SOLUTION MINING RESEARCH INSTITUTE

Size: px
Start display at page:

Download "SOLUTION MINING RESEARCH INSTITUTE"

Transcription

1 SOLUTION MINING RESEARCH INSTITUTE 105 Apple Valley Circle Clarks Summit, PA 18411, USA Technical Conference Paper Telephone: Fax: Permanent Blanket-Brine Interface monitoring by temperature monitoring in Salt Caverns Dr. Stephan Grosswig Bernhard Vogel GESO GmbH Jena, D Jena, Germany SMRI Spring 2008 Technical Conference April 2008 Porto, Portugal

2 Solution Mining Research Institute Spring 2008 Technical Conference Porto, Portugal, April 2008 Permanent Blanket-Brine Interface monitoring by temperature monitoring in Salt Caverns Dr. Stephan Grosswig and Bernhard Vogel GESO GmbH Jena, Germany Abstract The solution mining process for salt production in caverns must be controlled to reach an optimal yield, and to get a high mechanical stability of the produced cavern. In order to prevent uncontrolled washing in the top of the cavern during continuation of the process, a so-called blanket will be filled into the cavern. Mostly a special mineral oil is used for it, because it swims on the brine. During the solution mining process the level of the blanket-brine interface can changes; therefore it is very important, to permanently know whose position (depth), in order to be able to intervene. A monitoring system using the distributed fiber-optic temperature sensing technology is developed by GESO GmbH Jena in collaboration with experts of the esco - european salt company GmbH & Co. KG, Werk Bernburg, Germany. A special fiber-optic sensing cable will be installed into the annulus of the well during the construction period or during a work over period. Using the difference of the thermal conductivity between brine and mineral oil the position (depth) of the interface can be pinpointed. The value of the interface depth will be evaluate quasi continuously. The blanket-brine interface monitoring system can work over the whole period of the cavern leaching process while the sensing cable is installed in the borehole. It s possible to monitor up to 8 caverns simultaneously with one central processing unit. Key words: Cavern Development, Caverns for Brine Extraction, Instrumentation and Monitoring Introduction The solution mining of salt is a very effective technology to product raw material for many products in the chemistry. Otherwise caverns in salt rock formations are good to use for the storage of fluids and gases. For it the size of the cavern must be optimized to guarantee the stability over a long period of time. Therefore the solution process must be monitored to have any possibility to control it to reach an optimal size. A monitoring system for it using the distributed fiber-optic temperature sensing technology is developed by GESO GmbH Jena, and will be presented

3 Basic Principle Using the distributed fiber optical temperature sensing technology an monitoring system for the blanket-brine interface were designed. The measuring principle is based on the RAMAN effect and the so-called Optical Time Domain Reflectometry (OTDR) method. Laser pulses are coupled into the fibers where the photons interact with the molecules of the fiber material. Some photons are scattered backwards and they carry information on the thermal motion of the molecules they were scattered by. Consequently, the spectrum of the backscattered light carries information on temperature of the fibers. Thus can be used to measure temperature along the optical fiber. The spectral analysis is combined with measuring the propagation time of the laser pulses along the fiber (radar principle) as the speed of light in the fiber is known. Scanning the entire length of the fiber by short intervals (e. g. 0.5 m) the temperature profile along the fiber is determined. The technical equipment of the distributed fiber optical temperature sensing technology consists of two main components: fiber optical sensor cable and the measuring device. The optical fibers which are integrated into robust cables, are the temperature sensitive elements and allow for measuring temperature profiles at arbitrary times, quasi-continuously with a high spatial resolution along the cable. This is a requirement for the investigation of thermal processes. Technical Solution The designed technical solution should be described with the following picture: picture 1: the fiber optical sensing cable installed into the annulus - 3 -

4 To realize this measuring task a so called fiber optical hybrid sensing cable with two electrical conductors inside is required: picture 2: cross section of the fiber optical sensing cable How to see on the picture 1 the sensing cable directly goes through the blanket-brine interface. The both electrical conductors are connected at the end of the cable (bottom), the outcome of this is an electrical circuit. Supplying with an electrical current by the electrical power supply unit the cable will be heated up over the whole length at a few degrees. The induced heat energy mostly goes into the surrounding fluids of the cable. Therefore the temperature in the cable, measured by the fiber-optical measuring device, strongly depends on the thermal conductivity properties of these fluids. That means that the measured temperature in the cable is higher at these locations, where the thermal conductivity of the surrounding fluid is lower. The designed method uses the fact that the thermal conductivity of the blanket (fuel) is lower than the thermal conductivity of the brine. The following picture shows the temperature in the cable for two different surrounding fluids: Temperature [ C] heating period 0:00:00 0:15:00 0:30:00 0:45:00 1:00:00 1:15:00 time [h:mm:ss] cable section in fuel cable section in brine picture 3: temperature difference in the cable for different surrounding fluids To find the position of the blanket-brine interface (depth) the temperature profiles measured first before the electrical supply will turned on, and second at the end of the heating period must be compared. The following picture shows the temperature difference between both profiles by depth: - 4 -

5 Additionally to the difference curve the trend line is added. The so called inflection point of this curve stands for the blanket-brine interface depth. In this case the created software tool found this level at a depth of m. picture 4: temperature difference and trend line of it The GESO GmbH Jena has created a mathematical algorithm, and developed a software to control the measuring process and to calculate the blanket-brine interface depth. The created system including the software were tested at a production site of the esco - european salt company GmbH & Co. KG, Werk Bernburg, Germany. The above shown results we achieved at this site in collaboration with experts of the esco company. Adventures In comparison with the state of the technology the designed GESO system has the following adventures: Permanent monitoring of the blanket-brine interface level, High accuracy of the level value, Possibility to save costs, because work over activities during the solution process can be saved, The solution process of the cavern will be finished in a shorter time; so the cavern can be used for other tasks (e.g. gas storage) in a shorter time. Outlook The available measuring device has up to 4 measuring channels, and it is able to measure up to distances of 8 km, up to 8 caverns can be monitored by one central system. The GESO GmbH Jena will continue to develop this system for the practice of blanket-brine interface monitoring at brine production sites. Further test results will be presented at the SMRI meeting in Porto

Leakage detection using fiber optics distributed temperature monitoring

Leakage detection using fiber optics distributed temperature monitoring Re-printed from the Proceedings of the 11th SPIE Annual International Symposium on Smart Structures and Materials, March 14-18, 2004, San Diego, California, USA, pp.18-25. Leakage detection using fiber

More information

RSL Fiber Systems, LLC

RSL Fiber Systems, LLC RSL Fiber Systems, LLC Distributed Fiber Optic Temperature Sensing For Naval Combatants National Shipbuilding Research Program San Diego - December 7, 2015 This presentation is the sole property of RSL

More information

Carlos Borda Omnisens S.A. Subsea Asia Conference June 2014

Carlos Borda Omnisens S.A. Subsea Asia Conference June 2014 Carlos Borda Omnisens S.A. Subsea Asia Conference June 2014 Agenda Who is Omnisens? Distributed Fiber Optic Monitoring Power Umbilicals Flow Assurance (Heated Flowlines) Direct Electrical Heating (DEH)

More information

Distributed Temperature Sensing

Distributed Temperature Sensing Distributed Temperature Sensing Distributed Temperature Sensing (DTS) Introduction The purpose of this paper is to acquaint the engineer with the technology, terms and physical principles of Distributed

More information

Omnisens DITEST TM FIBER OPTIC DISTRIBUTED TEMPERATURE & STRAIN SENSING TECHNIQUE

Omnisens DITEST TM FIBER OPTIC DISTRIBUTED TEMPERATURE & STRAIN SENSING TECHNIQUE 1 Omnisens DITEST TM FIBER OPTIC DISTRIBUTED TEMPERATURE & STRAIN SENSING TECHNIQUE Introduction Omnisens DITEST (Distributed Temperature and Strain sensing) is a distributed temperature and/or strain

More information

OFDR-Temperature Sensing using Existing Fiber-Optic Communication Cables An Application for Automatic Fire Detection?

OFDR-Temperature Sensing using Existing Fiber-Optic Communication Cables An Application for Automatic Fire Detection? OFDR-Temperature Sensing using Existing Fiber-Optic Communication Cables An Application for Automatic Fire Detection? Markus Brüne, Annika Gomell, Andreas Pflitsch Ruhr-Universität Bochum, Bochum, Germany

More information

Abstract. 1. Introduction

Abstract. 1. Introduction IBP1206_07 PIPELINE LEAKAGE DETECTION AND LOCALIZATION USING DISTRIBUTED FIBER OPTIC SENSING Daniele Inaudi 1, Branko Glisic 2, Angelo Figini 3, Roberto Walder 4 Copyright 2007, Instituto Brasileiro de

More information

MODEL-BASED OPTIMIZATION OF AN INFRARED GAS SENSOR

MODEL-BASED OPTIMIZATION OF AN INFRARED GAS SENSOR MODEL-BASED OPTIMIZATION OF AN INFRARED GAS SENSOR ABSTRACT Ingo Sieber Forschungszentrum Karlsruhe P.O. Box 3640 76021 Karlsruhe Germany sieber@iai.fzk.de Manufacturing test structures of microsensors

More information

Advancing Pipeline Safety

Advancing Pipeline Safety Advancing Pipeline Safety 2018 Western Regional Gas Conference Mark Uncapher August 2018 FOSA Director muncapher@fiberopticsensing.org FOSA_TC_INF_002-1 What is FOSA? The Fiber Optic Sensing Association

More information

OPTICAL TIME DOMAIN REFLECTOMETRY (OTDR) Dr. BC Choudhary Professor, NITTTR, Chandigarh

OPTICAL TIME DOMAIN REFLECTOMETRY (OTDR) Dr. BC Choudhary Professor, NITTTR, Chandigarh OPTICAL TIME DOMAIN REFLECTOMETRY (OTDR) Dr. BC Choudhary Professor, NITTTR, Chandigarh WHAT IS AN OTDR? A measurement technique which provides the loss characteristics of an optical link down its entire

More information

Link loss measurement uncertainties: OTDR vs. light source power meter By EXFO s Systems Engineering and Research Team

Link loss measurement uncertainties: OTDR vs. light source power meter By EXFO s Systems Engineering and Research Team Link loss measurement uncertainties: OTDR vs. light source power meter By EXFO s Systems Engineering and Research Team INTRODUCTION The OTDR is a very efficient tool for characterizing the elements on

More information

WHITE PAPER FIBER OPTIC SENSING. Summary. Index. Introduction. About Fischer Connectors

WHITE PAPER FIBER OPTIC SENSING. Summary. Index. Introduction. About Fischer Connectors Summary This white paper presents the technical basics behind sensing over fiber technologies, its main applications and the cabling solutions involved. Index By: Jacques Miéville, Project Manager, Fischer

More information

DETECTION AND LOCALIZATION OF MICRO-LEAKAGES USING DISTRIBUTED FIBER OPTIC SENSING

DETECTION AND LOCALIZATION OF MICRO-LEAKAGES USING DISTRIBUTED FIBER OPTIC SENSING 7 th International Pipeline Conference IPC2008 29 th September 3 rd October 2008, Calgary, Alberta, Canada IPC2008-64280 DETECTION AND LOCALIZATION OF MICRO-LEAKAGES USING DISTRIBUTED FIBER OPTIC SENSING

More information

PIPELINE LEAKAGE DETECTION

PIPELINE LEAKAGE DETECTION PIPELINE LEAKAGE DETECTION Fiber-Optic Leakage Detection System AP Sensing: Your trusted partner for fire detection AP Sensing is your global DTS solution provider for your pipeline monitoring needs. We

More information

DETECTION AND LOCALIZATION OF MICRO AND MULTIPHASE LEAKAGES USING DISTRIBUTED FIBER OPTIC SENSING

DETECTION AND LOCALIZATION OF MICRO AND MULTIPHASE LEAKAGES USING DISTRIBUTED FIBER OPTIC SENSING DETECTION AND LOCALIZATION OF MICRO AND MULTIPHASE LEAKAGES USING DISTRIBUTED FIBER OPTIC SENSING ABSTRACT Distributed fiber optic sensing offers the ability to measure temperatures and strain at thousands

More information

AV6419 BOTDR. Product Overview. Main Features

AV6419 BOTDR. Product Overview. Main Features AV6419 BOTDR Product Overview AV6419 BOTDR can simultaneously measure strain distribution, loss distribution and Brillouin scattering spectrum at different location of optical fiber, and can display 3D

More information

A Fresnel Reflection-Based Optical Fiber Sensor System for Remote Refractive Index Measurement Using an OTDR

A Fresnel Reflection-Based Optical Fiber Sensor System for Remote Refractive Index Measurement Using an OTDR PHOTONIC SENSORS / Vol. 4, No. 1, 2014: 48 52 A Fresnel Reflection-Based Optical Fiber Sensor System for Remote Refractive Index Measurement Using an OTDR Jianying YUAN, Chunliu ZHAO *, Manping YE, Juan

More information

Distributed Temperature Monitoring of Energy Transmission and Distribution Systems

Distributed Temperature Monitoring of Energy Transmission and Distribution Systems 1 m 61850 IEC spatial resolution 40000m0 range Distributed Temperature Monitoring of Energy Transmission and Distribution Systems Ensuring a Reliable Supply of Electrical Power for Today s World www.en-sure.pro

More information

Oil and Gas Pipeline Monitoring. Oil and Gas Well Monitoring. Power Line Monitoring. Highway Safety Monitoring

Oil and Gas Pipeline Monitoring. Oil and Gas Well Monitoring. Power Line Monitoring. Highway Safety Monitoring Features: 219 Westbrook Rd, Ottawa, ON, Canada, K0A 1L0 Toll Free: 1-800-361-5415 Tel:(613) 831-0981 Fax:(613) 836-5089 E-mail: sales@ozoptics.com FIBER OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS

More information

Fiber optic distributed pressure sensor for structural monitoring applications

Fiber optic distributed pressure sensor for structural monitoring applications Fiber optic distributed pressure sensor for structural monitoring applications S. Binu *a, V.P. Mahadevan Pillai a, N. Chandrasekaran b a Department of Optoelectronics, University of Kerala, Thiruvananthapuram-695581,

More information

Sensing Technology. A company of the BRUGG Group

Sensing Technology. A company of the BRUGG Group Sensing Technology. Applications. 2 Basic_Sensing_e.ppt / ad Laser. LASER λ 0 [nm] Intensity λ [nm] λ 0 3 Basic_Sensing_e.ppt / ad Rayleigh, Brillouin, Raman Scattering. LASER λ 0 [nm] Rayleigh Intensity

More information

Distributed Rayleigh scatter dynamic strain sensing above the scan rate with optical frequency domain reflectometry

Distributed Rayleigh scatter dynamic strain sensing above the scan rate with optical frequency domain reflectometry Distributed Rayleigh scatter dynamic strain sensing above the scan rate with optical frequency domain reflectometry Stephen T. Kreger 1, Justin W. Klein 1, Nur Aida Abdul Rahim 1, and Joseph J. Bos 2 1

More information

Integration of distributed strain and temperature sensors in composite coiled tubing

Integration of distributed strain and temperature sensors in composite coiled tubing Integration of distributed strain and temperature sensors in composite coiled tubing Daniele Inaudi and Branko Glisic SMARTEC SA, Via Pobiette 11, CH-6928 Manno, Switzerland, www.smartec.ch ABSTRACT Composite

More information

Distributed Condition Monitoring of Power Cables a Brief Update

Distributed Condition Monitoring of Power Cables a Brief Update Distributed Condition Monitoring of Power Cables a Brief Update HENRIK HOFF, AP SENSING GMBH ABSTRACT Distributed temperature sensing (DTS) is an established and widely accepted method to monitor the condition

More information

- - Markus Brüne 1, Wilhelm Furian 2, Wieland Hill 3, and Andreas Pflitsch 1 1 Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany 2 Humboldt-Universität zu Berlin, Unter den Linden

More information

OPTICAL TIME DOMAIN REFELECTOMETER (OTDR): PRINCIPLES

OPTICAL TIME DOMAIN REFELECTOMETER (OTDR): PRINCIPLES OPTICAL TIME DOMAIN REFELECTOMETER (OTDR): PRINCIPLES Why Test Fiber with an OTDR? Single ended test that......characterizes fiber from end-to-end...locate and measure each event...provides a detailed

More information

Luna Technologies Webinar Series. New Rayleigh-Based Technique for Very High Resolution Distributed Temperature and Strain Sensing

Luna Technologies Webinar Series. New Rayleigh-Based Technique for Very High Resolution Distributed Temperature and Strain Sensing Luna Technologies Webinar Series New Rayleigh-Based Technique for Very High Resolution Distributed Temperature and Strain Sensing Dr. Dawn Gifford Senior Optical Engineer Mr. Ed Valigursky VP of Sales

More information

FiberSystem. Fiber Optic Linear Heat Detection for Special Hazard Applications

FiberSystem. Fiber Optic Linear Heat Detection for Special Hazard Applications FiberSystem 4000 Fiber Optic Linear Heat Detection for Special Hazard Applications The Protectowire Fiber Optic System In today s complex industrial environments, the potential for down time and financial

More information

Analisi del Focus-shift su sorgenti multikw. Luca Porcelluzzi Ophir Spiricon Europe GmbH

Analisi del Focus-shift su sorgenti multikw. Luca Porcelluzzi Ophir Spiricon Europe GmbH Analisi del Focus-shift su sorgenti multikw Luca Porcelluzzi Ophir Spiricon Europe GmbH Content Content Ophir Spiricon Europe GmbH Beam Characterization Applications Summary 2 Ophir Spiricon Europe GmbH

More information

Remote Detection of Leaks in Gas Pipelines with an Airborne Raman Lidar. Strategic Insights, Volume VII, Issue 1 (February 2008)

Remote Detection of Leaks in Gas Pipelines with an Airborne Raman Lidar. Strategic Insights, Volume VII, Issue 1 (February 2008) Remote Detection of Leaks in Gas Pipelines with an Airborne Raman Lidar Strategic Insights, Volume VII, Issue 1 (February 2008) by Sergey M. Bobrovnikov, Ilia B. Serikov, Yuri F. Arshinov, G. Sakovich,

More information

Y003 Multi-offset Seismic Acquisition Using Optical Fiber Behind Tubing

Y003 Multi-offset Seismic Acquisition Using Optical Fiber Behind Tubing Y003 Multi-offset Seismic Acquisition Using Optical Fiber Behind Tubing C. Barberan* (Total E&P), C. Allanic (Total E&P), D. Avila (Total E&P), J. Hy- Billiot (Total E&P), A. Hartog (Schlumberger), B.

More information

Improvement of leakage monitoring in dikes by the use of distributed fiber optics sensors

Improvement of leakage monitoring in dikes by the use of distributed fiber optics sensors 6th International Conference on Scour and Erosion Paris, August 27-31, 2012 Improvement of leakage monitoring in dikes by the use of distributed fiber optics sensors Yves-Laurent BECK Pierre CUNAT Muriel

More information

Optical Time-Domain Reflectometry for the Transport Spatial Filter on the OMEGA Extended Performance Laser

Optical Time-Domain Reflectometry for the Transport Spatial Filter on the OMEGA Extended Performance Laser Optical Time-Domain Reflectometry for the Transport Spatial Filter on the OMEGA Extended Performance Laser Troy Thomas Webster Thomas High School Advisor: Dr. Brian Kruschwitz Laboratory for Laser Energetics

More information

HELPCOS THE HELICOPTER BASED PIPELINE CONTROL SYSTEM OF VNG - VERBUNDNETZ GAS AG

HELPCOS THE HELICOPTER BASED PIPELINE CONTROL SYSTEM OF VNG - VERBUNDNETZ GAS AG 23rd World Gas Conference, Amsterdam 2006 HELPCOS THE HELICOPTER BASED PIPELINE CONTROL SYSTEM OF VNG - VERBUNDNETZ GAS AG Main author Olaf Meyer, VNG - Verbundnetz Gas AG, Leipzig, Germany Co-authors

More information

STRUCTURAL HEALTH MONITORING OF UNDERGROUND INFRASTRUCTURE

STRUCTURAL HEALTH MONITORING OF UNDERGROUND INFRASTRUCTURE STRUCTURAL HEALTH MONITORING OF UNDERGROUND INFRASTRUCTURE SUSOM DUTTA Graduate Student UMass Lowell Co-Authors: Dr. Pradeep Kurup, Dr. Raj Gondle, Mr. Dennis Doherty, Dr. Tzuyang Yu, Dr. Xingwei Wang

More information

RAMAN SPECTROSCOPY See more, faster than ever before

RAMAN SPECTROSCOPY See more, faster than ever before RAMAN SPECTROSCOPY See more, faster than ever before At Wasatch Photonics we design the kind of Raman spectroscopy products we want to use. As spectroscopists ourselves, we understand the difference that

More information

Document Number March 23, 2016 Yokogawa Electric Corporation. Data Acquisition/Recorder. Data Acquisition and Monitoring. Paperless Recorder

Document Number March 23, 2016 Yokogawa Electric Corporation. Data Acquisition/Recorder. Data Acquisition and Monitoring. Paperless Recorder Yokogawa Field Instruments Pressure & Temperature development & Process Analyzers from a engineering perspective Erik Visser & Loek van Eijck 16-11-2017 1 Yokogawa Industrial Automation Data Acquisition/Recorder

More information

GAMMA OTDR application consists of main window and menu. Using menu user can operate in different modes of application.

GAMMA OTDR application consists of main window and menu. Using menu user can operate in different modes of application. GAMMA OTDR Introduction...1 Using GAMMA OTDR...1 Application main window...1 Menu description...2 file...2 instrument...2 mode...5 events...9 view...11 Introduction GAMMA OTDR is the first Android application

More information

FIBER-OPTIC SENSING TECHNOLOGIES

FIBER-OPTIC SENSING TECHNOLOGIES PRODUCTION ENHANCEMENT FIBER-OPTIC SENSING TECHNOLOGIES FOR WELL MONITORING TO RESERVOIR MANAGEMENT Solving challenges. A H A L L I B U R T O N S E R V I C E Fiber-Optic Sensing Technologies CUTTING-EDGE

More information

AEROSOL SPECTROMETERS

AEROSOL SPECTROMETERS AEROSOL SPECTROMETERS Top resolution, the best classification accuracy, coincidence detection and correction of the individual signal 1 APPLICATIONS Research and development, environmental measurements

More information

The Optical Time Domain Reflectometry and the Fusion Splicer Laboratory exercise

The Optical Time Domain Reflectometry and the Fusion Splicer Laboratory exercise The Optical Time Domain Reflectometry and the Fusion Splicer Laboratory exercise 1 The purpose of the exercise...2 2 Background...2 2.1 Introduction to scattering and attenuation...2 2.2 Introduction to

More information

Ensuring the Health of Tomorrow s Fiber LANs Part II OTDR Trace Analysis Become an Expert Troubleshooter with Advanced OTDR Trace Analysis

Ensuring the Health of Tomorrow s Fiber LANs Part II OTDR Trace Analysis Become an Expert Troubleshooter with Advanced OTDR Trace Analysis Ensuring the Health of Tomorrow s Fiber LANs Part II OTDR Trace Analysis Become an Expert Troubleshooter with Advanced OTDR Trace Analysis Experience designing cable and network testers has enabled a breakthrough

More information

Multitel develops components and full instruments for in-vitro and in-vivo diagnostics in the biomedical, food and drug sectors.

Multitel develops components and full instruments for in-vitro and in-vivo diagnostics in the biomedical, food and drug sectors. Biophotonics Multitel develops components and full instruments for in-vitro and in-vivo diagnostics in the biomedical, food and drug sectors. Bio-sensors design Multitel participates to a large panel of

More information

New remote sensing instruments for water vapour monitoring developed at EPFL

New remote sensing instruments for water vapour monitoring developed at EPFL New remote sensing instruments for water vapour monitoring developed at EPFL V. Simeonov 1, T. Dinoev 1, P. Ristori 1, I. Serikov 2, M. Taslakov 1, M. Parlange 2, B. Calpini 3, Yu. Arshinov 4, S. Bobrovnikov

More information

Fiber optic system for monitoring large earth structures

Fiber optic system for monitoring large earth structures BAM Federal Institute for Materials Research and Testing, Berlin Fiber optic system for monitoring large earth structures (BAM) 3 November 2011 Overview Motivation Components of dams and dikes structural

More information

RaySense. Fiber Optic Distributed Vibration Sensing (DVS) for Pipeline Security and Leak Detection

RaySense. Fiber Optic Distributed Vibration Sensing (DVS) for Pipeline Security and Leak Detection RaySense Fiber Optic Distributed Vibration Sensing (DVS) for Pipeline Security and Leak Detection 1 PIPELINE MONITORING AND SECURITY The oil & gas industry is currently facing a serious challenge in assuring

More information

Fibre Optic Sensors: basic principles and most common applications

Fibre Optic Sensors: basic principles and most common applications SMR 1829-20 Winter College on Fibre Optics, Fibre Lasers and Sensors 12-23 February 2007 Fibre Optic Sensors: basic principles and most common applications (PART 1) Hypolito José Kalinowski Federal University

More information

RaySense. Fiber Optic Distributed Acoustic Sensing for Pipeline Security and Leak Detection

RaySense. Fiber Optic Distributed Acoustic Sensing for Pipeline Security and Leak Detection RaySense Fiber Optic Distributed Acoustic Sensing for Pipeline Security and Leak Detection 1 PIPELINE MONITORING AND SECURITY The oil & gas industry is currently facing a serious challenge in assuring

More information

Communications. Sensing. Instrumentation. Delivering tomorrow s optical and photonic solutions today. BREAKTHROUGH PHOTONIC PRODUCTS

Communications. Sensing. Instrumentation. Delivering tomorrow s optical and photonic solutions today. BREAKTHROUGH PHOTONIC PRODUCTS Communications. Sensing. Instrumentation. BREAKTHROUGH PHOTONIC PRODUCTS ADVANCED MATERIALS MICRO-MECHANICAL NANO-STRUCTURE TECHNOLOGY Delivering tomorrow s optical and photonic solutions today. Capabilities

More information

Laser Diagnostics and Optical Measurement Techniques

Laser Diagnostics and Optical Measurement Techniques Laser Diagnostics and Optical Measurement Techniques in Internal Combustion Engines by Hua Zhao Preface... xi Chapter 1. Optical Engines... 1 1.1 Introduction...1 1.2 Optical Access...1 1.2.1 Optical Access

More information

ASSMANN ELECTRONIC GmbH ASSMANN SYSTEM GUARANTEE. DIGITUS Professional Fiber Optic Cabling System. Appendix B - Provisions for acceptance

ASSMANN ELECTRONIC GmbH ASSMANN SYSTEM GUARANTEE. DIGITUS Professional Fiber Optic Cabling System. Appendix B - Provisions for acceptance ASSMANN ELECTRONIC GmbH ASSMANN SYSTEM GUARANTEE DIGITUS Professional Fiber Optic Cabling System Appendix B - Provisions for acceptance Page 1 Table of contents 1. Acceptance test of the installation link

More information

Laser Safety and Classification Full Version (CA-1110) Advanced Version (CA-1111) Basic Version (CA-1112)

Laser Safety and Classification Full Version (CA-1110) Advanced Version (CA-1111) Basic Version (CA-1112) Laser Safety and Classification Full Version (CA-1110) Advanced Version (CA-1111) Basic Version (CA-1112) The spectral range of lasers vary from a few nanometer up to some hundred micrometers and is mostly

More information

FIBER OPTIC TESTING 1

FIBER OPTIC TESTING 1 FIBER OPTIC TESTING 1 FIBER OPTIC TEST AND MEASUREMENT SOLUTIONS We provide diagnostic and test instrumentation for the telecommunications industry, enabling complete characterization of optical components,

More information

sense the difference 23 rd April 2018

sense the difference 23 rd April 2018 23 rd April 2018 13th CO2GEONET OPEN FORUM High-resolution offset VSP using fiber optic acoustic sensor CO2CRC Otway Site, Australia A. Chalari, Silixa Ltd sense the difference Agenda Introduction Technology

More information

RAMAN SCATTERING AND OTDR BASED DISTRIBUTED SENSOR FOR TEMPERATURE MONITORING APPLICATIONS

RAMAN SCATTERING AND OTDR BASED DISTRIBUTED SENSOR FOR TEMPERATURE MONITORING APPLICATIONS RAMAN SCATTERING AND OTDR BASED DISTRIBUTED SENSOR FOR TEMPERATURE MONITORING APPLICATIONS Sait Eser KARLIK Uludağ University Faculty of Engineering and Architecture Department of Electronics Engineering

More information

Praetorian Fibre Optic Sensing

Praetorian Fibre Optic Sensing A Higher Level of Performance Praetorian Fibre Optic Sensing For more information, please visit > www.hawkmeasure.com 1 A Complete Pipeline Performance Monitoring System. Any pipe, anywhere Distance up

More information

What we can learn from a fullscale demonstration experiment after 4 years of DTS monitoring the FE Experiment

What we can learn from a fullscale demonstration experiment after 4 years of DTS monitoring the FE Experiment What we can learn from a fullscale demonstration experiment after 4 years of DTS monitoring the FE Experiment Tobias Vogt Hansruedi Fisch, Benoit Garitte, Berrak Firat Lüthi, Herwig R. Müller, Andreas

More information

Introduction to Fiber Optic Sensing

Introduction to Fiber Optic Sensing Introduction to Fiber Optic Sensing A guide to understanding the fiber optic sensing landscape Introduction to Fiber Optic Sensing - 1 - Table of Contents Understanding the Fiber Optic Sensing Landscape...

More information

Field Test Procedure for Optical Fibre Link Measurements

Field Test Procedure for Optical Fibre Link Measurements Application Notes Field Test Procedure for Optical Fibre Link Measurements Issued April 2014 Abstract After fiber optic cables are installed, spliced and terminated, they must be tested. For every fiber

More information

ANALYSIS OF OTDR MEASUREMENT DATA WITH WAVELET TRANSFORM. Hüseyin ACAR *

ANALYSIS OF OTDR MEASUREMENT DATA WITH WAVELET TRANSFORM. Hüseyin ACAR * ANALYSIS OF OTDR MEASUREMENT DATA WITH WAVELET TRANSFORM Hüseyin ACAR * Department of Electrical and Electronics Engineering, Faculty of Engineering, Dicle University * hacar@dicle.edu.tr ABSTRACT: In

More information

MEGOHMETER. PCS ITALIANA srl TECHNICAL DATA DESCRIPTION:

MEGOHMETER. PCS ITALIANA srl TECHNICAL DATA DESCRIPTION: MEGOHMETER DESCRIPTION: PPCS has availability of several equipment for check and testing on power and optical cables. Such equipment are used both after installation and during laying operations. Applying

More information

Computerised Analysis of OFM in Communication Theory

Computerised Analysis of OFM in Communication Theory Computerised Analysis of OFM in Communication Theory Asad Ali Khan Research Scholar, Teerthanker Mahaveer University Moradabad, Uttar Pradesh, India V.K. Sharma Ex-Principal K.G.K (P.G.) College,Moradabad,

More information

Temperature Monitoring and Leakage Detection for a Broad Portfolio of Industrial Assets

Temperature Monitoring and Leakage Detection for a Broad Portfolio of Industrial Assets -170 C to+450 C temperature range 4,000 DTS systems installed 140,000 m range Temperature Monitoring and Leakage Detection for a Broad Portfolio of Industrial Assets Permanent monitoring of large chemical

More information

Leak Detection - Application Note

Leak Detection - Application Note Leak Detection - Application Note THE SUREST WAY TO DETECT THE PRECISE LOCATION OF ANY LEAK IN HAZARDOUS SUBSTANCES PIPELINES AND PROVIDE TOTAL INTEGRITY THROUGHOUT YOUR PIPELINE NETWORK, ENSURING EFFICIENT,

More information

DISTRIBUTION STATEMENT

DISTRIBUTION STATEMENT NSRP National Shipbuilding Research Program Distributed Temperature Sensing for Inspection of Electrical Panels on Navy Ships Jeff Callen Penn State Electro-Optics Center March 7-9, 2017 Charleston, SC

More information

Contents Fibre Laser (and Sensor) Technologies

Contents Fibre Laser (and Sensor) Technologies Contents Fibre Laser (and Sensor) Technologies Lorinda Wu CSIR National Laser Centre NLC: Novel Laser Sources Group Conducts R&D into novel laser sources, with a focus on mid-ir. Developed a number of

More information

Ensuring Cabling Performance in the Customer-Owned Outside Plant. Keith Foord Product Manager Greenlee Communications

Ensuring Cabling Performance in the Customer-Owned Outside Plant. Keith Foord Product Manager Greenlee Communications Ensuring Cabling Performance in the Customer-Owned Outside Plant Keith Foord Product Manager Greenlee Communications Introduction: Outside plant fiber networks require low reflectance terminations for

More information

WG Buried Fibre Cable Long Perimeter Detection System

WG Buried Fibre Cable Long Perimeter Detection System WI CODE : 11954 Telephone : +44 (01295 756300 Fax : +44 (0)1295 756302 E-Mail : info@wi-ltd.com Website : www.wi-ltd.com WG Buried Fibre Cable Long Perimeter Detection System The WG Buried Cable Long Perimeter

More information

Return loss measurement of fiber optic components

Return loss measurement of fiber optic components Return loss measurement of fiber optic components Solutions Brief 815-1 How the HP 8153A/HP 81534A measure return loss of fiber optic components? The significance of return loss The introduction of new

More information

Non-destructive testing of green sanitary ceramics by microwaves and an active thermographic technique

Non-destructive testing of green sanitary ceramics by microwaves and an active thermographic technique 19 th World Conference on Non-Destructive Testing 2016 Non-destructive testing of green sanitary ceramics by microwaves and an active thermographic technique Günter WALLE, Christoph SKLARCZYK, Udo NETZELMANN

More information

NOVEL BOREHOLE- AND TEST PROCEDURES FOR UNDERGROUND GAS STORAGE ASSETS BY USING AN INTELLIGENT PIG FOR DOWNHOLE INSPECTIONS

NOVEL BOREHOLE- AND TEST PROCEDURES FOR UNDERGROUND GAS STORAGE ASSETS BY USING AN INTELLIGENT PIG FOR DOWNHOLE INSPECTIONS 23rd World Gas Conference, Amsterdam 2006 NOVEL BOREHOLE- AND TEST PROCEDURES FOR UNDERGROUND GAS STORAGE ASSETS BY USING AN INTELLIGENT PIG FOR DOWNHOLE INSPECTIONS Main author Claudia Becker, Untergrundspeicher-

More information

Optical Return Loss Measurement by Gregory Lietaert, Product Manager

Optical Return Loss Measurement by Gregory Lietaert, Product Manager White Paper Optical Return Loss Measurement by Gregory Lietaert, Product Manager Introduction With the increasing frequency of high-speed transmission systems and DWDM deployment, optical return loss (ORL)

More information

FLIM/FFS and Nanoimaging Upgrade of Olympus confocal microscopes

FLIM/FFS and Nanoimaging Upgrade of Olympus confocal microscopes TECHNICAL NOTE FLIM/FFS and Nanoimaging Upgrade of Olympus confocal microscopes Shih-Chu Liao, Yuansheng Sun, Ulas Coskun ISS, Inc. 1 Introduction The FLIM and FFS Upgrade Package for the Olympus confocal

More information

DEGRADATION OF OPTICAL FillERS AT CARBON-CARBON PYROLYSIS. Rockwell International Science Center P.O. Box 1085 Thousand Oaks, CA 91358

DEGRADATION OF OPTICAL FillERS AT CARBON-CARBON PYROLYSIS. Rockwell International Science Center P.O. Box 1085 Thousand Oaks, CA 91358 DEGRADATION OF OPTICAL FillERS AT CARBON-CARBON PYROLYSIS TEMPERATURES Jeffrey S. Schoenwald Rockwell International Science Center P.O. Box 1085 Thousand Oaks, CA 91358 INTRODUCTION The value of having

More information

Automated Fire Detection and Suppression in a Retrofitted Tunnel Using Fiber-Optic Linear Heat Detection

Automated Fire Detection and Suppression in a Retrofitted Tunnel Using Fiber-Optic Linear Heat Detection Automated Fire Detection and Suppression in a Retrofitted Tunnel Using Fiber-Optic Linear Heat Detection Julio Toko, Martin Fromme, Bernd Horbach and Wieland Hill LIOS Technology GmbH, Cologne, Germany

More information

Distributed Temperature Sensing. On Demand. OPTICall. Thermal Profile and Investigation Service

Distributed Temperature Sensing. On Demand. OPTICall. Thermal Profile and Investigation Service Distributed Temperature Sensing. On Demand. OPTICall Thermal Profile and Investigation Service A New Line of Investigation for Improved Field Productivity Distributed temperature sensing (DTS) measures

More information

High-temperature fibers provide continuous DTS data in a harsh SAGD environment

High-temperature fibers provide continuous DTS data in a harsh SAGD environment High-temperature fibers provide continuous DTS data in a harsh SAGD environment A dopant-free, single-mode optical fiber delivered accurate temperature profiles for many months in a Western Canadian SAGD

More information

Interferometric optical time-domain reflectometry for distributed optical-fiber sensing

Interferometric optical time-domain reflectometry for distributed optical-fiber sensing Interferometric optical time-domain reflectometry for distributed optical-fiber sensing Sergey V. Shatalin, Vladimir N. Treschikov, and Alan J. Rogers The technique of optical time-domain reflectometry

More information

LAB REPORT SUBMISSION COVER PAGE ETN4106 OPTOELECTRONICS AND OPTICAL COMMUNICATIONS

LAB REPORT SUBMISSION COVER PAGE ETN4106 OPTOELECTRONICS AND OPTICAL COMMUNICATIONS 1/10 FACULTY OF ENGINEERING LAB REPORT SUBMISSION COVER PAGE ETN4106 OPTOELECTRONICS AND OPTICAL COMMUNICATIONS TRIMESTER 3, SESSION 2016/2017 Student Name: Student ID: Degree Major (please circle): EE

More information

Overview of fiber optic sensing system: BOTDR and its applications

Overview of fiber optic sensing system: BOTDR and its applications 1 Overview of fiber optic sensing system: BOTDR and its applications Hiroshi Naruse Mie University June 12, 2008 in Santiago, Chile Introduction of Mie University 2 There are about 70 national universities

More information

A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

A Cost Effective Multi-Spectral Scanner for Natural Gas Detection A Cost Effective Multi-Spectral Scanner for Natural Gas Detection Semi-Annual Progress Report No. 1 Reporting Period Start Date: October 1, 2003 Reporting Period End Date: March 31, 2004 Principal Authors:

More information

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment FAST SHIPPING AND DELIVERY TENS OF THOUSANDS OF IN-STOCK ITEMS EQUIPMENT DEMOS HUNDREDS OF MANUFACTURERS SUPPORTED

More information

PC474 Lab Manual 1. Terry Sturtevanta and Hasan Shodiev 2. Winter 2012

PC474 Lab Manual 1. Terry Sturtevanta and Hasan Shodiev 2. Winter 2012 PC474 Lab Manual 1 Terry Sturtevanta and Hasan Shodiev 2 Winter 2012 1 Much of this information is taken from OptoSci documentation 2 with much original material by Adam Prescott Contents 1 OTDR (Optical

More information

Distributed acoustic monitoring to secure transport infrastructure against natural hazards - requirements and new developments

Distributed acoustic monitoring to secure transport infrastructure against natural hazards - requirements and new developments DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS) Distributed acoustic monitoring to secure transport infrastructure against natural hazards - requirements and new developments

More information

Fiber Optic Distributed Strain and Temperature Sensors (DSTS)

Fiber Optic Distributed Strain and Temperature Sensors (DSTS) Fiber Optic Distributed Strain and Temperature Sensors (DSTS) BOTDA Module For more information about our strain and temperature sensor system and related products, please visit www.ozoptics.com Photo:

More information

UC INSTRUMENTS GM8036 LASER SWEEP OPTICAL SPECTRUM ANALYZER (1525 ~ 1610 nm) Technical Specifications v1.01 March, 2011

UC INSTRUMENTS GM8036 LASER SWEEP OPTICAL SPECTRUM ANALYZER (1525 ~ 1610 nm) Technical Specifications v1.01 March, 2011 UC INSTRUMENTS GM8036 LASER SWEEP OPTICAL SPECTRUM ANALYZER (1525 ~ 1610 nm) Technical Specifications v1.01 March, 2011 GM8036 LASER SWEEP OPTICAL SPECTRUM ANALYZER (1525 ~ 1610 nm) UC INSTRUMENTS GM8036

More information

Atmospheric Super Test Beam for the Pierre Auger Observatory

Atmospheric Super Test Beam for the Pierre Auger Observatory Atmospheric Super Test Beam for the Pierre Auger Observatory L. Wiencke for the Pierre Auger Collaboration and A. Botts, C. Allan, M. Calhoun, B. Carande, M. Coco, J. Claus, L. Emmert, S. Esquibel, L.

More information

Customized LIDARs. Research Pollution Climate. Raman, Depolarization, Backscatter, DIAL

Customized LIDARs. Research Pollution Climate. Raman, Depolarization, Backscatter, DIAL Customized LIDARs Research Pollution Climate Raman, Depolarization, Backscatter, DIAL Raymetrics Introduction Raymetrics was founded in 2002 with the aim of manufacturing the highest quality scientific

More information

Flexibility, scalability andsecurity

Flexibility, scalability andsecurity THE OF INFORMATION TECHNOLOGY SYSTEMS An Official Publication of BICSI January/February 2014 l Volume 35, Number 1 data center Flexibility, scalability andsecurity plus + The Next Five Years in AV + Measuring

More information

Technical specifications of FT-IR Spectrometer

Technical specifications of FT-IR Spectrometer Technical specifications of FT-IR Spectrometer We would like to buy a FT-IR spectrometer which has to be integrated with a Gas Chromatograph with the following technical specifications. 1. The spectrometer

More information

Customized LIDARs. Research Pollution Climate. Raman, Depolarization, Backscatter, DIAL

Customized LIDARs. Research Pollution Climate. Raman, Depolarization, Backscatter, DIAL Customized LIDARs Research Pollution Climate Raman, Depolarization, Backscatter, DIAL Raymetrics Introduction Raymetrics was founded in 2002 with the aim of manufacturing the highest quality scientific

More information

FACULTY OF ENGINEERING LAB SHEET OPTICAL COMMUNICATION SYSTEMS EOP4066 TRIMESTER 1 (2013/2014)

FACULTY OF ENGINEERING LAB SHEET OPTICAL COMMUNICATION SYSTEMS EOP4066 TRIMESTER 1 (2013/2014) FACULTY OF ENGINEERING LAB SHEET OPTICAL COMMUNICATION SYSTEMS EOP4066 TRIMESTER 1 (2013/2014) OC1 FIBER LINK CHARACTERIZATION WITH OTDR *Note: On-the-spot evaluation may be carried out during or at the

More information

SPECTRAL INSTRUMENTATION

SPECTRAL INSTRUMENTATION SPECTRAL INSTRUMENTATION The typical setup of an IR experiment includes a light source, a sample, (a microscope), the spectral apparatus, a detector and a computer. IR experiment A light source emits polychromatic

More information

Product data sheet Palas Promo 2000

Product data sheet Palas Promo 2000 Product data sheet Palas Promo 2000 Applications Emission monitoring of installations Control of grinding and classification processes Monitoring of production processes in the food, pharmaceuticals and

More information

LONG-RANGE PIPELINE MONITORING BY DISTRIBUTED FIBER OPTIC SENSING

LONG-RANGE PIPELINE MONITORING BY DISTRIBUTED FIBER OPTIC SENSING Proceedings of IPC26: 6th INTERNATIONAL PIPELINE CONFERENCE September 25-29, 26, Calgary, Alberta, Canada IPC26-1287 LONG-RANGE PIPELINE MONITORING BY DISTRIBUTED FIBER OPTIC SENSING Daniele Inaudi SMARTEC

More information

Experiment Study in Optical Fiber Temperature Monitoring

Experiment Study in Optical Fiber Temperature Monitoring Experiment Study in Optical Fiber Temperature Monitoring HE Jun, DONG Hui-juan, YANG Kan, ZHANG Guang-yu (School of Mechatronics Engineering, Harbin Institute of Technology, Harbin150001, China) Abstract:

More information

Correlation-based OTDR for in-service monitoring of 64-split TDM PON

Correlation-based OTDR for in-service monitoring of 64-split TDM PON Correlation-based OTDR for in-service monitoring of 64-split TDM PON H. K. Shim, K. Y. Cho, Y. Takushima, and Y. C. Chung* Department of Electrical Engineering, Korea Advanced Institute of Science and

More information

SP-3800AA Atomic Absorption Spectrophotometer

SP-3800AA Atomic Absorption Spectrophotometer SP-3800AA Atomic Absorption Spectrophotometer SP-3800AA series Atomic Absorption Spectrophotometer SP-3800AA is an Atomic Absorption Spectrophotometer with many domestic and international advanced technologies

More information

WHAT IS LASER ULTRASONIC TESTING?

WHAT IS LASER ULTRASONIC TESTING? WHAT IS LASER ULTRASONIC TESTING? Laser ultrasonic testing (LUT) is a remote, noncontact extension of conventional, contact or near-contact ultrasonic testing (UT). A schematic layout of a laser ultrasonic

More information

PC474 Lab Manual Wilfrid Laurier University 1

PC474 Lab Manual Wilfrid Laurier University 1 PC474 Lab Manual Wilfrid Laurier University 1 c Dr. Hasan Shodiev and Terry Sturtevant 2 3 Winter 2018 1 Much of this information is taken from OptoSci documentation 2 with much original material by Adam

More information