Study on Methods of Drying on Soils

Size: px
Start display at page:

Download "Study on Methods of Drying on Soils"

Transcription

1 ISSN(Online): Study on Methods of Drying on Soils B.Naveena 1, K.Suresh 2 & Dr. K.V.Uday 3 P.G Student, Department of Civil Engineering, VNR Vignana Jyothi Institute of, Hyderabad, India 1 Assistant Professor, Department of Civil Engineering, VNR Vignana Jyothi Institute of, Hyderabad, India 2 Assistant Professor, School of Engineering, IIT, Mandi, Himachal Pradesh, India 3 ABSTRACT: Naturally soils are formed by weathering of parent rock. These soils are generally subjected to drying due to natural environmental fluctuations, human interventions and various engineering activities. During drying, the soil loses insitu moisture content from the soil matrix and exhibits volumetric reduction, i.e. shrinkage. Due to this, soil loses its integrity and in given situations, may lead to erosion and cracking. Such cracking can adversely affect the applications and properties of fine-grained soils. Cracking has been reported to be detrimental in case of soil applications such as moisture barriers, landfill liners, embankment cores, excavations and stability of slopes. This loss of moisture content from soils mainly depends on ambient temperature, humidity, chemicals. However, most of natural soils are saturated or unsaturated, subjected to drying. With this in view, efforts have been made to determine evaporation rate from extensive drying laboratory methods such as Temperature controlled oven, desiccator and Air drying. Using these methods, studies were conducted for various types of soils. From the results it has been observed that evaporation rate is high at temperature 50⁰C, whereas constant at 40⁰C with air drying and low in desiccator drying. Also, it has been observed that drying time varies with method and soil. KEYWORDS: Soils, Drying, Moisture content, Laboratory methods, Evaporation rate. I.INTRODUCTION Soils are formed by process of weathering of parent rock. Due to different climatic environmental conditions soils are subjected to drying (i.e., temperature, radiation, humidity) and due to human intervention (i.e., conduit leakages disposal of industrial Hazardous wastes). Drying of soils depend upon the temperature, evaporation rate, humidity, chemicals. During drying the soil losses its insitu moisture content and exhibits volumetric reduction known as shrinkage. This shrinkage results in cracking in some soils mainly in fine- grained soils (clayey soils). These clayey soils () are present mostly in worldwide [1] as these are expansive soils causes cracking in soils during drying. The presence of cracking in clay soils can significantly alter its hydrological, physico-chemical and thermal properties. This problem has been a stumbling block in numerous disciplines such as geotechnical, geo-environmental, agricultural and transportation engineering. Despite soil cracking has been a major issue in a wide range of applications moisture barriers, landfill liners, embankment cores, excavations and stability of slopes. Further it has been demonstrated that drying effects its swelling behaviour[4], shearstrength[12], Soil water characteristic curve(swcc)[2,3], stress-strain behaviour[11]. Though the devices such as Tempe pressure cell[2], oven[5], stove, hot air circulator[4], Infrared oven[6] and many methods have been employed for drying of soils. However, there have been very limited understanding on the effect of chemicals on drying of soils. The objective of this study is, therefore to investigate the environmental effects of drying on soils by different methods due to variation in temperature, chemicals. The primary purpose is to evaluate the efficiency of evaporation rate of different soils by different methods and secondary costs associated with it. Drying characteristics of various types of soils were studied and recommendations are made for estimating the drying time. For drying, the soils from Copyright to IJIRSET DOI:10.156/IJIRSET

2 ISSN(Online): granular materials (sand) to fine grained (silt and clay) are taken. The amount of water in the soil matrix and the compactness of the grains vary from one soil sample to another soil sample. II.MATERIALS AND METHODOLOGY Materials Three different types of soils are taken mainly,, obtained from in and around Hyderabad. The properties of these soils and the test procedures have been discussed in detail here with. Experimentation Basic Index tests: Specific gravity The Specific gravity (G) of the soil has been determined by exploited some density bottle and pycnometer as per the guidelines provided by [7]. The average value has been taken from the three trials and the results for different soils are shown in the table. Wet sieve analysis and hydrometer test According to IS: 2720 (part 4)-1985[8] the wet sieve analysis and hydrometer tests are conducted to determine the particle size of the soils. Liquid limit and plastic limit According to the IS: 2720 (part V) [9] the liquid limit (LL) and plastic limit (PL) are conducted. Standard Proctor test According to IS: 2720 (part VII) 1985[10] the standard proctor test is conducted to determine the Optimum Moisture Content (OMC) and Maximum Dry density (MDD) of the soil. Drying Tests: The expulsion of water from the soil sample or specimen is termed as desiccation or drying. The drying rate depends on the ambient conditions (i.e., temperature, humidity, pressure and chemicals). To investigate the influence of these parameters on drying characteristics of soils, the following methodology was developed. A certain amount of soil passing through 425µ sieve size was thoroughly mixed with the desired amount of distilled water using an electric operated stirrer for some time, to obtain slurry for certain consistency, with predetermined initial moisture content. Later this slurry was poured into a Petri dish (70mm in diameter and 14 mm thick) and to remove entrapped air or air voids, the dish was tapped on wooden platform). The petridish used in this study were defect-free (i.e., protrusions on the inner side and no concentric depressions). The weight of Petri dish with soil slurry (W) is noted on weighing balance accurate to 0.01g and the dish with different soils was placed in the methods followed below. The weights of soil specimens are noted over a period of time (t), until three consecutive readings were observed to be same. Three different methods used in this study are Temperature-controlled oven, Desiccator (Vacuum type) and Air drying. These three methods are explained in detail below as these are conducted in laboratory considering the environemental effects on soils. Temperature controlled oven: The Oven is used for drying of soils at a specified temperatures. These soil specimens are kept in oven and allowed for drying for varying temperatures (i.e., 30⁰C, 40⁰C, 50⁰C). The variation of temperature may vary approximately ±2⁰C in oven. Desiccator: A Desiccator or desiccant container is an air tight chamber that removes water under constant temperature and humidity conditions. It consists of two chambers at bottom chamber desiccant (silica gel) is placed and soil specimens were placed over the porous plate and allowed for drying. The whole assembly desiccators placed at room temperature 26±2⁰C. Copyright to IJIRSET DOI:10.156/IJIRSET

3 Weight(g) ISSN(Online): Air drying: In this method soil samples were subjected to drying at room temperature 26±2⁰C. The soil specimens are placed in a platform subjected to drying. During drying the readings are noted over a period of time(t), until three consecutive readings were observed to be same. III. EXPERIMENTAL RESULTS The soils are collected in and around Hyderabad city. These soils have been analysed for various physical and mechanical properties and are as listed in the Table 3.1 Table 3.1.Properties of soils Properties Soil samples Specific Gravity Gravel% % % Clay% Liquid limit (%) Plastic limit (%) Plasticity Index Soil Classification CL ML SW OMC (%) MDD (g/cm 3 ) Temperature controlled oven: The soils are subjected to drying for three different temperatures (i.e., 30⁰C, 40⁰C, 50⁰C). It has been observed that drying time depends on temperature and type of soil Drying 10 Time(h) Figure: 3.1. (a) The weight loss undergone by the soil specimen with respect to time at temperature 50⁰C. From the figure3.1 (a) it has been observed that that drying time is maximum for black cotton soil, moderate for silty soil and minimum for sand. It also been observed that more cracks are formed for black cotton and no cracks are observed for silty soil and sand. Copyright to IJIRSET DOI:10.156/IJIRSET

4 Weight(g) Weight(g) ISSN(Online): The soils black cotton, silty soil and sand were subjected to drying in temperature controlled oven at temperature 40⁰C. The variation of weight loss with respect to time is shown in figure: 3.1.(b) below Drying Time(h) Figure: 3.1. (b) The weight loss undergone by the soil specimen with respect to time at temperature 40⁰C. From the Figure 3.1. (b) It has been observed that that drying time is maximum for black cotton soil, moderate for silty soil and minimum for sand. It also been observed that more cracks are formed for black cotton but less than the cracks at temperature 50⁰C and no cracks are observed for silty soil and sand. The soils black cotton, silty soil and sand were subjected to drying in temperature controlled oven at temperature 30⁰C. The variation of weight loss with respect to time is shown in figure: 3.1. (c) Below Drying time(h) Figure: 3.1. (c) The weight loss undergone by the soil specimen with respect to time at temperature 30⁰C From thfigure 3.1. (c) It has been observed that that drying time is maximum for black cotton soil, moderate for silty soil and minimum for sand. It also been no cracks are observed for, silty soil and sand. The weight loss observed to be smooth curves. Copyright to IJIRSET DOI:10.156/IJIRSET

5 Weight(g) Weight(g) ISSN(Online): Air drying: The soils are subjected to air drying at room temperature 26±2⁰C. The variation of drying time for soils is shown in Figure.3.2 below Drying Time(h) Figure: 3.2 the weight loss undergone by the soil specimen with respect to time in air drying From the 3.2 it has been observed that drying time is high for black cotton soil, and low for sand. It has observed that the lines are smooth curves. It has also been observed that cracks formed for black cotton and no cracks for silty soil and clay Desiccator drying: The soils are subjected to drying in desiccator with desiccant (silica gel) at room temperature 26±2⁰C. The variation of drying time is shown in Figure: 3.3 below Drying Time(h) Figure3.3 The weight loss undergone by the soil specimen with respect to time in desiccator drying From the Figure: 3.3 it has been observed that drying time is maximum for black cotton, moderate for silty soil, and minimum for sand. The cracks are formed for black cotton but less compared to temperature at 50⁰C and air drying. And no cracks observed for silty soil and sand. Copyright to IJIRSET DOI:10.156/IJIRSET

6 ISSN(Online): Cracking in soils: Cracking can adversely affect fine-grained soils. The presence of high amounts of clay particles in a soil (fine-grained soil), particularly highly active clay minerals such as smectites and vermiculites, promotes the formation of cracks. The Desiccation cracks form as a result of water loss to the atmosphere from a drying soil mass and also due to chemicals drying of soil takes place. Drying causes shrinkage and subsequent cracking of the soil mainly in expansive soils. As the black cotton soil in this study contains high clay content results when subjected to drying causes shrinkage and results in cracking. The variation of cracks in different methods (temperature controlled oven, air drying and desiccators drying) for black cotton soil is shown in Figure 3.4 below. Temperature cotrolled oven Air drying Desiccator Drying Figure 3.4 the cracking patterns of the specimen of the corresponding to different methods of temperature controlled oven (50⁰C), Air drying, desiccator drying From the figure: 3.4 for black cotton it has been observed that cracks are reduced from method to method. More cracks are formed at temperature controlled oven and less cracks in desiccator drying. It can be observed that the cracking density/intensity is decreasing with the decreasing evaporation rate. Hence, it can be postulated that the cracking characteristics are dependent on evaporation rates as reported [13, 14] Evaporation rate: Evaporation rate is obtained from the slope of weight loss undergone by soil specimens with respect to time for black cotton, silty soil and sand for methods air drying, desiccators drying and oven drying at temperatures (50⁰C, 40⁰C, 30⁰C). Evaporation rate depends on method and the type of soil. The evaporation rate for black cotton, silt and sand for drying methods of air drying, desiccators drying, oven drying for temperature(50⁰c, 40⁰C, 30⁰C) is tabulated in table 3.2 below. Soils Air drying Evaporation Rate (g/hr) Desiccator drying oven drying 50⁰C 40⁰C 30⁰C Table: 3.2 Evaporation rate for black cotton, silty soil and sand for different methods From the table: 3.2 it has been observed that the evaporation rate is decreasing from black cotton, silty soil and sand. It is observed that evaporation rate for soils are highest for oven drying at temperature 50⁰C and lowest in desiccators Copyright to IJIRSET DOI:10.156/IJIRSET

7 Evaporation Rate (g/hr) ISSN(Online): drying. Also it has been observed that evaporation rate for soils in air drying and in oven drying at temperature 40⁰C is approximately equal and for temperature30⁰ C is less. In figure3.4 the evaporation rate for three different methods i.e., for Air drying, desiccators drying and temperature controlled oven drying(50⁰c, 40⁰C, 30⁰C) for black cotton, silty soil and sand the graph is plotted below Air drying Desicator drying Temperature@50C Temperature@40C Temperature@30C Soils Figure: 3.5.Evaporation for different soils From the Figure 3.5 it has been observed that evaporation rate is high at temperature 50⁰C, whereas constant at temperature 40⁰C with air drying, low at temperature 30⁰C and very low in desiccator drying for soils. Thus the evaporation rate varies from method. IV. CONCLUSION The present study was taken up, to study the effect of temperature and chemicals on different types of soils varying from granular to fine grained soils. Based on extensive investigations it has been observed that the drying time varies from method and type of soil. It also been observed that evaporation rate is high at temperature 50⁰C, whereas constant at temperature 40⁰C with air drying, low at temperature 30⁰C, and very low in desiccator drying. Also, it has been observed that the cracking patterns are observed to differ with the evaporation rate, qualitatively it has been depicted that the cracking intensity decreases with the decrease in the evaporation rate. REFERENCES [1].Akshat Mehrotra, Hadi Ghasemian, D.R. Kulkami, N.R Patil Effect of HDPE plastic on the Unconfined Compressive Strength o f soil. International Journal of Innovative Research in Science.Vol.3, pp , [2].Hong Yang, Harianto Rahardjo, Choo Leon, and D.G.Fredlund, Factors affecting drying and wetting soil water characteristic curves of sandy soils. Canadian Geotechnical Journal Vol.41, pp.8-920, [3].Sneha Jayantha and D.N.Singh, Establishing Drying- and Wetting-Path SWCCs of Fine-grained soils Using Aquasorp. Canadian Geotechnical Journal..Vol.3, pp , [4].S.M.Rao, B.V.V.Reddy, M.Mutharam, Impact of cyclic wetting and drying on the swelling behavior of stabilized expansive soils.elsevier Engineering Geology Vol.60, pp ,2001. [5].Brendan C.O Kelly, Accurate Determination of Moisture Content of Organic Soils Using the Oven Drying Method.Drying Technology Vol.22.pp , [6].Sami Arsoy Temperature-controlled Infrared Drying Characteristic of Soils.Drying Technology, Vol.26.pp , [7].IS2720-Part3,(19), Determination of specific gravity, Bureau of Indian Standards, New Delhi, India.. Copyright to IJIRSET DOI:10.156/IJIRSET

8 ISSN(Online): [8].IS2720-Part4,(1985), Grain Size Analysis, Bureau of Indian Standards, New Delhi, India. [9].IS 2720-Part 5, (1985), Determination of Liquid and plastic limit, Bureau of Indian Standards, New Delhi, India [10].IS2720-Part7, (19), Determination of water content-dry density relation using light compaction, Bureau of Indian Standards,New Delhi, India. [11].Wheeler, S.J., Sharma, R.J., and Buisson, M.S.R, Coupling of Hydraulic Hysteresis and Stress Strain Behaviour in unsaturated Soils. Geotechnique, Vol.53, pp.41-54, [12]. Jeevana Smitha and Dr. K.V.Uday Strength of soils during drying. Indian Geotechnical Conference. Vol.68,pp.86-91, [13]. Uday, K.V., Prathyusha N. V. Jayanthi, Singh, D. N., and Apte, P. R.,"Application of Taguchi Method in Establishing Criticality of Parameters that Influence Cracking Characteristics of Fine-grained soils, Drying Technology, Vol.33, pp , [14].Uday, K.V. and Singh, D. N,"Investigations on Cracking Characteristics of Fine-grained Soils under Varied Environmental Conditions". Drying Technology, Vol.31, pp , Copyright to IJIRSET DOI:10.156/IJIRSET

COMPARISON OF SHEAR STRENGTH PARAMETERS OF BLACK COTTON SOIL WITH EFFECT OF RELATIVE COMPACTION

COMPARISON OF SHEAR STRENGTH PARAMETERS OF BLACK COTTON SOIL WITH EFFECT OF RELATIVE COMPACTION Vol-2 Issue-4 16 COMPARISON OF SHEAR STRENGTH PARAMETERS OF BLACK COTTON SOIL WITH EFFECT OF RELATIVE COMPACTION Prof. Usha k. Patel Assistant Professor, LDCE Prof. M. G. Vanza Associate Professor, LDCE

More information

Influence of Different Materials to Improve the Stabilization of Black Cotton Soil

Influence of Different Materials to Improve the Stabilization of Black Cotton Soil IJIRST International Journal for Innovative Research in Science & Technology Volume 4 Issue 3 August 2017 ISSN (online): 2349-6010 Influence of Different Materials to Improve the Stabilization of Black

More information

SOIL STABILISATION USING MARBLE DUST

SOIL STABILISATION USING MARBLE DUST International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 4, April 217, pp. 176-1713, Article ID: IJCIET_8_4_192 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=8&itype=4

More information

[Gupta* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Gupta* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 [Gupta* et al., 5(7): July, 6] ISSN: 77-9655 IC Value: 3. Impact Factor: 4.6 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY EFFECT OF DENSITY AND MOISTURE ON THE SLOPE STABILITY

More information

Stabilization of Expansive Soil with Micro Silica, Lime and Fly Ash for Pavement

Stabilization of Expansive Soil with Micro Silica, Lime and Fly Ash for Pavement Stabilization of Expansive with Silica, Lime and Fly Ash for Pavement S.W.Thakare, Priti Chauhan Department of Civil Engineering, Government College of Engineering, Amravati,M.S, India-444604, Email: sanjay.thakare1964@gmail.com,

More information

A Study on Soil Stabilization of Clay Soil Using Flyash

A Study on Soil Stabilization of Clay Soil Using Flyash Volume 1, Issue 2, October-December, 2013, pp. 33-37, IASTER 2013 www.iaster.com, Online: 2347-2855, Print: 2347-8284 ABSTRACT A Study on Soil Stabilization of Clay Soil Using Flyash R. Saravanan*, Roopa

More information

An Experimental Study on Variation of Shear Strength for Layered Soils

An Experimental Study on Variation of Shear Strength for Layered Soils An Experimental Study on Variation of Shear Strength for Layered Soils Mr. Hemantkumar Ronad 1 DCE, M.Tech in Geotechnical Engg. Department of Civil Engineering 1, Basaveshwar Engineering College, Bagalkot-587102.

More information

Consolidation Stress Effect On Strength Of Lime Stabilized Soil

Consolidation Stress Effect On Strength Of Lime Stabilized Soil RESEARCH ARTICLE OPEN ACCESS Consolidation Stress Effect On Strength Of Stabilized Soil K. Saranya*, Dr. M. Muttharam** *(Department of Civil Engineering, Research Scholar, Anna University, Chennai-25)

More information

Improvement in CBR of Expansive Soil with Jute Fiber Reinforcement

Improvement in CBR of Expansive Soil with Jute Fiber Reinforcement Improvement in CBR of Expansive Soil with Jute Fiber Amit Kumar Singh (M.E. Geotechnical Engg.) R.K. Yadav (Associate Professor) Civil Engineering Department, Jabalpur Engineering College (JEC), Jabalpur,

More information

Identification of key parameters on Soil Water Characteristic Curve

Identification of key parameters on Soil Water Characteristic Curve Identification of key parameters on Soil Water Characteristic Curve A.A. Heshmati 1, M.R. Motahari 2,* 1, 2 School of Civil Engineering, Iran University of Science and Technology P.O. Box 16765-163, Narmak,

More information

A Study on Stabilization of Subgrade Soil Using Natural Fibers (Coir and Jute)

A Study on Stabilization of Subgrade Soil Using Natural Fibers (Coir and Jute) A Study on Stabilization of Subgrade Soil Using Natural Fibers (Coir and Jute) M. Mohan 1, L. Manjesh Research Scholar, Department of Civil Engineering, UVCE, Bangalore University, Bengaluru, Karnataka,

More information

Table III.A PHYSICAL PROPERTIES OF CLAYEY SOIL

Table III.A PHYSICAL PROPERTIES OF CLAYEY SOIL www.ijraset.com Volume Issue V, May 217 IC Value: 4.98 ISSN: 2321-963 Stabilization of by using Gypsum and Calcium Chloride Bhanu Pratap Singh Sikarwar 1, M. K Trivedi 2 1 P.G. Student, 2 Professor, Department

More information

O M E Taha. Keywords: nanoparticles, shrinkage strain, expansive strain, nano-copper, nano-alumina ABSTRACT

O M E Taha. Keywords: nanoparticles, shrinkage strain, expansive strain, nano-copper, nano-alumina ABSTRACT Taha, M.R. &Taha, O.M.E. (2013) Proc. 19 th NZGS Geotechnical Symposium. Ed. CY Chin, Queenstown Improvement of shrinkage and expansive soil properties using nanocopper M R Taha Dept. of Civil & Structural

More information

Stabilization of Subgrade by Using Waste Plastic Bottle Strips and Marble Dust Powder

Stabilization of Subgrade by Using Waste Plastic Bottle Strips and Marble Dust Powder Stabilization of Subgrade by Using Waste Plastic Bottle Strips and Marble Dust Powder Prof. Datta Javkar 1, Prof. Sujit Vaijwade 2, Mujahid Pathan 3, Mayur Bansode 4, Harshal Lakde 5, Darshan Hake 6, Saurabh

More information

Effect of Woven Polyester Geotextile on the Strength of Black Cotton Soil

Effect of Woven Polyester Geotextile on the Strength of Black Cotton Soil Effect of Woven Polyester Geotextile on the Strength of Black Cotton Soil Rishi Srivastava 1, Shalinee Shukla 2, R.P. Tiwari 3, Ayush Mittal 4 P.G. Student, Department of Civil Engineering, MNNIT Allahabad,

More information

Effect of Admixtures on Strength and Compressibility Characteristics of Different Types of Soils

Effect of Admixtures on Strength and Compressibility Characteristics of Different Types of Soils Effect of Admixtures on Strength and Compressibility Characteristics of Different Types of Soils Deepika Bonagiri Research Scholar, M.Tech Geo-Technical Engineering, Malla Reddy Engineering College (Autonomous),

More information

Soil Stabilization by Groundnut Pulp and Coconut Pulp

Soil Stabilization by Groundnut Pulp and Coconut Pulp Soil Stabilization by Groundnut Pulp and Coconut Pulp Civil Engineering RGUKT, RK Valley ABSTRACT: Soil is a base of structure, which actually supports the structure from beneath and distributes the load

More information

SUBGRADE IMPROVEMENT OF CLAYEY SOIL WITH THE USE OF GEOTEXTILES

SUBGRADE IMPROVEMENT OF CLAYEY SOIL WITH THE USE OF GEOTEXTILES SUBGRADE IMPROVEMENT OF CLAYEY SOIL WITH THE USE OF GEOTEXTILES 1 Soma Prashanth Kumar, 2 Mohammed Asif T L, 3 Mane S R Rohith 1 Assistant Professor, Department of Civil Engineering, JBIET, Moinabad, (India)

More information

An Experimental Study of Soil Stabilization using Marble Dust

An Experimental Study of Soil Stabilization using Marble Dust e t International Journal on Emerging Technologies 9(1): 9-14(2018) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 An Experimental Study of Soil Stabilization using Marble Dust Anukant Lohia,

More information

Soil Stabilization by Using Fly Ash

Soil Stabilization by Using Fly Ash IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 6 Ver. VII (Nov. - Dec. 2016), PP 10-14 www.iosrjournals.org Soil Stabilization by Using

More information

International Journal of Advance Engineering and Research Development. Soil Stabilization Using Terrazyme

International Journal of Advance Engineering and Research Development. Soil Stabilization Using Terrazyme Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 12, December -2016 Soil Stabilization Using Terrazyme e-issn (O):

More information

Study of Soil Cement with Admixture Stabilization for Road Sub-Grade

Study of Soil Cement with Admixture Stabilization for Road Sub-Grade IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 10 March 2017 ISSN (online): 2349-6010 Study of Soil Cement with Admixture Stabilization for Road Sub-Grade Rupesh

More information

Shear Characteristics of Fly Ash-Granular Soil Mixtures Subjected to Modified Compaction

Shear Characteristics of Fly Ash-Granular Soil Mixtures Subjected to Modified Compaction Shear Characteristics of Fly Ash-Granular Soil Mixtures Subjected to Modified Compaction Ratna Prasad R 1 1 Research Scholar, JNTU Kakinada and Professor of Civil Engineering, Vasireddy Venkatadri Institute

More information

Load-Carrying Capacity of Stone Column Encased with Geotextile. Anil Kumar Sahu 1 and Ishan Shankar 2

Load-Carrying Capacity of Stone Column Encased with Geotextile. Anil Kumar Sahu 1 and Ishan Shankar 2 Load-Carrying Capacity of Stone Column Encased with Geotextile Anil Kumar Sahu 1 and Ishan Shankar 2 1 Professor, Department of Civil Engineering, Delhi Technological University, Delhi, India (sahuanilkr@yahoo.co.in)

More information

Swelling Treatment By Using Sand for Tamia Swelling Soil

Swelling Treatment By Using Sand for Tamia Swelling Soil Swelling Treatment By Using Sand for Tamia Swelling Soil G. E. Abdelrahman 1, M. M. Shahien 2 1 Department of Civil Engineering, Cairo University-Fayoum Branch, Fayoum, Egypt 2 Department of Civil Engineering,

More information

Stabilization of Pavement Subgrade Using Fly Ash and Lime

Stabilization of Pavement Subgrade Using Fly Ash and Lime International Journal of Engineering Science Invention (IJESI) ISSN (Online): 9 674, ISSN (Print): 9 676 Volume 7 Issue February 08 PP. 66-74 Stabilization of Pavement Subgrade Using Fly Ash and Lime Mohd.

More information

Improvement of Black Cotton Soil Properties Using E-waste

Improvement of Black Cotton Soil Properties Using E-waste IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 3 Ver. I (May. - June. 2017), PP 76-81 www.iosrjournals.org Improvement of Black Cotton

More information

SOIL STABILIZATION USING NATURAL FIBER COIR

SOIL STABILIZATION USING NATURAL FIBER COIR SOIL STABILIZATION USING NATURAL FIBER COIR Pooja Upadhyay 1, Yatendra Singh 2 1M.Tech student, Department of Civil Engineering, IEC Group of Institutions, U.P, India 2Assistant Professor, Department of

More information

TRANSMISSIVITY BEHAVIOR OF SHREDDED SCRAP TIRE DRAINAGE LAYER IN LANDFILL COVER SYSTEM *

TRANSMISSIVITY BEHAVIOR OF SHREDDED SCRAP TIRE DRAINAGE LAYER IN LANDFILL COVER SYSTEM * TRANSMISSIVITY BEHAVIOR OF SHREDDED SCRAP TIRE DRAINAGE LAYER IN LANDFILL COVER SYSTEM * Krishna R. Reddy, Aravind Marella and Prasanth Ala University of Illinois at Chicago, Department of Civil and Materials

More information

Behaviour of Black Cotton Soil Reinforced with Sisal Fibre

Behaviour of Black Cotton Soil Reinforced with Sisal Fibre 10th National Conference on Technological Trends (NCTT09) 6-7 Nov 2009 Behaviour of Black Cotton Soil Reinforced with Sisal Fibre Santhi Krishna K. M Tech Student Department of Civil Engineering College

More information

Moisture Content Effect on Sliding Shear Test Parameters in Woven Geotextile Reinforced Pilani Soil

Moisture Content Effect on Sliding Shear Test Parameters in Woven Geotextile Reinforced Pilani Soil International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 8 ǁ August 2013 ǁ PP.10-15 Moisture Content Effect on Sliding Shear Test Parameters

More information

Performance of Geosynthetics in the Filtration of High Water Content Waste Material

Performance of Geosynthetics in the Filtration of High Water Content Waste Material INDIAN GEOTECHNICAL SOCIETY CHENNAI CHAPTER Performance of Geosynthetics in the Filtration of High Water Content Waste Material T. Arun 1 and K. Ilamparuthi 2 ABSTRACT: Filtration mould was fabricated

More information

Compaction. Compaction purposes and processes. Compaction as a construction process

Compaction. Compaction purposes and processes. Compaction as a construction process Compaction Compaction purposes and processes Specification and quality control Moisture condition value Compaction is a process that brings about an increase in soil density or unit weight, accompanied

More information

Paper ID: GE-007. Shear Strength Characteristics of Fiber Reinforced Clay Soil. M. R. Islam 1*, M.A. Hossen 2, M. A.Alam 2, and M. K.

Paper ID: GE-007. Shear Strength Characteristics of Fiber Reinforced Clay Soil. M. R. Islam 1*, M.A. Hossen 2, M. A.Alam 2, and M. K. Paper ID: GE-7 International Conference on Recent Innovation in Civil Engineering for Sustainable Development (IICSD-2) Department of Civil Engineering DUET - Gazipur, Bangladesh 48 Shear Strength Characteristics

More information

Department of Civil Engineering, Vel Tech High Tech Dr.Rangarajan Dr.Sakunthala Engineering College, Avadi, Chennai, Tamil Nadu, India.

Department of Civil Engineering, Vel Tech High Tech Dr.Rangarajan Dr.Sakunthala Engineering College, Avadi, Chennai, Tamil Nadu, India. ISSN: 0974-2115 Importance of Bottom Ash in Preventing Soil Failure D.Sivakumar 1 *, M.Ammaiappan 1, R.Anand 2, V.Lavanya 1 1 Department of Civil Engineering, Vel Tech High Tech Dr.Rangarajan Dr.Sakunthala

More information

A new test procedure to measure the soil-water characteristic curves using a small-scale centrifuge

A new test procedure to measure the soil-water characteristic curves using a small-scale centrifuge A new test procedure to measure the soil-water characteristic curves using a small-scale centrifuge R. M. Khanzode, Graduate Student, University of Saskatchewan, Saskatoon, Canada, S7N 5A9 D.G. Fredlund,

More information

PERFORMANCE OF GEOSYNTHETICS IN THE FILTRATION OF HIGH WATER CONTENT WASTE MATERIAL

PERFORMANCE OF GEOSYNTHETICS IN THE FILTRATION OF HIGH WATER CONTENT WASTE MATERIAL IGC 2009, Guntur, INDIA PERFORMANCE OF GEOSYNTHETICS IN THE FILTRATION OF HIGH WATER CONTENT WASTE MATERIAL K. Ilamparuthi Professor, Anna University, Chennai 600025, India. E-mail: kanniilam@gmail.com

More information

Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture - 12 Soil Compaction- B

Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture - 12 Soil Compaction- B Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture - 12 Soil Compaction- B Keywords: Soil compaction, Modified Proctor test, Types of

More information

Soil Stabilization by using Plastic Waste

Soil Stabilization by using Plastic Waste Soil Stabilization by using Plastic Waste Arpitha G C 1, Dayanandha B V 2, Kiran kumar patil 3, Shruti Neeralagi 4 1 Head of the Department, 2,3,4 UG Students, Department of Civil Engineering, Amruta Institute

More information

EXPERIMENTAL STUDY ON INDEX PROPERTIES OF BLACK COTTON SOIL STABILIZED WITH TERRASIL

EXPERIMENTAL STUDY ON INDEX PROPERTIES OF BLACK COTTON SOIL STABILIZED WITH TERRASIL EXPERIMENTAL STUDY ON INDEX PROPERTIES OF BLACK COTTON SOIL STABILIZED WITH TERRASIL Ajay Kumar Pandagre 1, Rajesh Jain 2 1. M.E. (Geotechnical Engineering), 2 Associate Professor Civil Engineering Department,

More information

COHESIONLESS SOIL PROPERTIES IMPROVEMENT USING BENTONITE

COHESIONLESS SOIL PROPERTIES IMPROVEMENT USING BENTONITE COHESIONLESS SOIL PROPERTIES IMPROVEMENT USING BENTONITE Khalida A. Daud Department of Architectural Engineering, Al-Nahrain University, Baghdad, Iraq E-Mail: khalida_dwd@yahoo.com ABSTRACT Construction

More information

EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL

EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL Vanapalli, S.K., Pufahl, D.E., and Fredlund, D.G. (University of Saskatchewan, Saskatoon, SK., Canada, S7N 5A9) Abstract An experimental

More information

A Study on Soil Stabilization using Cement and Coir Fibres

A Study on Soil Stabilization using Cement and Coir Fibres A Study on Soil Stabilization using ement and oir Fibres Deepakraja T.G 1, harumol.s 2 1 PG Student, Dept. of ivil Engineering, oimbatore Institute of Technology, oimbatore, India 2 PG Student, Dept. of

More information

Advanced Foundation Engineering. Introduction

Advanced Foundation Engineering. Introduction Shahrood University of Technology Department of Geotechnical Engineering Advanced Foundation Engineering Introduction Mohsen Keramati, Ph.D. Assistant Professor 1 - Detailed Course Plan Introduction (Geotechnical

More information

CHAPTER 1: INTRODUCTION. Road transport is an only means of transport that offers itself to the whole community

CHAPTER 1: INTRODUCTION. Road transport is an only means of transport that offers itself to the whole community 1 CHAPTER 1: INTRODUCTION 1.1 General Road transport is an only means of transport that offers itself to the whole community alike. It is accepted fact that of all the modes the transportation, road transport

More information

THE ULTIMATE SKIN RESISTANCE OF CONCRETE PILE IN PARTIALLY SATURATED COHESIVE SOIL BY MODIFIED Β METHOD

THE ULTIMATE SKIN RESISTANCE OF CONCRETE PILE IN PARTIALLY SATURATED COHESIVE SOIL BY MODIFIED Β METHOD International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 10, October 2018, pp. 1882 1891, Article ID: IJCIET_09_10_187 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=10

More information

Rinu Jose 1, N P Rajamane 2 IJSER

Rinu Jose 1, N P Rajamane 2 IJSER International Journal of Scientific & Engineering Research Volume 9, Issue 1, January-2018 149 Influence of lime and cement in strength characteristics of soil Rinu Jose 1, N P Rajamane 2 Abstract A structure

More information

Slope Stability Analysis

Slope Stability Analysis Slope Stability Analysis Vivek Assist. Professor, Civil Engineering, Lovely Professional University Phagwara, India Mandeep Multani Head of dept., Civil Engineering, Lovely Professional University Phagwara,

More information

VARIATION IN BEARING CAPACITY OF CONTAMINATED LATERITE SOIL. Dr R N Khare

VARIATION IN BEARING CAPACITY OF CONTAMINATED LATERITE SOIL. Dr R N Khare VARIATION IN BEARING CAPACITY OF CONTAMINATED LATERITE SOIL Dr R N Khare Professor, Civil Engineering & Principal Shri Shankaracharya Engineering College, Bhilai Prashant Pathak Research Scholar, SaiNath

More information

EFFECT OF RANDOM INCLUSION OF BAMBOO FIBERS ON STRENGTH BEHAVIOUR OF FLYASH TREATED BLACK COTTON SOIL

EFFECT OF RANDOM INCLUSION OF BAMBOO FIBERS ON STRENGTH BEHAVIOUR OF FLYASH TREATED BLACK COTTON SOIL International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 5, September-October 2016, pp. 153 160, Article ID: IJCIET_07_05_017 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=5

More information

Stabilization of Clay Subgrade Soils for Pavements Using Ground Granulated Blast Furnace Slag

Stabilization of Clay Subgrade Soils for Pavements Using Ground Granulated Blast Furnace Slag 7 IJEDR Volume, Issue 4 ISSN: 3-9939 Stabilization of Clay Subgrade Soils for Pavements Using Ground Granulated Blast Furnace Slag Mubarak Mohammadia, Dr.H.M.Mallikarjuna 3 Aijaz Hussain PG Student, Structural

More information

Cracking in Liner Behavior and Desiccation of Compacted Landfill Liner Soils

Cracking in Liner Behavior and Desiccation of Compacted Landfill Liner Soils International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Cracking

More information

EFFECT OF RELICT JOINTS IN RAIN INDUCED SLOPE FAILURES IN RESIDUAL SOIL

EFFECT OF RELICT JOINTS IN RAIN INDUCED SLOPE FAILURES IN RESIDUAL SOIL EFFECT OF RELICT JOINTS IN RAIN INDUCED SLOPE FAILURES IN RESIDUAL SOIL Neethimappiriya Tharmalingam, Student (Email: neethi_26@yahoo.com) N.W.H. Lakshamana, Student (Email: hansaka8888@yahoo.com) R.D.T.B.

More information

Soil Mechanics Prof. B.V.S. Viswanadham Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 11 Compaction of Soils - 1

Soil Mechanics Prof. B.V.S. Viswanadham Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 11 Compaction of Soils - 1 Soil Mechanics Prof. B.V.S. Viswanadham Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 11 Compaction of Soils - 1 Welcome to Compaction of Soils Part 1. Compaction is

More information

Shear Strength Enhancement of Sandy Soil Using Hair Fibre

Shear Strength Enhancement of Sandy Soil Using Hair Fibre Shear Strength Enhancement of Sandy Soil Using Hair Fibre Deepjyoti Das 1, Dhrubajyoti Kaundinya 2, Raja Sarkar 3, Bikramjit Deb 4 U.G. Student, Department of Civil Engineering, Assam Engineering College,

More information

Loading unsaturated soil. *Mohamed Abdellatif Ali Albarqawy 1)

Loading unsaturated soil. *Mohamed Abdellatif Ali Albarqawy 1) The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Loading unsaturated soil *Mohamed Abdellatif Ali Albarqawy 1) 1) Faculty of

More information

Investigation on Engineering Properties of Soil-Mixtures Comprising of Expansive Soils and a Cohesive Non-Swelling Soil

Investigation on Engineering Properties of Soil-Mixtures Comprising of Expansive Soils and a Cohesive Non-Swelling Soil Investigation on Engineering Properties of Soil-Mixtures Comprising of Expansive Soils and a Cohesive Non-Swelling Soil Dr. Ch. Sudha Rani Dept. of Civil Engineering, S.V.U.College of Engineering, Tirupati,

More information

A STUDY OF EXPANSIVE SOIL USING BETAMCHERLA SLAB POLISH WASTE

A STUDY OF EXPANSIVE SOIL USING BETAMCHERLA SLAB POLISH WASTE A STUDY OF EXPANSIVE SOIL USING BETAMCHERLA SLAB POLISH WASTE HARISH.P 1, Dr. CH. Sudharani 1Assistant Professor, Department of Civil Engineering in sri kalahastheeshwara institute of technology, sri kalahasthi.

More information

Introduction. A soil is an earth concrete. Composition of a soil

Introduction. A soil is an earth concrete. Composition of a soil Introduction Soil is the result of the transformation of the underlying rock under the influence of a range of physical, chemical and biological processes related to biological and climatic conditions

More information

Road Soil. Curtis F. Berthelot Ph.D., P.Eng. Department of Civil Engineering. Road Soil Introduction

Road Soil. Curtis F. Berthelot Ph.D., P.Eng. Department of Civil Engineering. Road Soil Introduction Road Soil Characterization ti By: Curtis F. Berthelot Ph.D., P.Eng. Department of Civil Engineering Road Soil Introduction Roads are constructed of layered heterogeneous multiphase geo-materials that exhibit

More information

1. Introduction. Abstract. Keywords: Liquid limit, plastic limit, fall cone, undrained shear strength, water content.

1. Introduction. Abstract. Keywords: Liquid limit, plastic limit, fall cone, undrained shear strength, water content. Comparison In Undrained Shear Strength Between Low And High Liquid Limit Soils Neelu Das *1, Binu Sarma 2, Shashikant Singh 3 and Bidyut Bikash Sutradhar 4 1( Assistant Professor, Department of Civil Engineering,

More information

Behaviour of a Strip Footing on Compacted Pond Ash Reinforced with Coir Geotextiles

Behaviour of a Strip Footing on Compacted Pond Ash Reinforced with Coir Geotextiles Behaviour of a Strip Footing on Compacted Pond Ash Reinforced with Coir Geotextiles Dr. Goutam Kumar Pothal, Dr. G. Venkatappa Rao 2 Assistant Professor, Department of Civil Engineering Indira Gandhi Institute

More information

Exercise 8: Soil Compaction. CE337, Section 006, Team 3. Experimental data acquired on April 16, 2015 by:

Exercise 8: Soil Compaction. CE337, Section 006, Team 3. Experimental data acquired on April 16, 2015 by: Exercise 8: Soil Compaction CE337, Section 006, Team 3 Experimental data acquired on April 16, 2015 by: John Fisher (Role A) Colin Crist (Role B) Maria Baldonieri (Role C) Yuhao Luo (Role C) Submittal

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 08 Soil Compaction -1 Activity (After Bell, 1993) Swell-Shrinkage response of clay = f (Period, magnitude of precipitation and evapotranspiration) Kaolinite Smallest swelling capacity Illite May swell

More information

IGC. 50 th. 50 th INDIAN GEOTECHNICAL CONFERENCE IMPROVEMENT IN LOAD BEARING CHARACTERISTICS OF RED MUD REINFORCED WITH SINGLE GEOGRID LAYER

IGC. 50 th. 50 th INDIAN GEOTECHNICAL CONFERENCE IMPROVEMENT IN LOAD BEARING CHARACTERISTICS OF RED MUD REINFORCED WITH SINGLE GEOGRID LAYER 50 th IGC 50 th INDIAN GEOTECHNICAL CONFERENCE 17 th 19 th DECEMBER 2015, Pune, Maharashtra, India Venue: College of Engineering (Estd. 1854), Pune, India IMPROVEMENT IN LOAD BEARING CHARACTERISTICS OF

More information

EAT 212 SOIL MECHANICS

EAT 212 SOIL MECHANICS EAT 212 SOIL MECHANICS Chapter 4: SHEAR STRENGTH OF SOIL PREPARED BY SHAMILAH ANUDAI@ANUAR CONTENT Shear failure in soil Drained and Undrained condition Mohr-coulomb failure Shear strength of saturated

More information

GeoTechnicalInvestigationonBlackCottonSoils

GeoTechnicalInvestigationonBlackCottonSoils Global Journal of Researches in ngineering: Civil And Structural ngineering Volume 16 Issue 2 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc.

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

Stress-Strain and Strength Behavior of Undrained Organic Soil in Kupondol, Kathmandu

Stress-Strain and Strength Behavior of Undrained Organic Soil in Kupondol, Kathmandu TUTA/IOE/PCU Journal of the Institute of Engineering, Vol. 8, No. 1, pp. 113 118 TUTA/IOE/PCU All rights reserved. Printed in Nepal Fax: 977-1-5525830 Stress-Strain and Strength Behavior of Undrained Organic

More information

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger Shoeb Inamdar 1, H. S. Farkade 2 P.G. Student, Department of Mechanical Engineering, Govt. College of Engg. Amravati. Maharashtra,

More information

Measure particle density, bulk density, and moisture content of a soil and to relate to total pore space.

Measure particle density, bulk density, and moisture content of a soil and to relate to total pore space. LABORATORY 2 SOIL DENSITY I Objectives Measure particle density, bulk density, and moisture content of a soil and to relate to total pore space. II Introduction A Particle Density Soil particle density

More information

CHAPTER 4 EXPERIMENTAL WORK 4.1 GENERAL

CHAPTER 4 EXPERIMENTAL WORK 4.1 GENERAL CHAPTER 4 EXPERIMENTAL WORK 4.1 GENERAL In the present chapter engineering properties of subgrade soils, moorum and aggregate used in the investigation are presented. The details of geotextiles and geogrids

More information

Strength and F O S Performance of Black Cotton Soil Treated with Calcium Chloride

Strength and F O S Performance of Black Cotton Soil Treated with Calcium Chloride IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE) ISSN: 2278-1684 Volume 2, Issue 6 (Sep-Oct 2012), PP 21-25 Strength and F O S Performance of Black Cotton Soil Treated with Calcium Chloride

More information

YCEF WEEKLY TECHNICAL INTERACTIVE SESSION

YCEF WEEKLY TECHNICAL INTERACTIVE SESSION YOUNG CIVIL ENGINEERS FORUM SOIL RELATIVE COMPACTION TEST. PRESENTED BY HABEEB OLADAPO OLAWOLE FOR YCEF WEEKLY TECHNICAL INTERACTIVE SESSION MAY 2018 This paper is purposely for the presentation of YCEF

More information

Advanced Foundation Engineering. Soil Exploration

Advanced Foundation Engineering. Soil Exploration Shahrood University of Technology Department of Geotechnical Engineering Advanced Foundation Engineering Soil Exploration Mohsen Keramati, Ph.D. Assistant Professor 1 - Introduction The field and laboratory

More information

Analysis of Pullout Resistance of Soil-Nailing in Lateritic Soil

Analysis of Pullout Resistance of Soil-Nailing in Lateritic Soil Analysis of Pullout Resistance of Soil-Nailing in Lateritic Soil B,L.A. Isaka 1, B.C. Madushanka 1 and N.H. Priyankara 1 1 Department of Civil and Environmental Engineering Faculty of Engineering University

More information

ScienceDirect. The Undrained Shear Strength of Overconsolidated Clays

ScienceDirect. The Undrained Shear Strength of Overconsolidated Clays Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 91 (2014 ) 317 321 XXIII R-S-P seminar, Theoretical Foundation of Civil Engineering (23RSP) (TFoCE 2014) The Undrained Shear

More information

Lecture-4. Soil Compaction. Dr. Attaullah Shah

Lecture-4. Soil Compaction. Dr. Attaullah Shah Lecture-4 Soil Compaction Dr. Attaullah Shah 1 Compaction The process of bringing the soil particles closer to a dense state by mechanical means. The voids are reduced by expulsion of air and the soil

More information

SUITABILITY OF GEOGRID REINFORCED - RUBBER WASTE IN PAVEMENTS

SUITABILITY OF GEOGRID REINFORCED - RUBBER WASTE IN PAVEMENTS Abstract S. Thenmozhi et. al. / International Journal of Engineering Science and Technology SUITABILITY OF GEOGRID REINFORCED - RUBBER WASTE IN PAVEMENTS S. THENMOZHI 1 Research Scholar, Department of

More information

APPENDIX E COMPACTION CHARACTERISTICS AND EQUIPMENT

APPENDIX E COMPACTION CHARACTERISTICS AND EQUIPMENT APPENDIX E COMPACTION CHARACTERISTICS AND EQUIPMENT When the Materials Division designs a pavement structure, there are a number of factors that influence it s outcome. Projected traffic counts, percentage

More information

Heyam Daod. Keywords Fine-grained soils, liquid limit, microwave drying, moisture content

Heyam Daod. Keywords Fine-grained soils, liquid limit, microwave drying, moisture content Determination of Moisture Content and Liquid Limit of Foundations Soils, using Microwave Radiation, in the Different Locations of Sulaimani Governorate, Kurdistan Region-Iraq Heyam Daod Abstract Soils

More information

EXPERIMENTAL STUDY ON PULL-OUT CAPACITY OF HELICAL PILE IN CLAYEY SOIL

EXPERIMENTAL STUDY ON PULL-OUT CAPACITY OF HELICAL PILE IN CLAYEY SOIL International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 4, April 217, pp. 1514 1521 Article ID: IJCIET_8_4_17 Available online at http://www.ia aeme.com/ijciet/issues.asp?jtype=ijciet&vtyp

More information

Soil characteristics that influence nitrogen and water management

Soil characteristics that influence nitrogen and water management Section C Soil characteristics that influence nitrogen and water management Soil characteristics vary across the landscape Soils vary from one field to another, and often within the same field. Soil differences

More information

Performance of Shell and Tube Heat Exchanger under Varied Operating Conditions

Performance of Shell and Tube Heat Exchanger under Varied Operating Conditions Performance of Shell and Tube Heat Exchanger under Varied Operating Conditions N. Prabhu Kishore 1, N. Alekhya 2, J. Ugandhar 3 Asst. Professor, Department of Mechanical Engineering, MLR Institute of Technology,

More information

MARQUETTE UNIVERSITY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING LAB REPORT FORMAT

MARQUETTE UNIVERSITY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING LAB REPORT FORMAT MARQUETTE UNIVERSITY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING LAB REPORT FORMAT a. All reports must be typed and include the following sections in the order specified: Title Page Introduction

More information

GEOTEXTILE REINFORCED TWO LAYER SOIL SYSTEM WITH KUTTANAD CLAY OVERLAIN BY LATERITE SOIL

GEOTEXTILE REINFORCED TWO LAYER SOIL SYSTEM WITH KUTTANAD CLAY OVERLAIN BY LATERITE SOIL GEOTEXTILE REINFORCED TWO LAYER SOIL SYSTEM WITH KUTTANAD CLAY OVERLAIN BY LATERITE SOIL Selma James 1, Rakendu R 2 1P.G. Student, Department of Civil Engineering, Saintgits College of Engineering, Kerala,

More information

SOIL ENGINEERING (EENV 4300)

SOIL ENGINEERING (EENV 4300) SOIL ENGINEERING (EENV 4300) Chapter 5 Classification of Soil Why Classification? Classification systems provide a common language to concisely express the general characteristics of soils, which are infinitely

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 05 May p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 05 May p-issn: International Research Journal of Engineering and Technology (IRJET) e-issn: 239-6 Volume: 4 Issue: May -217 www.irjet.net p-issn: 239-72 AN EXPERIMENTAL STUDY ON STRENGTH PROPERTIES OF VERMICULITE CONCRETE

More information

Effect of Fertilizers on Soil Strength

Effect of Fertilizers on Soil Strength Effect of Fertilizers on Soil Strength Varsha C Paul 1, Jiss K Abraham 2 1 M.tech, Geomechanics and Structures, Department of Civil Engineering, Saintgits College of Engineering, Kottayam, Kerala, India.

More information

IMPROVEMENT THE ENGINEERING PROPERTIES OF EXPANSIVE SOIL BY USING BAGASSE ASH AND GROUND NUT SHELL ASH

IMPROVEMENT THE ENGINEERING PROPERTIES OF EXPANSIVE SOIL BY USING BAGASSE ASH AND GROUND NUT SHELL ASH IMPROVEMENT THE ENGINEERING PROPERTIES OF EXPANSIVE SOIL BY USING BAGASSE ASH AND GROUND NUT SHELL ASH Guided By:- Mr. Amar Salariya :- Ms. Ankita Patel By:- Patel vivek (110780106005) Patel Vijay (110780106004)

More information

Ground Improvement of Problematic Soft Soils Using Shredded Waste Tyre

Ground Improvement of Problematic Soft Soils Using Shredded Waste Tyre Ground Improvement of Problematic Soft Soils Using Shredded Waste Tyre N. N. Nik Daud 1*, Z. M. Yusoff 1, A. S. Muhammed 1 1 Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia,

More information

Improvement of Granular Subgrade Soil by Using Geotextile and Jute Fiber

Improvement of Granular Subgrade Soil by Using Geotextile and Jute Fiber International Journal of Science, Technology and Society 2015; 3(5): 230-235 Published online August 3, 2015 (http://www.sciencepublishinggroup.com/j/ijsts) doi: 10.11648/j.ijsts.20150305.12 ISSN: 2330-7412

More information

Mechanical Behavior of Soil Geotextile Composites: Effect of Soil Type

Mechanical Behavior of Soil Geotextile Composites: Effect of Soil Type Mechanical Behavior of Geotextile Composites: Effect of Type A.I. Droudakis and I.N. Markou Department of Civil Engineering, Democritus University of Thrace, Greece 12 Vas. Sofias str., GR-671 Xanthi,

More information

Analysis of Embankments with Different Fill Materials using Plaxis-2D

Analysis of Embankments with Different Fill Materials using Plaxis-2D Analysis of Embankments with Different Fill Materials using Plaxis-2D A.Laxminarayana 1, M. Naresh 2 1 PG Student, Department of civil engineering, JNTUH, Hyderabad, Telangana, India 2 Assistant Professor,

More information

Helical Piles Embedded in Expansive Soil Overlaying Sandy Soil

Helical Piles Embedded in Expansive Soil Overlaying Sandy Soil Al-Khwarizmi Engineering Journal,Vol. 12, No. 3, P.P. 19-25 (2016) Al-Khwarizmi Engineering Journal Helical Piles Embedded in Expansive Soil Overlaying Sandy Soil Bushra Suhale Al-Busoda * Hassan Obaid

More information

THE ROLE OF SUCTION IN THE PERFORMANCE OF CLAY FILL RONALD F. REED, P.E. 1 KUNDAN K. PANDEY, P.E. 2

THE ROLE OF SUCTION IN THE PERFORMANCE OF CLAY FILL RONALD F. REED, P.E. 1 KUNDAN K. PANDEY, P.E. 2 THE ROLE OF SUCTION IN THE PERFORMANCE OF CLAY FILL RONALD F. REED, P.E. 1 KUNDAN K. PANDEY, P.E. 2 Abstract Plastic clay is commonly used as fill. Proper placement is the key to the performance of the

More information

Department of Civil Engineering, OITM/GJU- Hisar (125001), Haryana, India.

Department of Civil Engineering, OITM/GJU- Hisar (125001), Haryana, India. CBR Improvement of Soil by Adding Lime and Fly Ash Kumar Sandeep #1, Mahla R.P. *2 1 M. Tech Student, Department of Civil Engineering, OITM/GJU- Hisar (125001), Haryana, India. 2 Department of Civil Engineering,

More information

ATT-19/95 MOISTURE-DENSITY RELATION, Standard Compaction, µm Material

ATT-19/95 MOISTURE-DENSITY RELATION, Standard Compaction, µm Material 1.0 Scope ATT-19/95 MOISTURE-DENSITY RELATION, Standard Compaction, + 5 000 µm Material 1.0 SCOPE This method describes the procedures for determining the maximum dry density and optimum moisture content

More information

STS Directory Accreditation number: STS 0030

STS Directory Accreditation number: STS 0030 International standard: ISO/IEC 17025:2005 Swiss standard: SN EN ISO/IEC 17025:2005 BSL Baustofflabor AG Postgässli 23a 3661 Uetendorf Head: Felix Solcà Responsible for MS: Dr. Benjamin Kaeser Telephone:

More information

APPLICATIONS OF INNOVATIVE MATERIALS FOR PERFORMANCE IMPROVEMENT OF FLEXIBLE PAVEMENT OVER EXPANSIVE SUBGRADE

APPLICATIONS OF INNOVATIVE MATERIALS FOR PERFORMANCE IMPROVEMENT OF FLEXIBLE PAVEMENT OVER EXPANSIVE SUBGRADE Geotech., Const. Mat. and Env., ISSN:2186-2982(P), 2186-2990(O), Japan APPLICATIONS OF INNOVATIVE MATERIALS FOR PERFORMANCE IMPROVEMENT OF FLEXIBLE PAVEMENT OVER EXPANSIVE SUBGRADE Ravin M. Tailor 1, Dr.

More information