al-Farra, T. Smoke Detector Performance for Level Ceilings with Deep Beams and Deep Beam Pocket Configurations Research Project. NFPA Fire Protection Research Foundation Report, April, Roby, R.J., Olenick, S.M., Zhang, W., Carpenter, D.J., Klassen, M.S., and Torero, J.L. Smoke Detector Algorithm for Large Eddy Simulation Modeling. NIST GCR , Schifiliti, R.P. and Pucci, W.E., Fire Detection Modeling State of the Art, Fire Detection Institute, Schifiliti, R.P., Fire Detection Modeling The Research Application Gap, AUBE 01 Proceedings of the 12 th International Conference on Automatic Fire Detection, Wakelin, A.J., An Investigation of Correlations for Multi-Signal Fire Detectors, Masters Thesis, Worcester Polytechnic Institute, Department of Fire Protection Engineering, 1997.

AN ANALYSIS OF THE PERFORMANCE OF RESIDENTIAL SMOKE DETECTION TECHNOLOGIES UTILIZING THE CONCEPT OF RELATIVE TIME

AN ANALYSIS OF THE PERFORMANCE OF RESIDENTIAL SMOKE DETECTION TECHNOLOGIES UTILIZING THE CONCEPT OF RELATIVE TIME AN ANALYSIS OF THE PERFORMANCE OF RESIDENTIAL SMOKE DETECTION TECHNOLOGIES UTILIZING THE CONCEPT OF RELATIVE TIME Elizabeth L. Milarcik, Stephen M. Olenick*, and Richard J. Roby Combustion Science & Engineering,

More information

PREDICTING SMOKE DETECTOR ACTIVATION USING THE FIRE DYNAMICS SIMULATOR

PREDICTING SMOKE DETECTOR ACTIVATION USING THE FIRE DYNAMICS SIMULATOR PREDICTING SMOKE DETECTOR ACTIVATION USING THE FIRE DYNAMICS SIMULATOR VIJAY T. D SOUZA, JASON A. SUTULA, STEPHEN M. OLENICK*, WEI ZHANG and RICHARD J. ROBY Combustion Science & Engineering, Inc. Columbia,

More information

Smoke Transport and FDS Validation

Smoke Transport and FDS Validation Smoke Transport and FDS Validation DANIEL GOTTUK, CHRISTOPHER MEALY and JASON FLOYD Hughes Associates, Inc. 361 Commerce Drive, Suite 817 Baltimore, Maryland 21227 ABSTRACT A 26 Fire Protection Research

More information

Validation of a Smoke Detection Performance Prediction Methodology. Volume 3. Evaluation of Smoke Detector Performance

Validation of a Smoke Detection Performance Prediction Methodology. Volume 3. Evaluation of Smoke Detector Performance Validation of a Smoke Detection Performance Prediction Methodology Volume 3. Evaluation of Smoke Detector Performance Prepared by: James A. Milke and Frederick W. Mowrer University of Maryland Pravinray

More information

Developing a Fire Test Strategy for Storage Protection Under Sloped Ceilings

Developing a Fire Test Strategy for Storage Protection Under Sloped Ceilings Developing a Fire Test Strategy for Storage Protection Under Sloped Ceilings Justin A. Geiman, Noah L. Ryder Fire & Risk Alliance, Rockville, MD, USA André W. Marshall Custom Spray Solutions, Silver Spring,

More information

Chapter 17, Initiating Devices

Chapter 17, Initiating Devices Chapter 17, Initiating Devices Summary. Chapter 17 was Chapter 5 in NFPA 72-2007. The term authority having jurisdiction is replaced in some sections by the term other governing laws, codes, or standards.

More information

Validation of a Smoke Detection Performance Prediction Methodology. Volume 4. Evaluation of FDS Smoke Detection Prediction Methodology

Validation of a Smoke Detection Performance Prediction Methodology. Volume 4. Evaluation of FDS Smoke Detection Prediction Methodology Validation of a Smoke Detection Performance Prediction Methodology Volume 4. Evaluation of FDS Smoke Detection Prediction Methodology Prepared by: Frederick W. Mowrer and James A. Milke University of Maryland

More information

Potential Impact of New UL Fire Test Criteria

Potential Impact of New UL Fire Test Criteria Potential Impact of New UL Fire Test Criteria Thomas G. Cleary Fire Research Division National Institute of Standards and Technology March 7, 2014 Outline Background Recent History Task Group Progress

More information

Experimental Study on Response Sensitivity of Smoke Detectors in High Flow Velocity

Experimental Study on Response Sensitivity of Smoke Detectors in High Flow Velocity Experimental Study on Response Sensitivity of Smoke Detectors in High Flow Velocity QIYUAN XIE 1, GUOFENG SU 2, HONGYONG YUAN 2, and YONGMING ZHANG 1 1 State Key Laboratory of Fire Science University of

More information

Using Smoke Obscuration to Warn of Pre-Ignition Conditions of Unattended Cooking Fires

Using Smoke Obscuration to Warn of Pre-Ignition Conditions of Unattended Cooking Fires Using Smoke Obscuration to Warn of Pre-Ignition Conditions of Unattended Cooking Fires Erik Johnsson, Mariusz Zarzecki National Institute of Standards and Technology, Gaithersburg, MD, USA Abstract A series

More information

J. R. Qualey III, L. Desmarais, J. Pratt Simplex Time Recorder Co., 100 Simplex Drive, Westminster, MA 01441

J. R. Qualey III, L. Desmarais, J. Pratt Simplex Time Recorder Co., 100 Simplex Drive, Westminster, MA 01441 J. R. Qualey III, L. Desmarais, J. Pratt Simplex Time Recorder Co., 100 Simplex Drive, Westminster, MA 01441 Response-Time Comparisons of Ionization and Photoelectric/Heat Detectors 1. Introduction Despite

More information

Fire Protection as the Underpinning of Good Process Safety Programs

Fire Protection as the Underpinning of Good Process Safety Programs Fire Protection as the Underpinning of Good Process Safety Programs Key Words: fires; protection, fire; building Background James Milke, Ph.D., P.E., Professor and Chair Department of Fire Protection Engineering

More information

SMOKE MANAGEMENT AND EGRESS ANALYSIS OF A SPORTS ARENA USING THE PERFORMANCE-BASED DESIGN

SMOKE MANAGEMENT AND EGRESS ANALYSIS OF A SPORTS ARENA USING THE PERFORMANCE-BASED DESIGN , Volume 4, Number 2, p.73-83, 2003 SMOKE MANAGEMENT AND EGRESS ANALYSIS OF A SPORTS ARENA USING THE PERFORMANCE-BASED DESIGN K.H. Yang and C.S. Yang Mechanical Engineering Department, National Sun Yat-Sen

More information

Today's Topics & Sustainability Themes

Today's Topics & Sustainability Themes 2012 Chicago Symposium Fire Safety Design and Sustainable Buildings: Challenges and Opportunities Research Efforts in Fire Protection Engineering are Contributing to Sustainability Goals Dan O Connor,

More information

The Prediction of Smoke Detector. Activation Times in a Two-Storey House. Fire through CFD Modelling

The Prediction of Smoke Detector. Activation Times in a Two-Storey House. Fire through CFD Modelling The Prediction of Smoke Detector Activation Times in a Two-Storey House Fire through CFD Modelling Fire Engineering Thesis, 2010 Submitted by Julie Saunders Supervised by Michael Spearpoint, University

More information

Considerations in the Design of Smoke Management Systems for Atriums

Considerations in the Design of Smoke Management Systems for Atriums Construction Technology Update No. 48 Considerations in the Design of Smoke Management Systems for Atriums by G.D. Lougheed This Update discusses the use of an engineered approach to the design of smoke

More information

Test One: The Uncontrolled Compartment Fire

Test One: The Uncontrolled Compartment Fire The University of Edinburgh BRE Centre for Fire Safety Engineering One Day Symposium on The Dalmarnock Fire Tests: Experiments & Modelling Test One: The Uncontrolled Compartment Fire Cecilia Abecassis

More information

Tunnel Fire Dynamics and Evacuation Simulations

Tunnel Fire Dynamics and Evacuation Simulations Tunnel Fire Dynamics and Evacuation Simulations James Priest, PhD & James Niehoff DGS-SEE Seminar on Fire Protection for Physics Research Facilities 7 & 8 October 2015 Introduction (Background) Presentation

More information

Validation of a Smoke Detection Performance Prediction Methodology. Volume 2. Large-scale room fire tests

Validation of a Smoke Detection Performance Prediction Methodology. Volume 2. Large-scale room fire tests Validation of a Smoke Detection Performance Prediction Methodology Volume 2. Large-scale room fire tests Prepared by: Frederick W. Mowrer and James A. Milke University of Maryland Pravinray Gandhi Underwriters

More information

A Comparison of Aspirated Smoke Detectors

A Comparison of Aspirated Smoke Detectors A Comparison of Aspirated Smoke Detectors Honeywell FAAST Detectors and Xtralis VESDA VLF (Laserfocus) Conducted by Packer Engineering, Inc And The Fire Testing and Evaluation Center at The University

More information

Sprinklers Modeling for Tunnel Road Fire Fighting

Sprinklers Modeling for Tunnel Road Fire Fighting Sprinklers Modeling for Tunnel Road Fire Fighting P. Ciambelli, M.G. Meo, P. Russo, S. Vaccaro Department of Chemical and Food Engineering, University of Salerno - ITALY 1. INTRODUCTION Loss of lives and

More information

Experimental Study to Evaluate Smoke Stratification and Layer Height in Highly Ventilated Compartments

Experimental Study to Evaluate Smoke Stratification and Layer Height in Highly Ventilated Compartments Experimental Study to Evaluate Smoke Stratification and Layer Height in Highly Ventilated Compartments Jason Huczek a, Marc Janssens a, Kentaro Onaka b, Stephen Turner c a SwRI, 6220 Culebra Road, San

More information

Keywords: VEWFD; Smoke detection; Smoke production; In-situ testing.

Keywords: VEWFD; Smoke detection; Smoke production; In-situ testing. In-Situ Smoke Generation for Testing Very Early Warning Fire Detection (VEWFD) Joshua Dinaburg, Benjamin Gaudet Jensen Hughes, Baltimore, MD, USA Abstract In-situ smoke sensitivity testing in an operational

More information

How to Use Fire Risk Assessment Tools to Evaluate Performance Based Designs

How to Use Fire Risk Assessment Tools to Evaluate Performance Based Designs How to Use Fire Risk Assessment Tools to Evaluate Performance Based Designs 1 ABSTRACT Noureddine Benichou and Ahmed H. Kashef * Institute for Research in Construction National Research Council of Canada

More information

A Monte Carlo Approach for the Design of Thermal Fire Detection System

A Monte Carlo Approach for the Design of Thermal Fire Detection System A Monte Carlo Approach for the Design of Thermal Fire Detection System Walter W. Yuen Department of Mechanical & Environmental Engineering University of California at Santa Barbara California, USA and

More information

Smoke Layer Height and Heat Flow through a Door

Smoke Layer Height and Heat Flow through a Door Smoke Layer Height and Heat Flow through a Door 2018 Smoke Layer Height and Heat Flow through a Door In this tutorial you will simulate a growing fire in the corner of a 5m x 5m room. The room has a 1m

More information

Case Study 1 Underground Car Park

Case Study 1 Underground Car Park Case Study 1 Underground Car Park Dorota Brzezińska 1, Janusz Paliszek 2, Piotr Smardz 2, Renata Ollesz 1, Karol Kaczor 2 1 Lodz University of Technology, GRID - Lodz, 2 INBEPO Wroclaw, Poland Building

More information

Natural Ventilation A Green Smoke Control Approach

Natural Ventilation A Green Smoke Control Approach Natural Ventilation A Green Smoke Control Approach Presented By: William Koffel, P.E., FSFPE Adam Graybeal, P.E. Authored by: Erik Anderson, P.E Koffel Associates Background New Engineering, Aviation,

More information

Preliminary investigations of smoke movement through HVAC systems and duct smoke detectors. Lougheed, G.D.; McCartney, C.; Carpenter, D.W.

Preliminary investigations of smoke movement through HVAC systems and duct smoke detectors. Lougheed, G.D.; McCartney, C.; Carpenter, D.W. Preliminary investigations of smoke movement through HVAC systems and duct smoke detectors Lougheed, G.D.; McCartney, C.; Carpenter, D.W. NRCC-46405 A version of this document is published in / Une version

More information

Smoke Alarm Research at NIST

Smoke Alarm Research at NIST Smoke Alarm Research at NIST Thomas G. Cleary Fire Research Division National Institute of Standards and Technology Smoke Alarm Summit March 31, 2015 Outline Supporting ANSI/UL 217 268 Task Group on adding

More information

EVALUATION ON PERFORMANCE OF PHOTOELECTRIC SMOKE DETECTORS IN THE ZONE DETECTION SYSTEM

EVALUATION ON PERFORMANCE OF PHOTOELECTRIC SMOKE DETECTORS IN THE ZONE DETECTION SYSTEM EVALUATION ON PERFORMANCE OF PHOTOELECTRIC SMOKE DETECTORS IN THE ZONE DETECTION SYSTEM Hui-Pei Chang 1, San-Ping Ho 2*, Chao-Shi Chen 3,Tsung-Ming Wu 4,Chin-Feng Chen 5 and Cheng-Wei Wu 6 1 Department

More information

FIRE DYNAMICS IN FAÇADE FIRE TESTS: Measurement, modeling and repeatability

FIRE DYNAMICS IN FAÇADE FIRE TESTS: Measurement, modeling and repeatability Proceedings of the International Conference in Dubrovnik, 15-16 October 2015 FIRE DYNAMICS IN FAÇADE FIRE TESTS: Measurement, modeling and repeatability Johan Anderson a, Lars Boström a, Robert Jansson

More information

Smoke Detector Spacing for High Ceiling Spaces

Smoke Detector Spacing for High Ceiling Spaces Smoke Detector Spacing for High Ceiling Spaces FINAL REPORT BY: Robert Accosta Jr., P.E. Drew Martin Arup USA, Inc. New York, NY, USA October 2017 2017 Fire Protection Research Foundation 1 Batterymarch

More information

Aspirating Gas Detection CFD Modelling Predicts Application Performance

Aspirating Gas Detection CFD Modelling Predicts Application Performance Aspirating Gas Detection CFD Modelling Predicts Application Performance Yun Jiang Xtralis, Bentleigh East, Australia Claudio Groppetti Xtralis, Avon, MA, USA Abstract Historically gas detection has utilized

More information

SCHULTE & ASSOCIATES Building Code Consultants 880D Forest Avenue Evanston, IL /

SCHULTE & ASSOCIATES Building Code Consultants 880D Forest Avenue Evanston, IL / SCHULTE & ASSOCIATES Building Code Consultants 880D Forest Avenue Evanston, IL 60202 fpeschulte@aol.com 504/220-7475 A CRITIQUE OF HUGHES ASSOCIATES, INC. PAPER TITLED: Analysis of the Performance of Ganged

More information

Recent BRANZFIRE enhancements and validation

Recent BRANZFIRE enhancements and validation Recent BRANZFIRE enhancements and validation Michael Spearpoint University of Canterbury Summary BRANZFIRE is a multi-compartment fire zone model that has been under development since 1996 predominately

More information

Dr. Daniel T. Gottuk Joshua B. Dinabug SUPDET 2014

Dr. Daniel T. Gottuk   Joshua B. Dinabug SUPDET 2014 Dr. Daniel T. Gottuk Joshua B. Dinabug SUPDET 2014 PROJECT OVERVIEW NFPA 72-2013 updated requirements for household smoke alarms: 29.8.3.4(5): Effective 1/1/16, smoke alarms and smoke detectors used in

More information

Using FDS Modelling to Establish Performance Criteria for Water Mist Systems on Very Large Fires in Tunnels

Using FDS Modelling to Establish Performance Criteria for Water Mist Systems on Very Large Fires in Tunnels Using FDS Modelling to Establish Performance Criteria for Water Mist Systems on Very Large Fires in Tunnels Jack R. Mawhinney, P. Eng., FSFPE Javier J. Trelles, Ph.D. Authors & acknowledgement J. R. Mawhinney

More information

TRANSMISSIVITY BEHAVIOR OF SHREDDED SCRAP TIRE DRAINAGE LAYER IN LANDFILL COVER SYSTEM *

TRANSMISSIVITY BEHAVIOR OF SHREDDED SCRAP TIRE DRAINAGE LAYER IN LANDFILL COVER SYSTEM * TRANSMISSIVITY BEHAVIOR OF SHREDDED SCRAP TIRE DRAINAGE LAYER IN LANDFILL COVER SYSTEM * Krishna R. Reddy, Aravind Marella and Prasanth Ala University of Illinois at Chicago, Department of Civil and Materials

More information

A Comparison of Carbon Monoxide Gas Sensing to Particle Smoke Detection in Residential Fire Scenarios

A Comparison of Carbon Monoxide Gas Sensing to Particle Smoke Detection in Residential Fire Scenarios A Comparison of Carbon Monoxide Gas Sensing to Particle Smoke Detection in Residential Fire Scenarios Thomas Cleary, Amy Mensch National Institute of Standards and Technology, Gaithersburg, MD, USA Abstract

More information

Optical Time Domain Reflectometry for the OMEGA EP Laser

Optical Time Domain Reflectometry for the OMEGA EP Laser Optical Time Domain Reflectometry for the OMEGA EP Laser Adam DeJager Greece Odyssey Academy Advisors: Samuel Morse and Richard Kidder Laboratory for Laser Energetics University of Rochester Summer High

More information

A study for a fire spread mechanism of residential buildings with numerical modeling

A study for a fire spread mechanism of residential buildings with numerical modeling Safety and Security Engineering IV 185 A study for a fire spread mechanism of residential buildings with numerical modeling C.-S. Ahn & J.-Y. Kim Fire Safety Research Division, Korea Institute of Construction

More information

Statue of Liberty: A Risk Analysis

Statue of Liberty: A Risk Analysis Statue of Liberty: A Risk Analysis Bruce Campbell, FSFPE VP DOE Services National Park Service Agenda Overview of Project Scope Evaluation Steps Task 1 Code Analysis Task 2 Fire Modeling Task 3 Egress

More information

DETERMINATION OF SMOKE QUANTITIES TO BE USED FOR SMOKE DETECTION PERFORMANCE GROUND AND FLIGHT TESTS

DETERMINATION OF SMOKE QUANTITIES TO BE USED FOR SMOKE DETECTION PERFORMANCE GROUND AND FLIGHT TESTS 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES DETERMINATION OF SMOKE QUANTITIES TO BE USED FOR SMOKE DETECTION PERFORMANCE GROUND AND FLIGHT TESTS Dipl.-Ing. Kai Behle Keywords: Fire, Smoke

More information

5B-3 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea

5B-3 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea 5B-3 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea PRACTICAL APPLICATIONS OF FIRE MODELING IN INDUSTRIAL APPLICATIONS By James M. Dewey, Advisor Risk Management

More information

Study of Numerical Analysis on Smoke Exhaust Performance of Portable Smoke Exhaust Fan

Study of Numerical Analysis on Smoke Exhaust Performance of Portable Smoke Exhaust Fan Open Journal of Fluid Dynamics, 2017, 7, 205-218 http://www.scirp.org/journal/ojfd ISSN Online: 2165-3860 ISSN Print: 2165-3852 Study of Numerical Analysis on Smoke Exhaust Performance of Portable Smoke

More information

Water Mist-Based Fire Suppression Modelling of an Office Space Scenario

Water Mist-Based Fire Suppression Modelling of an Office Space Scenario Water Mist-Based Fire Suppression Modelling of an Office Space Scenario Hai Jiang, Vaidya Sankaran, Med Colket, May Corn United Technologies Research Center Kati Laakkonen Marioff Corporation 14th International

More information

CFD Model of a Specific Fire Scenario

CFD Model of a Specific Fire Scenario 16 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 27 CFD Model of a Specific Fire Scenario D. Mackay, T. Barber and E. Leonardi School of Mechanical and Manufacturing

More information

COSTCO, SAN FRANCISCO A PRESCRIPTIVE AND PERFORMANCE BASED ANALYSIS OF FIRE PROTECTION SYSTEMS AND DESIGN

COSTCO, SAN FRANCISCO A PRESCRIPTIVE AND PERFORMANCE BASED ANALYSIS OF FIRE PROTECTION SYSTEMS AND DESIGN COSTCO, SAN FRANCISCO A PRESCRIPTIVE AND PERFORMANCE BASED ANALYSIS OF FIRE PROTECTION SYSTEMS AND DESIGN Presented by Ian Levine June, 2016 Photo courtesy of Google Maps PRESENTATION OVERVIEW BUILDING

More information

ANALYSIS OF SMOKE MOVEMENT IN A BUILDING VIA ELEVATOR SHAFTS

ANALYSIS OF SMOKE MOVEMENT IN A BUILDING VIA ELEVATOR SHAFTS ANALYSIS OF SMOKE MOVEMENT IN A BUILDING VIA ELEVATOR SHAFTS Prepared for Smoke Safety Council 6775 SW 111 th Avenue, Suite 10 Beaverton, OR 97008 Prepared by Jesse J. Beitel Alison J. Wakelin Craig L.

More information

WATER MIST FIRE PROTECTION SYSTEMS FOR INDUSTRIAL CABLE TUNNELS AND TURBINE HALLS

WATER MIST FIRE PROTECTION SYSTEMS FOR INDUSTRIAL CABLE TUNNELS AND TURBINE HALLS WATER MIST FIRE PROTECTION SYSTEMS FOR INDUSTRIAL CABLE TUNNELS AND TURBINE HALLS Jukka Vaari 1, Amit Lior 2 1 2 VTT Technical Research Centre of Finland, Espoo, Finland Marioff Corporation Oy, Vantaa,

More information

FEMA Recommendations for Protection of Curtained Limited Finishing Workstations using UL 1254 Listed Pre engineered Dry Chemical Systems

FEMA Recommendations for Protection of Curtained Limited Finishing Workstations using UL 1254 Listed Pre engineered Dry Chemical Systems FEMA Recommendations for Protection of Curtained Limited Finishing Workstations using UL 1254 Listed Pre engineered Dry Chemical Systems FEMA Recommendations are based upon Live Fire Testing of Prep Stations

More information

ZONE MODEL VERIFICATION BY ELECTRIC HEATER

ZONE MODEL VERIFICATION BY ELECTRIC HEATER , Volume 6, Number 4, p.284-290, 2004 ZONE MODEL VERIFICATION BY ELECTRIC HEATER Y.T. Chan Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China ABSTRACT Selecting

More information

PROPOSED CODE CHANGES FOR REVIEW BY THE FIRE CODE ACTION COMMITTEE

PROPOSED CODE CHANGES FOR REVIEW BY THE FIRE CODE ACTION COMMITTEE PROPOSED CODE CHANGES FOR REVIEW BY THE FIRE CODE ACTION COMMITTEE Developed by the Midwestern Regional Work Group CONTENTS Item 15 Limited area sprinkler systems Item 20 Scope of IFC Ch 7 Item 21 Fire-resistance-rated

More information

FEMA RECOMMENDATIONS FOR PROTECTION OF CURTAINED LIMITED FINISHING WORKSTATIONS USING UL 1254 LISTED PRE-ENGINEERED DRY CHEMICAL SYSTEMS

FEMA RECOMMENDATIONS FOR PROTECTION OF CURTAINED LIMITED FINISHING WORKSTATIONS USING UL 1254 LISTED PRE-ENGINEERED DRY CHEMICAL SYSTEMS FEMA RECOMMENDATIONS FOR PROTECTION OF CURTAINED LIMITED FINISHING WORKSTATIONS USING UL 1254 LISTED PRE-ENGINEERED DRY CHEMICAL SYSTEMS FEMA RECOMMENDATIONS ARE BASED UPON LIVE FIRE TESTING OF PREP STATIONS

More information

Modeling a real backdraft incident fire

Modeling a real backdraft incident fire Advanced Computational Methods in Heat Transfer IX 279 Modeling a real backdraft incident fire A. Tinaburri 1 & M. Mazzaro 2 1 Central Direction for Prevention and Technical Safety, Firefighters, Public

More information

Investigation of the Potential Use of Blue Light in Forward Scattering Optical Smoke Chambers to Detect all UL217 Fires in the New Standard

Investigation of the Potential Use of Blue Light in Forward Scattering Optical Smoke Chambers to Detect all UL217 Fires in the New Standard Investigation of the Potential Use of Blue Light in Forward Scattering Optical Smoke Chambers to Detect all UL217 Fires in the New Standard David Richardson, Daniel O Shea, Stephen Daniels, Michael Byrne

More information

NUMERICAL SIMULATION OF THE NEW SOUTH WALES FIRE BRIGADE COMPARTMENT FIRE BEHAVIOUR TRAINING TEST CELL

NUMERICAL SIMULATION OF THE NEW SOUTH WALES FIRE BRIGADE COMPARTMENT FIRE BEHAVIOUR TRAINING TEST CELL , Volume 9, Number 4, p.154-162, 7 NUMERICAL SIMULATION OF THE NEW SOUTH WALES FIRE BRIGADE COMPARTMENT FIRE BEHAVIOUR TRAINING TEST CELL D. Mackay and T. Barber School of Mechanical and Manufacturing

More information

Simple Equations for Predicting Smoke Filling Time in Fire Rooms with Irregular Ceilings

Simple Equations for Predicting Smoke Filling Time in Fire Rooms with Irregular Ceilings Fire Science and Technorogy Vol.24 No.4(2005) 165-178 165 Simple Equations for Predicting Smoke Filling Time in Fire Rooms with Irregular Ceilings Jun-ichi Yamaguchi 1, Takeyoshi Tanaka 2 1 Technical Research

More information

CLOUD CEILINGS: FIRE DYNAMICS AND CODE CONTEXT

CLOUD CEILINGS: FIRE DYNAMICS AND CODE CONTEXT Peterson Guadagnolo Consulting Engineers PC CLOUD CEILINGS: FIRE DYNAMICS AND CODE CONTEXT 1 November 7, 2016 AGENDA Introduction New York State Code - Update Ceiling Types Fire Dynamics Compartment Fire

More information

Effect of Contamination on the Sensitivity of Optical Scatter Smoke Sensors

Effect of Contamination on the Sensitivity of Optical Scatter Smoke Sensors Effect of Contamination on the Sensitivity of Optical Scatter Smoke Sensors Stephen Ellwood AW Technology Ltd, Earl Shilton, Leicestershire, United Kingdom Abstract A review on the limits to the compensation

More information

International Water Mist Conference, Istanbul October 22-23, 2014 The background and development of the guidelines in IMO Resolution A.

International Water Mist Conference, Istanbul October 22-23, 2014 The background and development of the guidelines in IMO Resolution A. International Water Mist Conference, Istanbul October 22-23, 2014 The background and development of the guidelines in IMO Resolution A.800(19) Magnus Arvidson SP Fire Research SP Technical Research Institute

More information

Virtual Compartment: An Alternative Approach to Means of Egress Design in Airport Pedestrian Tunnel

Virtual Compartment: An Alternative Approach to Means of Egress Design in Airport Pedestrian Tunnel Virtual : An Alternative Approach to Means of Egress Design in Airport Pedestrian Tunnel Xiaolei Chen, PhD California State University, Los Angeles, United States Ning (Frank) Wang, P.E. Jensen Hughes,

More information

Numerical investigation on the effect of channelled and unchannelled screens on smoke contamination in atriums upper balconies with open upstand

Numerical investigation on the effect of channelled and unchannelled screens on smoke contamination in atriums upper balconies with open upstand Numerical investigation on the effect of channelled and unchannelled screens on smoke contamination in atriums upper balconies with open upstand Mohammed Mutafi 1, Mohammad Nasif 1*, William Pao 1 and

More information

Warehouse Protection of Exposed Expanded Group-A Plastics with Electronic Sprinkler Technology

Warehouse Protection of Exposed Expanded Group-A Plastics with Electronic Sprinkler Technology Warehouse Protection of Exposed Expanded Group-A Plastics with Sprinkler Technology Zachary L. Magnone, Jeremiah Crocker, Pedriant Peña Tyco Fire Protection Products, Cranston, RI, USA Abstract The focus

More information

RADIATION BLOCKAGE EFFECTS BY WATER CURTAIN

RADIATION BLOCKAGE EFFECTS BY WATER CURTAIN , Volume 6, Number 4, p.248-254, 04 RADIATION BLOCKAGE EFFECTS BY WATER CURTAIN C.L. Choi Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China ABSTRACT Water

More information

Fire and smoke management in a uni-directional road tunnel for a congested traffic condition

Fire and smoke management in a uni-directional road tunnel for a congested traffic condition Fire and smoke management in a uni-directional road tunnel for a congested traffic condition Y Liu, J Munro Parsons Brinckerhoff Australia B Dandie Thiess Pty Ltd., Australia ABSTRACT Emergency smoke ventilation

More information

UL268 7 th challenge with single infrared smoke detector

UL268 7 th challenge with single infrared smoke detector UL268 7 th challenge with single infrared smoke detector Hans Aebersold Siemens Schweiz AG, Building Technologies Division, Switzerland Abstract Coming up UL217 8th and UL268 7th edition with added new

More information

Towards Predicting High Sensitivity Smoke Detector Operational Performance in Building Environments

Towards Predicting High Sensitivity Smoke Detector Operational Performance in Building Environments Towards Predicting High Sensitivity Smoke Detector Operational Performance in Building Environments Michael Birnkrant, Hui Fang, May Corn & Peter Harris United Technologies Research Center, East Hartford,

More information

CFD ASSESSMENT OF RAILWAY TUNNEL TRAIN FIRE SCENARIOS

CFD ASSESSMENT OF RAILWAY TUNNEL TRAIN FIRE SCENARIOS CFD ASSESSMENT OF RAILWAY TUNNEL TRAIN FIRE SCENARIOS Yunlong Liu*, Xijuan Liu and Bradley Paroz Fire Science and Technology Laboratory CSIRO Manufacturing and Infrastructure Technology PO Box 310 North

More information

CFD-AIDED TENABILITY ASSESSMENT OF RAILWAY TUNNEL TRAIN FIRE SCENARIOS

CFD-AIDED TENABILITY ASSESSMENT OF RAILWAY TUNNEL TRAIN FIRE SCENARIOS CFD-AIDED TENABILITY ASSESSMENT OF RAILWAY TUNNEL TRAIN FIRE SCENARIOS Yunlong Liu*, Xijuan Liu and Bradley Paroz Fire Science and Technology Laboratory CSIRO Manufacturing and Infrastructure Technology

More information

The Situation. Modeling Storage Occupancies Under Sloped Ceilings. Concerns (Elevation View) The Concerns 4/29/ NFPA Conference & Expo

The Situation. Modeling Storage Occupancies Under Sloped Ceilings. Concerns (Elevation View) The Concerns 4/29/ NFPA Conference & Expo 2014 NFPA Conference & Expo Modeling Storage Occupancies Under Sloped Ceilings Presented by: Kenneth E. Isman NFSA Victoria B. Valentine NFSA Andre Marshal CSS NFPA 13 defines a sloped ceiling as one where

More information

Development of Performance Equivalency Methodology for Detection and Suppression System Integration

Development of Performance Equivalency Methodology for Detection and Suppression System Integration Development of Performance Equivalency Methodology for Detection and Suppression System Integration Ming He, Wes Marcks 2 Vision Fire & Security Pty Ltd. ABSTRACTS Many countries around the world have

More information

Figure 1. Structure Used For the Simulations.

Figure 1. Structure Used For the Simulations. OVERVIEW: Vent, Enter, Search (VES) is one of the most talked about tactics in the fire service today. When used correctly, its positive impact can be measured by the lives it saves. The VES method is

More information

Control of temperature and humidity surrounding the stone chamber of Takamatsuzuka tumulus during its dismantlement

Control of temperature and humidity surrounding the stone chamber of Takamatsuzuka tumulus during its dismantlement Control of temperature and humidity surrounding the stone chamber of Takamatsuzuka tumulus during its dismantlement Daisuke Ogura 1, Masahide Inuzuka 2, Shuichi Hokoi 1, Takeshi Ishizaki 2, Hiroyuki Kitahara

More information

rpsa FIRE PROTECTION ENGINEERS

rpsa FIRE PROTECTION ENGINEERS FIRE PROTECTION ENGINEERS R.P. SCHIFILITI ASSOCIATES, INC. P.O. Box 297 Reading, Massachusetts 01867-0497 USA 781.944.9300 Fax / Data 781.942.7500 Telephone Elevator Fire Safety: Elevator Recall and Elevator

More information

Keywords: Fire detection, smoke alarm, nuisance, UL 217, polyurethane foam

Keywords: Fire detection, smoke alarm, nuisance, UL 217, polyurethane foam Smoke Alarms Where Are We Now and the Outlook for the Future Arthur Lee U.S. Consumer Product Safety Commission, Bethesda, United States Thomas Cleary National Institute of Standards and Technology, Gaithersburg,

More information

COST-EFFECTIVE FIRE-SAFETY RETROFITS FOR CANADIAN GOVERNMENT OFFICE BUILDINGS

COST-EFFECTIVE FIRE-SAFETY RETROFITS FOR CANADIAN GOVERNMENT OFFICE BUILDINGS , Volume 1, Number 3, p.123-128, 1999 COST-EFFECTIVE FIRE-SAFETY RETROFITS FOR CANADIAN GOVERNMENT OFFICE BUILDINGS D. Yung and G.V. Hadjisophocleous Fire Risk Management Program, Institute for Research

More information

Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland

Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland Paper ID 0141 ISBN: 978-83-7947-232-1 Prediction of exhaust gas stagnation in common corridor of apartments with gas water heater Takuro Nakamura

More information

An experimental study of the impact of tunnel suppression on tunnel ventilation

An experimental study of the impact of tunnel suppression on tunnel ventilation An experimental study of the impact of tunnel suppression on tunnel ventilation Yoon J. Ko and George Hadjisophocleous Civil and Environmental Engineering, Carleton University 1125 Colonel By Drive, Ottawa,

More information

Performance Evaluation and Design Optimization of Refrigerated Display Cabinets Through Fluid Dynamic Analysis

Performance Evaluation and Design Optimization of Refrigerated Display Cabinets Through Fluid Dynamic Analysis Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2008 Performance Evaluation and Design Optimization of Refrigerated Display

More information

Smoke Layer Height and Heat Flow through a Door

Smoke Layer Height and Heat Flow through a Door Smoke Layer Height and Heat Flow through a Door 2017 Smoke Layer Height and Heat Flow through a Door In this tutorial you will simulate a growing fire in the corner of a 5m x 5m room. The room has a 1m

More information

Abstract. Introduction

Abstract. Introduction Smoke Alarms in Dwellings: Occupant Safety Through Timely Activation and Effective Notification Ian Thomas and Dorothy Bruck Centre for Environmental Safety and Risk Engineering Victoria University, Melbourne

More information

Brine Generation Study

Brine Generation Study DOE/WIPP 00-2000 Brine Generation Study April 2000 Waste Isolation Pilot Plant Carlsbad, New Mexico Processing and final preparation of this report was performed by the Waste Isolation Pilot Plant Management

More information

Impact on Smoke Alarm Performance Considering New Nuisance and Fire Tests

Impact on Smoke Alarm Performance Considering New Nuisance and Fire Tests Impact on Smoke Alarm Performance Considering New Nuisance and Fire Tests Thomas Cleary National Institute of Standards and Technology Gaithersburg, MD Suppression, Detection and Signaling Research and

More information

Investigating the Effects of Sprinkler Sprays on Fire-Induced Doorway Flows: A Two-Part Study. Jeremiah Crocker and Dr. Bin Xiao New Technology Team

Investigating the Effects of Sprinkler Sprays on Fire-Induced Doorway Flows: A Two-Part Study. Jeremiah Crocker and Dr. Bin Xiao New Technology Team Jeremiah Crocker and Dr. Bin Xiao New Technology Team Copyright 2010 Tyco Fire Suppression & Building Products. All rights reserved. The products and specifications published herein are for general evaluation

More information

Polarized Light Scattering of Smoke Sources and Cooking Aerosols

Polarized Light Scattering of Smoke Sources and Cooking Aerosols Polarized Light Scattering of Smoke Sources and Cooking Aerosols Thomas Cleary, Amy Mensch National Institute of Standards and Technology, Gaithersburg, MD, USA Abstract Light scattering data was gathered

More information

PRELIMINARY ANALYSIS OF THE NUMBER OF OCCUPANTS, FIRE GROWTH, DETECTION TIMES AND PRE-MOVEMENT TIMES FOR PROBABILISTIC RISK ASSESSMENT

PRELIMINARY ANALYSIS OF THE NUMBER OF OCCUPANTS, FIRE GROWTH, DETECTION TIMES AND PRE-MOVEMENT TIMES FOR PROBABILISTIC RISK ASSESSMENT PRELIMINARY ANALYSIS OF THE NUMBER OF OCCUPANTS, FIRE GROWTH, DETECTION TIMES AND PRE-MOVEMENT TIMES FOR PROBABILISTIC RISK ASSESSMENT DAVID CHARTERS DEAN MCGRAIL Arup Fire, 78 East Street, Leeds, LS9

More information

Table EXIT ACCESS TRAVEL DISTANCE a OCCUPANCY SYSTEM SYSTEM. A, E, F-1, I-1, M, b,d R, S-1. B c. F-2, S-2, U c

Table EXIT ACCESS TRAVEL DISTANCE a OCCUPANCY SYSTEM SYSTEM. A, E, F-1, I-1, M, b,d R, S-1. B c. F-2, S-2, U c Table 1015.1 EXIT ACCESS TRAVEL DISTANCE a WITHOUT SPRINKLER WITH SPRINKLER OCCUPANCY SYSTEM SYSTEM A, E, F-1, I-1, M, 200 250 b,d R, S-1 B 200 300 c F-2, S-2, U 300 400 c No Change to Other Entries in

More information

Open to Below: A Discussion of Allowed Floor Openings. Jay A. Ierardi, Ph.D., P.E., LEED AP. Kevin S. Hastings, P.E., LEED AP

Open to Below: A Discussion of Allowed Floor Openings. Jay A. Ierardi, Ph.D., P.E., LEED AP. Kevin S. Hastings, P.E., LEED AP Open to Below: A Discussion of Allowed Floor Openings Kevin S. Hastings, P.E., LEED AP Jay A. Ierardi, Ph.D., P.E., LEED AP R.W. Sullivan Engineering (617) 523-8227, Fax (617) 523-8016 http://www.rwsullivan.com

More information

Heat Transfer Enhancement using Herringbone wavy & Smooth Wavy fin Heat Exchanger for Hydraulic Oil Cooling

Heat Transfer Enhancement using Herringbone wavy & Smooth Wavy fin Heat Exchanger for Hydraulic Oil Cooling Enhancement using Herringbone wavy & Smooth Wavy fin Exchanger for Hydraulic Oil Cooling 1 Mr. Ketan C. Prasadi, 2 Prof. A.M. Patil 1 M.E. Student, P.V.P.I.T.,Budhagaon,Sangli AP-India 2 Associate Professor,

More information

M E M O R A N D U M. Diane Matthews, Administrator, Technical Projects. NFPA 101 First Draft Letter Ballot (A2014)

M E M O R A N D U M. Diane Matthews, Administrator, Technical Projects. NFPA 101 First Draft Letter Ballot (A2014) National Fire Protection Association 1 Batterymarch Park, Quincy, MA 02169 7471 Phone: 617 770 3000 Fax: 617 770 0700 www.nfpa.org M E M O R A N D U M TO: FROM: NFPA Technical Committee on Furnishings

More information

An Analysis of Compartment Fire and Induced Smoke Movement in Adjacent Corridor

An Analysis of Compartment Fire and Induced Smoke Movement in Adjacent Corridor 2C-1 6th Asia-Oceania Symposium on Fire Science and Technology 17-20, March, 2004, Daegu, Korea An Analysis of Compartment Fire and Induced Smoke Movement in Adjacent Corridor Soo-Young Kim *, Eung-Sik

More information

2009 International Fire Code Errata. SECOND PRINTING (Posted April 6, 2010)

2009 International Fire Code Errata. SECOND PRINTING (Posted April 6, 2010) CHAPTER 1 SCOPE AND ADMINISTRATION 102.7 Referenced codes and standards. The codes and standards referenced in this code shall be those that are listed in Chapter 45 47 and such codes and standards shall

More information

STUDY FOR SAFETY AT A RELATIVELY SHORT TUNNEL WHEN A TUNNEL FIRE OCCURRED

STUDY FOR SAFETY AT A RELATIVELY SHORT TUNNEL WHEN A TUNNEL FIRE OCCURRED - 133 - STUDY FOR SAFETY AT A RELATIVELY SHORT TUNNEL WHEN A TUNNEL FIRE OCCURRED Y. Mikame 1,2, N. Kawabata 1, M. Seike 1, M. Hasegawa 1 1 Kanazawa University, Japan 2 Metropolitan Expressway Company

More information

Full-Scale Measurement and Numerical Analysis of Liquefied Petroleum Gas Water Heaters with Ventilation Factors in Balcony

Full-Scale Measurement and Numerical Analysis of Liquefied Petroleum Gas Water Heaters with Ventilation Factors in Balcony Journal of Civil Engineering and Architecture 9 (215) 1341-1353 doi: 1.17265/1934-7359/215.11.9 D DAVID PUBLISHING Full-Scale Measurement and Numerical Analysis of Liquefied Petroleum Gas Water Heaters

More information

Using CFD to Analyze Gas Detector Placement in Process Facilities

Using CFD to Analyze Gas Detector Placement in Process Facilities Using CFD to Analyze Gas Detector Placement in Process Facilities Presented by: Scott G. Davis, Olav R. Hansen, Filippo Gavelli and Are Bratteteig GexCon Outline Background CFD based dispersion study Gas

More information

Research on Evaluation of Fire Detection Algorithms

Research on Evaluation of Fire Detection Algorithms Research on Evaluation of Fire Detection Algorithms JIAN LI 1,2, WENHUI DONG 1, ZHIBIN MEI 1, and ZHUOFU WANG 1 1 Shenyang Fire Research Institute Ministry of Public Security China, 110031 2 Dalian University

More information

NUMERICAL STUDIES ON BARE CABIN FIRES WITH OPERATION OF SMOKE EXTRACTION SYSTEM

NUMERICAL STUDIES ON BARE CABIN FIRES WITH OPERATION OF SMOKE EXTRACTION SYSTEM , Volume 11, Number 2, p.43-48, 2012 NUMERICAL STUDIES ON BARE CABIN FIRES WITH OPERATION OF SMOKE EXTRACTION SYSTEM Q. Kui Institute of Building Fire Research, China Academy of Building Research, Beijing,

More information

Advantages and Disadvantages of Fire Modelling

Advantages and Disadvantages of Fire Modelling Advantages and Disadvantages of Fire Modelling Dr Guillermo Rein School of Engineering University of Edinburgh & Imperial College London Dr Guillermo Rein 9 May 2012 Chief Fire Officers Association Annual

More information