Fertilization, Soils and Cultural Practices EFFECTS OF FLOODING ON SUGARCANE GROWTH. 2. BENEFITS DURING SUBSEQUENT DROUGHT

Size: px
Start display at page:

Download "Fertilization, Soils and Cultural Practices EFFECTS OF FLOODING ON SUGARCANE GROWTH. 2. BENEFITS DURING SUBSEQUENT DROUGHT"

Transcription

1 Fertilization, Soils and Cultural Practices EFFECTS OF FLOODING ON SUGARCANE GROWTH. 2. BENEFITS DURING SUBSEQUENT DROUGHT B. W. Eavis Ministry of Agriculture, Science and Technology Barbados ABSTRACT Sugarcane varieties B 4744 and B were grown in lysimeters containing either disturbed montmorillonitic or kaolinitic clay, under waterlogged or drained conditions in a 23 factorial experiment. During a 7-month period the differences between growth and tiller production in the waterlogged treatments (water table 15 cm below surface) and the field capacity treatments (drained from 80 cm below surface) were small. During a drought which was imposed at 7 months the plants removed water until they reached permanent wilting point. The amount of available water removed from the disturbed montmorillonite was 66% greater than from the disturbed kaolin, and was 50% greater in both cases than from Hudson's undisturbed monoliths, thus indicating an important advantage of cultivation. Waterlogging increased the water available to the plants during the drought by 100 and 25% in the kaolinitic and montmorillonitic s, respectively, and there were 17 and 7 extra days for growth, respectively. Soil moisture content in all treatments was the same at permanent wilting point. Waterlogging increased total shoot elongation during the drought by 200 and 50% in the kaolinitic and montmorillonitic s, respectively. In the waterlogged treatments, 25 and 33% more shoot elongation occurred per cm of water transpired in the 2 s, respectively. There were no significant differences in variety performance during the drought. INTRODUCTION In many sugarcane growing areas the chief factor limiting yield is drought. If rainfall is irregularly distributed throughout the growing season, the ability of the to conserve water in rainy periods for subsequent use by the crop in a drought may have an important influence on yield. The water storage capacity of the is greatest when drainage is prevented and all the pore space is filled with water. Experiments reported here were carried out to determine whether the extra water stored as a result of waterlogging and drainage restriction could be used by the plants subsequently during a drought. Previous work by Erickson et al. (I) showed that: subsurface asphalt barriers increased the water holding capacity of sandy s and sugarcane yields. This work shows that overdrainage can a1.o occur in some clay s and that this may influence yields in areas subjected to drought. ''?.,

2 716 FERTILIZATION, ETC. MATERIALS AND METHODS Weighable lysimeters were constructed from 45-gal oil drums. Eight of these were filled with kaolinitic top (Barbados type 60) and 8 with montmorillonitic top (Barbados type 20). Drainage was allowed to occur rhrough perforations in the drum made either 15 cm below the surface,(waterlogged treatment) or 80 cm below the surface (field capacity treatment). Hudson's (2) system for weighing and transporting the lysimeters was used. Each drum could be lifted and carried on a spider cart to a platform scale for weighing. One man could comfortably weigh 16 of the 600-lb lysimeters in 2 hours each morning. Eight 1-bud cuttings of either B 4744 or B were planted in each lysimeter and were allowed to establish for 6 weeks before the waterlogging was imposed. Tiller elongation and tiller production were measured weekly over the next 6 months, during which half the treatments were waterlogged to 15 cm below the surface and the remainder drained to field capacity. These treatments were maintained by daily additions of water. When the plants were 7 months of age, no more water was added and the plants were shielded from rainfall by placing them under a shelter with a transparent plastic roof. Subsequently, during the drought the daily loss of water and the total loss of water by transpiration were measured until the plants were at permanent wilting point. Tiller elongation rate was measured daily throughout the drought on 8 tillers in each lysimeter, using Hudson's method described in the previous paper. Permanent wilting point was arbitrarily chosen as the stage when all but 3 of the central spindle leaves had turned brown. At this stage the fresh weights of the shoots were measured, and the root systems were separated by washing the through a wire grid. The volume was determined both before and after the drought in order to measure shrinkage. The treatments- type, drainage regime, and varieties-were combined in a 2 X 2 X 2 factorial experiment with 2 replications, giving 16 units in total: Soil type: kaolin clay and montmorillonite clay; Drainage: waterlogged to within 15 cm of surface and drained to field capacity; Variety: B 4744 and B Initial 6 Months Preceding Drought RESULTS AND DISCUSSION Maintaining a water table 15 cm below the surface for 6 months (but not during the establishment period) did not significantly (P = 0.05) reduce tiller elongation rate in either type or variety (Table 1). Tiller production was also similar in waterlogged and drained s. This result can be compared with that reported in the previous paper where the flooded to the surface adversely affected tiller elongation rate and tiller production. No deleterious effect was observed in the waterlogged treatments during 1-6 months of age, because the watertable was below the level of the underground stem tissue, and the buds were healthy and in an aerobic environment. Root pro-

3 B. W. EAVIS 717 Table 1. Average weekly tiller elongation rates during 5-month period preceding drought (cmlday). Kaolinitic Montmorillonitic B B 4744 B B 4744 Waterlogged to within 15 cm of surface Drained to field capacity duction was also normal in the top 15 cm of, but only fine roots grew into the saturated. Fine roots were found throughout the volume to the depth of 80 cm. Results During the Period of Drought At the start of the drought the amount of water present in each lysimeter varied according to type and drainage regime, and its utilisation by the plants in growth and transpiration was measured (Fig. 1). The amount of,/.-i311 SHRINKAGE 5% A a, l - 60] Water logged Solid I p t. - p q Water Available tor. \ Growth -+-auamj&l Solid Mineral* Matter Fig. 1. Volumetric proportions of water, air and solid mineral matter as influenced by type and drainage. water for growth is that removed between the commencement of the drought and the cessation of elongation of the central spindle leaves. The water available for survival is that removed subsequently up to the permanent wilting point. There was no difference between the ability of the 2 varieties to remove this water, and in Table 2 averages for both varieties are, therefore, combined. Also included in Table 2 are results obtained by Hudson for the same s taken from the field in the undisturbed state. Hudson worked with cylindrical monoliths removed from the field in 45-gal oil drum cases, and he established cane under conditions similar to those used in these experiments. Four months after planting he allowed the cane plants to dry the to permanent wilting point, and

4 718 FERTILIZATION, ETC. Table 2. The effect of type and drainage on the water available to sugarcane plants in a drought. Undisturbed monolith (81 cm deep) K 7 3 dried from field capacity (Hudson's results) M 12 5 Water available to sugarcane plants for: Total shoot Shoot elongation elongation per cm of water made during transpired in Growth Survival drought growing period (cm) ( 4 (cm) (cm) Disturbed top (81 cm deep) K cm in 2.07 dried from field capacity 12 days M cm in days Disturbed top (81 cm deep) K cm in 3.14 dried after being waterlogged from 29 days 15 cm of surface M cm in days Note: K = kaolinitic M - montmorillonitic called the relationship between spindle growth rate and water deficit a profile moisture release curve. His methods have been followed in these experiments. Hudson's undisturbed monoliths were at field capacity at the start of the drought. Table 2 shows that between field capacity and permanent wilting point the plants were able to remove 70% more water from the montmorillonitic clay than from the kaolin clay. The smaller amount of available water retained by the kaolinitic clay was partly a consequence of a greater volume of large pore spaces which drained at field capacity; the kaolin clay also had a smaller pore volume at high negative water potentials, which contained water available for survival but not for growth. The porosity (total pore volume) of the 2 clays did not differ significantly. Hudson's results can be compared with those 'obtained in these experiments using the same volume of disturbed tops from the same sites. Both montmorillonitic and kaolinitic s when dried from field capacity to permanent wilting point, released 50% more water in the disturbed condition as compared with the undisturbed conditions described above. This indicates that the smaller bulk density (larger total pore volume) affected the pore volume holding water between field capacity and permanent wilting point, and did not merely increase the air-filled pore volume at field capacity. Soil cultivation is therefore able to increase the available water capacity in the case of these 2 s by 50%. In the disturbed state the montmorillonitic clay held 66% more available water than the kaolinitic clay. The available water removed from the disturbed s held initially at field capacity can be compared with that removed from the same s dried from the waterlogged condition (Table 2). The waterlogged plants were able

5 B. W. EAVIS 719 to remove all the extra water present. At permanent wilting point the moisture contents of the s were the same regardless of variety, type or drainage regime. Waterlogging increased the amount of water available in the disturbed kaolin by 100% compared with the field capacity treatment, and this extra water was contained in large pores which drained at a negative water potential of less than 80 cm of water. In the montmorillonitic clay the volume of pores in this size range was smaller, and the extra water available to the plants as a result of waterlogging was increased only 25% over the field capacity treatment (Table 2). As a consequence of the extra water present in the waterlogged s, there were 17 and 7 extra days for growth in the kaolinitic and montmorillonitic clay, respectively. There were 25 and 4 extra days for both growth and survival. During the drought, total tiller elongation (stem and spindle elongation) was 200 and 50% greater for the plants previously waterlogged in the kaolin and montmorillonite, respectively (Fig. 2). This greater growth was partly a result of e" : -2 9 PWP LT -4 - W Day 1 Drought MONTMORILLONITIC SO1 L PWP MONTMORlLLONlTIC SOIL PWP I I cms of water (taking PWP as datum) ---- Survival Period ( But no growth) pwp ( Permanent Wilt~ng Rxnt) was Z8'l.f 1.5'1. In all Fig. 2. Tiller eloogation rates of sugarcane during a drought imposed at 7 months of age. the extra number of growing days; however, the tiller elongation,/,cm of water transpired during the drought was also greater in the formerly w,$&1ogged. Efficiency of utilisation of available water (tiller elongation/unit*~ofswater lost) was 25 and 33% greater in the waterlogged treatments than in the field capacity treatments. The number of days in which the plants were suffering from water i I,,

6 720 FERTILIZATION, ETC. stress was similar in all cases, but as a proportion of the total number of drought days it was smaller in the case of the waterlogged treatments. This probably accounts for the better utilisation of water in terms of growth obtainedlunit of water transpired during the drought. The daily transpiration rates were similar in both treatments;' waterlogging did not restrict transpiration, or increase wilting. The daily loss of water in the early stages of drought when the plants were not suffering from water stress was chiefly dependent on evaporative conditions, and remained at between 0.80 and 1.40 cm/day until within 4 days of the cessation of growth. During the latter 4 days transpiration rates were rapidly curtailed and remained less than 0.30 cm/day during the survival period up to permanent wilting point. Differences in type, variety and rooting characteristics were apparently not great enough to cause differences in the transpiration patterns-under these climatic conditions. The type of root system found at the end of the experiment in the waterlogged treatments differed greatly from that found in the field capacity treatments. The latter consisted of a network of thick primary roots with a relatively small proportion by weight of small diameter laterals. The root system developed in the waterlogged treatment consisted of a very dense mat of fine laterals with a small proportion of thicker roots. Table 3 shows that the fibrous Table 3. Root weights and ratio of fibrous:thick roots by weight, determined at the end of the drought. Kaolinitic - -. Montrnorillonitic B B 4744 B B 4744 Waterlogged to 15 an Total root weight (gm) of surface fibrous: thick root ratio Drained to field Total root weight (gm) capacity fibrous: thick root ratio root:thick root ratio was 150% greater in the waterlogged treatments. The ratio was also 200% greater in the montmorillonitic, as compared with the kaolinitic. The proliferation of fine roots seems to be associated with the wetness of the ; in other experiments the development of a surface mat of roots under a mulch was also observed to occur only under very wet conditions. Sugarcane is thus able to adapt its root system to accommodate an anaerobic environment. A thin root has a smaller oxygen requirement and the diffusion pathlength for entry of oxygen into the respiring tissue is less than in the case of a thicker root. The total harvested root weights with the variety B were 90 (kaolin) and 50% (montmorillonite) greater when the had been dried from the waterlogged condition (Table 3). With B 4744 the differences were not as consistent. The mean root weights were 36% greater in the montmorillonitic s as compared with the kaolinitic s and this was associated with the proliferation of thin roots under wetter conditions.

7 REFERENCES c G,< 1. Erickson, A. E., et al Subsurface asphalt barriers for the improvement of sugarcane production and the conservation of water on sand. Proc. ISSCT, 13: Hudson, J. C The availability of water. Ph.D. thesis, University of the West Indies. 1

+id 1:;~ T. C. Juang and G. Uehara Taiwan Sugar Experiment Station Taiwan and Hawaii Agricultural Experiment Station Honolulu, Hawaii

+id 1:;~ T. C. Juang and G. Uehara Taiwan Sugar Experiment Station Taiwan and Hawaii Agricultural Experiment Station Honolulu, Hawaii Fertilization, Soils and Cultural Practices EFFECTS OF GROUND-WATER TABLE AND SOIL COMPACTION ON NUTRIENT ELEMENT UPTAKE AND GROWTH OF SUGARCANE T. C. Juang and G. Uehara Taiwan Sugar Experiment Station

More information

CALCULATING THE EFFECT OF ORGANIC MATTER ON SOIL WATER, NUTRIENT AND CARBON STORAGE

CALCULATING THE EFFECT OF ORGANIC MATTER ON SOIL WATER, NUTRIENT AND CARBON STORAGE ERIC CALCULATING THE EFFECT OF ORGANIC MATTER ON SOIL WATER, NUTRIENT AND CARBON STORAGE Brian Tunstall Abstract The benefits of increasing soil organic matter include carbon sequestration and an increase

More information

0.40 Argent-Loblolly Pine. Clarksville-Shortleaf Pine 0.20 Dome-Ponderosa Pine Cohasset-Ponderosa Pine

0.40 Argent-Loblolly Pine. Clarksville-Shortleaf Pine 0.20 Dome-Ponderosa Pine Cohasset-Ponderosa Pine 2.00 1.80 1.60 1.40 Argent: R 2 = 0.50 Shoot Weight (g) 1.20 1.00 0.80 Clarksville:R 2 = 0.79 0.60 Dome: R 2 = 0.82 0.40 Argent-Loblolly Pine Cohasset: R 2 = 0.64 Clarksville-Shortleaf Pine 0.20 Dome-Ponderosa

More information

Soil Plant Water Relationships 1

Soil Plant Water Relationships 1 Circular 1085 January 1993 Soil Plant Water Relationships 1 Dorota Z. Haman and Forrest T. Izuno 2 Florida is classified as having a humid subtropical climate. The average annual rainfall for most of Florida

More information

Soil Damage From Compaction

Soil Damage From Compaction Soil Damage From Compaction by Dr. Kim D. Coder, University of Georgia July 000 Having reviewed the primary means by which soils become compacted, the results of compaction can be estimated for tree and

More information

Elvenia J. Slosson Endowment Fund for Ornamental Horticulture. Annual Report 30 June 2005

Elvenia J. Slosson Endowment Fund for Ornamental Horticulture. Annual Report 30 June 2005 Elvenia J. Slosson Endowment Fund for Ornamental Horticulture Annual Report 3 June 5 Investigation of water stress-induced bedding plant establishment problems and their solution Richard Y. Evans, J.L.

More information

Appendix D: Soil Depletion Model

Appendix D: Soil Depletion Model D Appendix D The ET Pro 2 and other WeatherTRAK control products incorporate a soil depletion model that was developed by universities and is recognized by the Irrigation Association (IA). Definitions

More information

Soil Chemistry. Key Terms.

Soil Chemistry. Key Terms. Soil Chemistry Key Terms Key Terms in Soil Chemistry Buffering capacity - this is the soil's ability to resist changes in soil ph. Soils with a high buffering capacity require a great deal of amendment

More information

Mechanisms of Nutrient Uptake: Is Fertilization Enough?

Mechanisms of Nutrient Uptake: Is Fertilization Enough? Mechanisms of Nutrient Uptake: Is Fertilization Enough? Fabián G. Fernández & Water Quality Specialist Department of Soil, Water, and Climate fabiangf@umn.edu Conference 09 Feb. 2016, Morton, MN Justice

More information

Critical water shortages. Irrigation Guidelines for Deciduous Fruit Trees

Critical water shortages. Irrigation Guidelines for Deciduous Fruit Trees Critical water shortages Irrigation Guidelines for Deciduous Fruit Trees Droughts require that each drop of water be used as economically and efficiently as possible. The greatest water savings can be

More information

Course: Landscape Design & Turf Grass Management. Unit Title: Watering Landscape TEKS: (C)(5)E) Instructor: Ms. Hutchinson.

Course: Landscape Design & Turf Grass Management. Unit Title: Watering Landscape TEKS: (C)(5)E) Instructor: Ms. Hutchinson. Course: Landscape Design & Turf Grass Management Unit Title: Watering Landscape TEKS: 130.19(C)(5)E) Instructor: Ms. Hutchinson Objectives: After completing this unit of instruction, students will be able

More information

Soil moisture extraction and physiological wilting of cotton on Mississippi River alluvial soils

Soil moisture extraction and physiological wilting of cotton on Mississippi River alluvial soils Louisiana State University LSU Digital Commons LSU Agricultural Experiment Station Reports LSU AgCenter 1965 Soil moisture extraction and physiological wilting of cotton on Mississippi River alluvial soils

More information

SOIL FACTORS AFFECTING WATER USE EFFICIENCY IN SUGARCANE

SOIL FACTORS AFFECTING WATER USE EFFICIENCY IN SUGARCANE SOIL FACTORS AFFECTING WATER USE EFFICIENCY IN SUGARCANE R VAN ANTWERPEN AND JH MEYER South African Sugar Association Experiment Station, P/Bag X02, Mount Edgecombe, 4300 Abstract Water use by crops has

More information

1. The Nature of Soils and Soil Fertility

1. The Nature of Soils and Soil Fertility 1. The Nature of Soils and Soil Fertility The Ontario Soil Fertility Handbook contains information on the fundamental concepts of soil fertility. If you have ever wondered how nutrients make their way

More information

CHAPTER 4 EFFECT OF TEMPERATURE AND SOIL MOISTURE CONTENT ON CUTTING ESTABLISHMENT

CHAPTER 4 EFFECT OF TEMPERATURE AND SOIL MOISTURE CONTENT ON CUTTING ESTABLISHMENT CHAPTER 4 EFFECT OF TEMPERATURE AND SOIL MOISTURE CONTENT ON CUTTING ESTABLISHMENT 4.1 ABSTRACT Effective rooting is essential for successful crop establishment from cuttings. The objective of this study

More information

Elements of the Nature and Properties of Soils Brady 3e

Elements of the Nature and Properties of Soils Brady 3e 9 781292 039299 Elements of the Nature and Properties of Soils Brady 3e ISBN 978-1-29203-929-9 Elements of the Nature and Properties of Soils Nyle C. Brady Raymond Weil Third Edition Pearson Education

More information

This presentation premiered at WaterSmart Innovations 2010 Join us this fall in Las Vegas, October, watersmartinnovations.

This presentation premiered at WaterSmart Innovations 2010 Join us this fall in Las Vegas, October, watersmartinnovations. This presentation premiered at WaterSmart Innovations 2010 Join us this fall in Las Vegas, October, 2011 watersmartinnovations.com The Agronomic Viability of Soil Moisture Sensors In the Landscape Jon

More information

Movement of soil water- Infiltration, percolation, permeability Drainage -

Movement of soil water- Infiltration, percolation, permeability Drainage - Movement of soil water- Infiltration, percolation, permeability Drainage - Methods of determination of soil moisture Soil Water Movement i) Saturated Flow ii) Unsaturated Flow iii) Water Vapour Movement

More information

2. PLANT AND ATMOSPHERE

2. PLANT AND ATMOSPHERE 2. PLANT AND ATMOSPHERE INTRODUCTION In the field you have seen the plants growing on the soil. Some portion of the plant is above the ground and is visible while some of it remains in the soil underground.

More information

Watering Trees. by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia

Watering Trees. by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia Watering Trees by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia Trees constantly lose water to the atmosphere. Water is

More information

Production of Evergreen Shrubs in Paper Sludge- Amended Media. University of Idaho. Report Series: Final Report, January through July 2000

Production of Evergreen Shrubs in Paper Sludge- Amended Media. University of Idaho. Report Series: Final Report, January through July 2000 Title: Production of Evergreen Shrubs in Paper Sludge- Amended Media 1 Principal Investigator: Robert R. Tripepi University of Idaho Date: Report Series: Final Report, January through July 2000 Grant Agency

More information

Lecture 20: Soil Organic Matter; Soil Aeration

Lecture 20: Soil Organic Matter; Soil Aeration Lecture 20: Soil Organic Matter; Soil Aeration Nature of Soil OM Major components are: Biomass, detritus, humus, and char (from fires; often considered part of humus) A subset is rapidly degraded (labile)

More information

Absorber products have the property of absorbing up to 500 times their weight in distilled water and they become gels.

Absorber products have the property of absorbing up to 500 times their weight in distilled water and they become gels. Human activities require more and more resources among them water is certainly the most precious. Modern agriculture consumes almost two thirds of the waters pumped worldwide. For this reason, more and

More information

Title: Growth and Physiological Reponses of Creeping Bentgrass to Saturated Soil

Title: Growth and Physiological Reponses of Creeping Bentgrass to Saturated Soil Title: Growth and Physiological Reponses of Creeping Bentgrass to Saturated Soil Authors: Yiwei Jiang and Kehua Wang Objective: To identify growth and physiological traits of creeping bentgrass cultivars

More information

Scheduling Irrigation for Horticultural Crops. Patrick Byers Regional Horticulture Specialist Greene County

Scheduling Irrigation for Horticultural Crops. Patrick Byers Regional Horticulture Specialist Greene County Scheduling Irrigation for Horticultural Crops Patrick Byers Regional Horticulture Specialist Greene County Outline Soil characteristics Soil water characteristics Basic watering facts Scheduling irrigation

More information

Scheduling Irrigation for Horticultural Crops

Scheduling Irrigation for Horticultural Crops for Horticultural Crops Patrick Byers Regional Horticulture Specialist Greene County Outline Soil characteristics Soil water characteristics Basic watering facts Scheduling irrigation What is Soil? Soil

More information

Up By Roots Healthy Soils and Trees in the Built Environment

Up By Roots Healthy Soils and Trees in the Built Environment Up By Roots Healthy Soils and Trees in the Built Environment 2009 ASLA Honor Award James Urban, FASLA, ISA Urban Tree + Soils Annapolis, Maryland Practical Applications Preserving, repairing, and replacing

More information

Girtridge Monitor Farm Meeting

Girtridge Monitor Farm Meeting Girtridge Monitor Farm Meeting 15 th August 2018 1 Managing Soil Drainage and Compaction in Pasture Key factors for movement of water in the soil Soil Texture Soil Structure Soil Compaction 2 1 Soil Texture

More information

SUMMARY AND CONCLUSION

SUMMARY AND CONCLUSION SUMMARY AND CONCLUSION Laboratory studies were conducted on clay, clay loam and sandy loam soils to study the effect of irrigation water qualities on hydraulic, dispersion and swelling properties. Twenty-seven

More information

03. SOIL WATER MOVEMENT - SATURATED AND UNSATURATED FLOW AND VAPOUR MOVEMENT - SOIL MOISTURE CONSTANTS AND THEIR IMPORTANCE IN IRRIGATION

03. SOIL WATER MOVEMENT - SATURATED AND UNSATURATED FLOW AND VAPOUR MOVEMENT - SOIL MOISTURE CONSTANTS AND THEIR IMPORTANCE IN IRRIGATION 03. SOIL WATER MOVEMENT - SATURATED AND UNSATURATED FLOW AND VAPOUR MOVEMENT - SOIL MOISTURE CONSTANTS AND THEIR IMPORTANCE IN IRRIGATION Soil Moisture Tension Soil moisture tension is a measure of the

More information

Soil Quality / Understanding Soil Health what are we missing?

Soil Quality / Understanding Soil Health what are we missing? Soil Quality / Understanding Soil Health what are we missing? Soil Quality Test Kit Clarence Chavez Soil Scientist The USDA is an Equal Opportunity Provider and Employer Soils are not machines: It s an

More information

Managing Sa naging linity in Florida Citrus Brian Boman

Managing Sa naging linity in Florida Citrus Brian Boman Managing Salinity in Florida Citrus Brian Boman Salt Load in Water Trees receiving 40 gal/day of 2000 ppm water will receive 4¾ lb of salt per week 1.7 lb 2.1 lb Evaporation Pure water Salts accumulate

More information

DROUGHT STRESS ON TURF. By R. E. Schmidt Associate Professor of Agronomy Virginia Polytechnic Institute and State University

DROUGHT STRESS ON TURF. By R. E. Schmidt Associate Professor of Agronomy Virginia Polytechnic Institute and State University DROUGHT STRESS ON TURF By R. E. Schmidt Associate Professor of Agronomy Virginia Polytechnic Institute and State University Drought is a water stress that di minishes plant turgor causing wilting (a symptom

More information

The Hidden Half of the Plant ZACK

The Hidden Half of the Plant ZACK The Hidden Half of the Plant ZACK The Hidden Half of the Plant What are root functions? How do you study roots? Where are the roots? How do roots absorb water and nutrients? Why is this important? Sensor

More information

Irrigation - How Best to Water Your Desert Trees

Irrigation - How Best to Water Your Desert Trees Irrigation - How Best to Water Your Desert Trees John Eisenhower, ISA Certified Arborist WE-5213A Integrity Tree Service, Inc. 602-788-0005 www.itreeservice.com How much water do my trees need? How much

More information

How to Read the South Plains Evapotranspiration Information

How to Read the South Plains Evapotranspiration Information How to Read the South Plains Evapotranspiration Information Climate and Evapotranspiration (ET) data for the South Plains ET Network are presented in two formats for the convenience of our users. A cumulative

More information

Soil characteristics that influence nitrogen and water management

Soil characteristics that influence nitrogen and water management Section C Soil characteristics that influence nitrogen and water management Soil characteristics vary across the landscape Soils vary from one field to another, and often within the same field. Soil differences

More information

CHARACTERISING THE FACTORS THAT AFFECT GERMINATION AND EMERGENCE IN SUGARCANE

CHARACTERISING THE FACTORS THAT AFFECT GERMINATION AND EMERGENCE IN SUGARCANE SHORT COMMUNICATION CHARACTERISING THE FACTORS THAT AFFECT GERMINATION AND EMERGENCE IN SUGARCANE SMIT M A South African Sugarcane Research Institute, P/Bag X02, Mount Edgecombe, 4300, South Africa michiel.smit@sugar.org.za

More information

Key factors for movement of water in the flood plain

Key factors for movement of water in the flood plain This event is being run by SAC Consulting Managing Soil and Drainage in the Flood Plain Key factors for movement of water in the flood plain Soil Texture Soil Structure Natural drainage paths Artificial

More information

Maximizing Vine Crop production with Proper Environmental Control

Maximizing Vine Crop production with Proper Environmental Control Maximizing Vine Crop production with Proper Environmental Control Richard McAvoy Department of Plant Science & Landscape Architecture University of Connecticut richard.mcavoy@uconn.edu 860-486-2925 Environmental

More information

Prediction of Sweet Corn Seeds Field Emergence under Wet Soil Condition

Prediction of Sweet Corn Seeds Field Emergence under Wet Soil Condition Kasetsart J. (Nat. Sci.) 41 : 227-231 (27) Prediction of Sweet Corn Seeds Field Emergence under Wet Soil Condition Vichai Wongvarodom* and Wikanate Rangsikansong ABSTRACT Field emergence prediction of

More information

Understanding the Pores of a Soilless Substrate

Understanding the Pores of a Soilless Substrate Purdue Horticulture and Landscape Architecture HO-287-W Author: Krishna Nemali GREENHOUSE AND INDOOR PRODUCTION OF HORTICULTURAL CROPS Understanding the Pores of a Soilless Substrate ag.purdue.edu/hla

More information

Great Soil-Great Gardens I Basic Soil Science Brad Park, Rutgers University Materials developed by: Karen A. Plumley, Ph.D.

Great Soil-Great Gardens I Basic Soil Science Brad Park, Rutgers University Materials developed by: Karen A. Plumley, Ph.D. Great Soil-Great Gardens I Basic Soil Science Brad Park, Rutgers University Materials developed by: Karen A. Plumley, Ph.D. Research Director, Alliance for Low Input Sustainable Turf Soils Instructor,

More information

Methods for measuring deep drainage

Methods for measuring deep drainage Vol 24, No 7, page 28 December 2003 January, 2004 Methods for measuring deep drainage By Sarah Hood, Pat Hulme, Bernie Harden and Tim Weaver When cotton is irrigated a proportion of the water that infiltrates

More information

Soil 1/18/2012. Soils, Nutrients and Fertilizers Part I. Soil Profile

Soil 1/18/2012. Soils, Nutrients and Fertilizers Part I. Soil Profile Soils, Nutrients and Fertilizers Part I Handouts: Soil Texture Triangle ph Nutrient Availability Soil Diverse combination of weathered rock fragments and minerals, with decaying remains of plants and animals

More information

Soils of Oahu. Outline. Soils and Plant Nutrient Supply 2/20/2014

Soils of Oahu. Outline. Soils and Plant Nutrient Supply 2/20/2014 Soils of Oahu Jonathan Deenik Department of Tropical Plant and Soil Sciences Outline Importance of Soils Soil Diversity on Oahu Soil Properties Diagnosis and soil testing Management for Health Soils and

More information

Soil Moisture Probe. Frizzell ltd. Owners Manual And Reference. Model SMP3A. frizzell ltd. Box 32 Kirwee Canterbury, 7543 New Zealand Ph:

Soil Moisture Probe. Frizzell ltd. Owners Manual And Reference. Model SMP3A. frizzell ltd. Box 32 Kirwee Canterbury, 7543 New Zealand Ph: Frizzell ltd Soil Moisture Probe Owners Manual And Reference Model SMP3A Copyright Frizzell Ltd. 2014 Rev III frizzell ltd. Box 32 Kirwee Canterbury, 7543 New Zealand Ph: 03 318 1333 Holding capacity and

More information

Micro propagation of sugarcane (Saccharum officinarum L.) through auxiliary buds

Micro propagation of sugarcane (Saccharum officinarum L.) through auxiliary buds Micro propagation of sugarcane (Saccharum officinarum L.) through auxiliary buds P S \Varakagoda, S Subasinghe, D L C Kumari and T S Neththikumara Department of Crop Science, Faculty of Agriculture, University

More information

Project Report ROOT GROWTH DURING SOD TRANSPLANTING. Bingru Huang, Associate professor

Project Report ROOT GROWTH DURING SOD TRANSPLANTING. Bingru Huang, Associate professor Project Report EFFECTS OF FOLIAR APPLICATION OF NUTRISORB ON SHOOT AND ROOT GROWTH DURING SOD TRANSPLANTING Bingru Huang, Associate professor Department of Plant Biology and Plant Pathology, Rutgers University,

More information

Relationship of Soil Moisture and Drainage Conditions to Tree Decline in Avocado Orchards *

Relationship of Soil Moisture and Drainage Conditions to Tree Decline in Avocado Orchards * California Avocado Society 1943 Yearbook 28: 34-37 Relationship of Soil Moisture and Drainage Conditions to Tree Decline in Avocado Orchards * E. R. PARKER and M. B. ROUNDS Citrus Experiment Station, University

More information

THE EFFECTS OF HUMATE AND ORGANIC FERTILIZER ON ESTABLISHMENT AND NUTRITION OF CREEPING BENT PUTTING GREENS

THE EFFECTS OF HUMATE AND ORGANIC FERTILIZER ON ESTABLISHMENT AND NUTRITION OF CREEPING BENT PUTTING GREENS International Turfgrass Society Research Journal Volume 8, 1997. 437 THE EFFECTS OF HUMATE AND ORGANIC FERTILIZER ON ESTABLISHMENT AND NUTRITION OF CREEPING BENT PUTTING GREENS Stephen P. Dorer and Charles

More information

Components of Soil. Humus: (a carbon sink) Dark brown or black color indicates high nitrogen content.

Components of Soil. Humus: (a carbon sink) Dark brown or black color indicates high nitrogen content. Components of Soil Humus: (a carbon sink) Dark brown or black color indicates high nitrogen content. Inorganic Soil Components: Particle Size: Clay- Very fine Silt- Fine Sand- Medium Gravel- Large Discuss

More information

IRRIGATION CONTROL IN SUGARCANE FIELD BASED ON NEUTRON PROBE MEASUREMENTS

IRRIGATION CONTROL IN SUGARCANE FIELD BASED ON NEUTRON PROBE MEASUREMENTS Agronomy - RRGATON CONTROL N SUGARCANE FELD BASED ON NEUTRON PROBE MEASUREMENTS H Y.S. Sheu and P.C. Yang Taiwan Sugar Research nstitute, Tainan, Taiwan, Republic of China ABSTRACT Studies were conducted

More information

Green Infrastructure Sub-irrigated Raised Beds - Green Roof

Green Infrastructure Sub-irrigated Raised Beds - Green Roof Low Impact Develop (LID) Stormwater Management and Solution Green Infrastructure Sub-irrigated Raised Beds - Green Roof Green Roof Sub-Irrigated Wicking System Green Roof Self Watering Wicking Beds Green

More information

Unit B: Establishing a Fruit Garden. Lesson 3: Growing and Maintaining Small Fruits

Unit B: Establishing a Fruit Garden. Lesson 3: Growing and Maintaining Small Fruits Unit B: Establishing a Fruit Garden Lesson 3: Growing and Maintaining Small Fruits 1 Terms Heeling-in Arbor P1 soil test K soil test Primocane Floricane Banded fertilizer Broadcast fertilizer Frost protection

More information

Learning Objectives Part 1. Chapter 4 Soil Physical Properties. Soil Physical Properties. Color. Physical properties part 1

Learning Objectives Part 1. Chapter 4 Soil Physical Properties. Soil Physical Properties. Color. Physical properties part 1 Learning Objectives Part 1 Chapter 4 Soil Physical Properties Know what color tells you about a soil Describe the concept of soil texture and its importance Use the textural triangle to determine a soil

More information

A Preliminary Report on Asparagus Harvest Duration

A Preliminary Report on Asparagus Harvest Duration A Preliminary Report on Asparagus Harvest Duration Effects on Storage Carbohydrates and Yield John McGrady and Phil Tilt INTRODUCTION In the Yuma, Arizona, area, asparagus has surpassed broccoli as the

More information

Red Alder Tree Growing. Plantation Establishment Alex Dobkowski - Weyerhaeuser 1

Red Alder Tree Growing. Plantation Establishment Alex Dobkowski - Weyerhaeuser 1 Red Alder Tree Growing Plantation Establishment 10-27-09 Alex Dobkowski - Weyerhaeuser 1 Red Alder Tree Growing Planting Establishment The keys to achieving good yields for red alder is to plant it on

More information

Denitrification- Causes and Solutions. Amit Chatterjee Soil Science, NDSU

Denitrification- Causes and Solutions. Amit Chatterjee Soil Science, NDSU Denitrification- Causes and Solutions Amit Chatterjee Soil Science, NDSU Denitrification- What is it? Natural soil microbial process where nitrate (NO 3- ) is converted to nitrogen (N) gases (NO, N 2 O

More information

Irrigation Scheduling and Soil Moisture Monitoring in the Vineyard

Irrigation Scheduling and Soil Moisture Monitoring in the Vineyard Irrigation Scheduling and Soil Moisture Monitoring in the Vineyard R. Troy Peters, Ph.D., P.E. Extension Irrigation Engineer Washington State University, IAREC Prosser, WA Soil Water Saturation Field

More information

Assessing Soil Health: Building Resilience Following a Wet Harvest

Assessing Soil Health: Building Resilience Following a Wet Harvest Assessing Soil Health: Building Resilience Following a Wet Harvest............................... Marla Riekman, PAg, CCA Soil Management Specialist Manitoba Agriculture SOIL HEALTH PHYSICAL Soil compaction

More information

CMG GardenNotes #659 Understanding Tree Roots. Functions of Tree Roots. Support\anchorage

CMG GardenNotes #659 Understanding Tree Roots. Functions of Tree Roots. Support\anchorage CMG GardenNotes #659 Understanding Tree Roots Outline: Functions of Tree Roots, page 1 Describing Tree Roots, page 2 Conditions That Can Adversely Affect Roots, page 4 Other Common Root Issues, page 5

More information

Sandy Soils. Sand. Silt. Sandy soils. Silty soils. Wind blown and alluvial parent materials. Low water holding capacity

Sandy Soils. Sand. Silt. Sandy soils. Silty soils. Wind blown and alluvial parent materials. Low water holding capacity Sand Large particles you can see Large spaces between particles Rapid water flow Non cohesive Small surface area Low water holding capacity Susceptible to drought Small surface area Low CEC Infertile Easily

More information

Optimizing the Water Relations of Cuttings During Propagation

Optimizing the Water Relations of Cuttings During Propagation Optimizing the Water Relations of Cuttings During Propagation Fred Davies Dept. of Horticultural Sciences Texas A&M University College Station, Texas So, How Do Cuttings Gain & Lose Water??? Water Water

More information

Forcing Containerized Roses in a Retractable Roof Greenhouse and Outdoors in a Semi-Arid Climate

Forcing Containerized Roses in a Retractable Roof Greenhouse and Outdoors in a Semi-Arid Climate Forcing Containerized Roses in a Retractable Roof Greenhouse and Outdoors in a Semi-Arid Climate Ursula K. Schuch Plant Sciences Department University of Arizona, Tucson, AZ 85721 Abstract Sales of containerized

More information

(This is a reprint of the original document.) By: Duane R. Durgee Alachua County Urban Forester

(This is a reprint of the original document.) By: Duane R. Durgee Alachua County Urban Forester (This is a reprint of the original document.) By: Duane R. Durgee Alachua County Urban Forester 1.0 TREE PROTECTION DURING CONSTRUCTION According to Florida Forest Statistics, 1987, (USDA Forest Service

More information

Drying principles and general considerations

Drying principles and general considerations Drying principles and general considerations Drying Mechanisms In the process of drying heat is necessary to evaporate moisture from the grain and a flow of air is needed to carry away the evaporated moisture.

More information

A new test procedure to measure the soil-water characteristic curves using a small-scale centrifuge

A new test procedure to measure the soil-water characteristic curves using a small-scale centrifuge A new test procedure to measure the soil-water characteristic curves using a small-scale centrifuge R. M. Khanzode, Graduate Student, University of Saskatchewan, Saskatoon, Canada, S7N 5A9 D.G. Fredlund,

More information

Cloning in an Octopot Grow System

Cloning in an Octopot Grow System An experiment was conducted to determine the effectiveness of starting a stem cutting directly in an Octopot Grow System. Cannabis clones are typically started in a specialized container then transplanted

More information

Homework Activity Jar Test for Soil Texture

Homework Activity Jar Test for Soil Texture Homework Activity Jar Test for Soil Texture Background: 1. What is soil? 2. What natural factors influence the formation of soil? 3. How will the depth of each horizon in your soil profile affect your

More information

Activity Watering and Plant Growth

Activity Watering and Plant Growth Activity Watering and Plant Growth Students will design and carry out an experiment to determine how altering watering conditions (temperature, amount, size of droplet, time of day, mulching, type of soil,

More information

The Effect of Potassium Humate, Chicken Feathers and Vermicompost on the Water Retention Curve

The Effect of Potassium Humate, Chicken Feathers and Vermicompost on the Water Retention Curve 2015, TextRoad Publication ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com The Effect of Potassium Humate, Chicken Feathers and Vermicompost on the Water Retention

More information

NCEA Level 2 Agricultural and Horticultural Science (91290) 2014 page 1 of 8

NCEA Level 2 Agricultural and Horticultural Science (91290) 2014 page 1 of 8 NCEA Level 2 Agricultural and Horticultural Science (91290) 2014 page 1 of 8 Assessment Schedule 2014 Agricultural and Horticultural Science: Demonstrate understanding of techniques used to modify physical

More information

Soil Texture and Structure. Chris Thoreau February 24, 2012

Soil Texture and Structure. Chris Thoreau February 24, 2012 Soil Texture and Structure Chris Thoreau February 24, 2012 Soil texture refers to the relative amount of sand, silt, and clay found in a soil The mixture of these components affects the feel of the soil

More information

EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL

EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL Vanapalli, S.K., Pufahl, D.E., and Fredlund, D.G. (University of Saskatchewan, Saskatoon, SK., Canada, S7N 5A9) Abstract An experimental

More information

Eco new farmers. Module 2 Soil and Nutrient Cycling. Section 1 Soils and soil fertility

Eco new farmers. Module 2 Soil and Nutrient Cycling. Section 1 Soils and soil fertility Eco new farmers Module 2 Soil and Nutrient Cycling Section 1 Soils and soil fertility Module 2 Soil and Nutrient Cycling Section 1 - Soils and soil fertility www.econewfarmers.eu 1. Introduction You will

More information

The Impact of Woody Vegetation on Levees Research Experiences from Austria

The Impact of Woody Vegetation on Levees Research Experiences from Austria EGU 2012 LEVEE VEGETATION RESEARCH SYMPOSIUM 2012 Sacramento, California, August 28 30, 2012 The Impact of Woody Vegetation on Levees Research Experiences from Austria Walter LAMMERANNER Institute of Soil

More information

NOTES ON SOME GROWTH CHARACTERISTICS OF MIKANIA CORD AT A (BURM. F.) B.L. ROBINSON*) B.T. MERCADO ABSTRACT INTRODUCTION

NOTES ON SOME GROWTH CHARACTERISTICS OF MIKANIA CORD AT A (BURM. F.) B.L. ROBINSON*) B.T. MERCADO ABSTRACT INTRODUCTION BIOTROPIA No. 7, 1994: 30-40 NOTES ON SOME GROWTH CHARACTERISTICS OF MIKANIA CORD AT A (BURM. F.) B.L. ROBINSON*) B.T. MERCADO Institute of Biological Sciences, University of the Philippines at Los Banos,

More information

Unit 5: Soil - Stages of Soil formation

Unit 5: Soil - Stages of Soil formation Biology Form 3 Page 68 Ms. R. Buttigieg Unit 5: Soil - Stages of Soil formation Soil is the layer of material covering parts of the land, the home of many organisms and the area from which land plants

More information

WTFRC Project # AH A Penn State Project: WTFRC Soil Moisture 39E8

WTFRC Project # AH A Penn State Project: WTFRC Soil Moisture 39E8 WTFRC Project # AH-02-206A Penn State Project: 404-66 WTFRC Soil Moisture 39E8 Project Title: Towards a better understanding of soil moisture deficits on shoot & root physiology Principal Investigator:

More information

On Soil Structure of Plowed Layer of Paddy Field

On Soil Structure of Plowed Layer of Paddy Field On Soil Structure of Plowed Layer of Paddy Field By YOSHIMITSU DEI* and KENICHI MAEDA** * Head, Agricultural Chemistry Division, Hokkaido National Agricultural Experiment Station ** Soil and Fertilizer

More information

Growth and nutrient absorption of grapes as affected by soil aeration. I. With non-bearing Delaware grapes A. KOBAYASHI, K. IWASAKI and Y.

Growth and nutrient absorption of grapes as affected by soil aeration. I. With non-bearing Delaware grapes A. KOBAYASHI, K. IWASAKI and Y. Growth and nutrient absorption of grapes as affected by soil aeration. I. With non-bearing Delaware grapes A. KOBAYASHI, K. IWASAKI and Y. SATO (College of Agriculture, Kyoto University) It is well known

More information

What Goes on Underground? Soil is a Functioning Ecosystem! A Healthy Soil is a Living Soil. Elaine Ingham, Ph.D. Chief Scientist, Rodale Institute

What Goes on Underground? Soil is a Functioning Ecosystem! A Healthy Soil is a Living Soil. Elaine Ingham, Ph.D. Chief Scientist, Rodale Institute What Goes on Underground? Soil is a Functioning Ecosystem! A Healthy Soil is a Living Soil Elaine Ingham, Ph.D. Chief Scientist, Rodale Institute Health: 1.Not diseased, no pests, no parasites 2.Not nutrient

More information

There are different types of weathering weathering and weathering. Both types work together to change Earth s surface.

There are different types of weathering weathering and weathering. Both types work together to change Earth s surface. Weathering effects Classifying Sediment The surface processes that break down rock are called. Weathering breaks rock into smaller and smaller pieces. Tiny moss plants, earthworms, wind, rain, and even

More information

HealthyGro Fertilizer Trials

HealthyGro Fertilizer Trials HealthyGro Fertilizer Trials Conducted by LSU AgCenter Trial 1 The Effect of HealthyGro Fertilizers on Bermudagrass cv Tifway Growth Objective Evaluate the effect of HealthyGro compost fertilizers on mature

More information

Soil-Suction Measurements Using the Filter Paper Method to Evaluate Swelling Potential

Soil-Suction Measurements Using the Filter Paper Method to Evaluate Swelling Potential Soil-Suction Measurements Using the Filter Paper Method to Evaluate Swelling Potential Charles Lucian Ardhi University (ARU), P.O. Box 35176, Dar es Salaam, Tanzania Email: lucian@aru.ac.tz, charleslucian@gmail.com

More information

Lecture 3: Soil Microclimatology

Lecture 3: Soil Microclimatology Lecture 3: Soil Microclimatology Introduction to Soils Heat Transfer Through Soils Water Transfer Through Soils What is a Soil? Soil is a complex mixture of mineral matter, organic matter and living organisms

More information

Prepared and Published by Irrigation Industry Association of British Columbia (IIABC) Editor

Prepared and Published by Irrigation Industry Association of British Columbia (IIABC) Editor Landscape Drip Irrigation Scheduling Calculator Users Guide Prepared and Published by (IIABC) Editor Ted W. van der Gulik, P.Eng. February 2010 www.irrigationbc.com TABLE OF CONTENTS INTRODUCTION... 5

More information

Keywords: soil carbon storage, CO 2 efflux, biomass, carbon balance

Keywords: soil carbon storage, CO 2 efflux, biomass, carbon balance Study on Carbon Storage and Carbon Balance in Vetiver Grass Cultivation Areas in Northern Thailand P. Nopmalai, A. Sukhkasem, K. Kanjanathanaset, K. Wattanaprapat and I. Meesing Land Development Department,Chatuchak,

More information

Soil Moisture and Aeration

Soil Moisture and Aeration The Basic Concept of Soil Arthur Spomer and R. W. Langhans Department of Floriculture Cornell University The soil is something every floriculturist uses, yet there is a wide spread lack of understanding

More information

How to Grow Leaf Lettuce

How to Grow Leaf Lettuce How to Grow Leaf Lettuce ) 888 246 5233 Planting Lettuce can be started from seed or from plants. Some gardeners like to direct seed their lettuce but many prefer to start transplants and then move them

More information

1 Determination of soil moisture content by theromogravimetric method.

1 Determination of soil moisture content by theromogravimetric method. { PRACTICALS 1 Determination of soil moisture content by theromogravimetric method. 1.1 INTRODUCTION The principal method of soil mosture determination in common use is where the water is removed by oven-dry

More information

Production, transportation and storage of the seedlings for mechanized planting and extended planting season

Production, transportation and storage of the seedlings for mechanized planting and extended planting season METLA Production, transportation and storage of the seedlings for mechanized planting and extended planting season Nordic Nursery Conference 5-6 Sep. 27, NSFP Risto Rikala, METLA Seedlings for the whole

More information

H. E. Sommer, H. Y. Wetzstein and N. Lee

H. E. Sommer, H. Y. Wetzstein and N. Lee TISSUE CULTURE OF SWEETGUM (LIQUIDAMBAR STYRACIFLUA L.) H. E. Sommer, H. Y. Wetzstein and N. Lee Abstract.--An improved method for the tissue culture propagation of sweetgum (Liquidambar styraciflua L.)

More information

Puricare s approach to Brackish Water Irrigation and Saline Soils

Puricare s approach to Brackish Water Irrigation and Saline Soils Puricare s approach to Brackish Water Irrigation and Saline Soils During dry summer months many farmers experience serious problems with the increased salinity of irrigation water due to more intensive

More information

IRRIGATION AND NUTRIENT MANAGEMENT IN TREE FRUIT PRODUCTION SYSTEMS.

IRRIGATION AND NUTRIENT MANAGEMENT IN TREE FRUIT PRODUCTION SYSTEMS. IRRIGATION AND NUTRIENT MANAGEMENT IN TREE FRUIT PRODUCTION SYSTEMS Neilsen, D 1, Neilsen, G 1, Forge T 1 denise.neilsen@agr.gc.ca 1 Agriculture and Agri-Food Canada, Summerland, B.C. Canada KEYWORDS Irrigation

More information

FIRST YEAR RECOVERY FOLLOWING A SIMULATED DROUGHT IN WALNUT. D. A. Goldhamer, R. Beede, S. Sibbett, D. Ramos, D. Katayama, S. Fusi, and R.

FIRST YEAR RECOVERY FOLLOWING A SIMULATED DROUGHT IN WALNUT. D. A. Goldhamer, R. Beede, S. Sibbett, D. Ramos, D. Katayama, S. Fusi, and R. FIRST YEAR RECOVERY FOLLOWING A SIMULATED DROUGHT IN WALNUT D. A. Goldhamer, R. Beede, S. Sibbett, D. Ramos, D. Katayama, S. Fusi, and R. Jones ABSTRACT A one year drought was simulated in on mature conventionally

More information

27/01/2017. This event is being run by SAC Consulting. What is Soil?

27/01/2017. This event is being run by SAC Consulting. What is Soil? This event is being run by SAC Consulting What is Soil? 1 Soil Texture It describes the physical composition of the soil % of sand, silt and clay Refers to the mineral fragments of the soil only water

More information

Kansas State Agricultural College SWEET CLOVER.

Kansas State Agricultural College SWEET CLOVER. Kansas State Agricultural College EXPERIMENT STATION Circular No. 34. DEPARTMENT OF AGRONOMY L. E. Call, Agronomist in Charge SWEET CLOVER. By C. C. CUNNINGHAM. SWEET CLOVER is destined to occupy an important

More information

Effect of Water and Nitrogen Stresses on Correlation among Winter Wheat Organs

Effect of Water and Nitrogen Stresses on Correlation among Winter Wheat Organs Effect of Water and Nitrogen Stresses on Correlation among Winter Wheat Organs Zhou Xin-yang and Wang Yang-ren * Hydraulic Engineering Department, Tianjin Agricultural University, Tianjin, China, 300384

More information