Evaluation of Deep-Seated Slope Stability of Embankments over Deep Mixed Foundations

Size: px
Start display at page:

Download "Evaluation of Deep-Seated Slope Stability of Embankments over Deep Mixed Foundations"

Transcription

1 Abstract Evaluation of Deep-Seated Slope Stability of Embankments over Deep Mixed Foundations Jie Han 1, Jin-Chun Chai 2, Dov Leshchinsky 3, and Shui-Long Shen 4, When embankments are constructed over soft foundations, deep-seated slope stability often becomes one of the controlling factors in design. Deep mixing methods have been commonly used as an alternative to solve the deep-seated slope stability problem. Bishop s modified method is a commonly adopted approach for analyzing the slope stability of embankments on deep mixed foundations. Bishop s modified method assumed slopes fail along a circular slip surface and the soils along this slip surface provide shear resistance. However, experimental studies have showed that deep mixed columns under a combination of vertical and horizontal forces could fail due to shearing or bending. The possible failure modes depend on the combination of the forces, the strengths of soft soils and deep mixed columns, dimensions and arrangements of deep mixed columns. Since deep mixed columns are formed by mixing a certain amount of admixture (cement or lime or a combination) with soil, they can have a wide range of strengths. A numerical method was used in this study to evaluate the factors of safety varying with the strengths of deep mixed columns and their arrangements with three rows of columns having two different thickness. Mohr- Coulomb failure criterion was used for embankment fill, foundation soil, and deep mixed columns. A row of deep mixed columns was modeled as a wall in 2-D for simplicity of analysis. The numerical analysis indicated that the critical slip surface of the deep-seated slope failure was not circular when the deep mixed columns were used. The factors of safety obtained using the numerical method were compared with those using Bishop s modified method and Spencer s three-part wedge method. The comparisons indicated that Bishop s modified method yielded significantly higher factors of safety than the numerical method, especially when the deep mixed columns had higher strengths. The Spencer s three-part wedge method yielded lower factors of safety than the numerical method. 1 Ph.D., PE, Assistant Professor, Dept. of Civil Engineering, Widener University, One University Place, PA 19013, USA, Tel.: , Fax: , jxh0305@mail.yahoo.com 2 Ph.D., Associate Professor, Institute of Lowland Technology, Saga University, 1 Honjo, Saga , JAPAN, Tel. and Fax: , chai@cc.saga-u.ac.jp 3Professor, Dept. of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA 4 Ph.D., Associate Professor, School of Civil Engineering and Mechanics, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai , CHINA, suiryu_shen@yahoo.com.cn

2 Introduction When designing embankments over soft foundations, geotechnical engineers may face a number of challenges, which include bearing capacity failure, excessive total and differential settlements, and slope instability, etc. The slope instability of embankments may develop locally, near the facing, inside the embankment, or through the foundation soil as local failure, surficial failure, general slope failure, or deep-seated failure as shown in Figure 1. The deep-seated slope failure is also referred as a global slope failure, mainly induced by a soft foundation existing under the embankment. A number of techniques have been successfully adopted to prevent deep-seated slope failure, such as ground improvement techniques and use of geosynthetics or piles. As one of ground improvement techniques, deep mixed (DM) columns have been commonly used as an alternative to solve deep-seated slope stability problems. Terashi (2002) indicated that nearly 60% of on-land application in Japan and perhaps roughly 85% of Nordic applications are for the settlement reduction and improvement of stability of embankment by means of group of treated soil columns. This paper focuses on the evaluation of deep-seated slope stability of embankments over deep mixed foundations using limit equilibrium methods and a numerical solution. General slope failure Deep seated failure Local failure Surficial failure Figure 1. Potential Slope Stability Failures Limit equilibrium methods have been commonly adopted for analyzing the deepseated slope stability of embankments over deep mixed foundations. Bishop s modified method with a circular slip surface is probably the most commonly used limit equilibrium method. In the analysis of DM foundations, the DM columns and the soil are either treated as individual components or as a composite ground to resist the shear stresses. In this study, the DM columns are treated as individual DM walls in 2-D analyses. Limit equilibrium methods assume that the shear strengths of the columns are always fully mobilized if a slip surface cuts through any part of the columns. In reality, the resistance of the columns depends on the intersected location by the slip surface. As shown in Figure 2, the columns may only provide very limited resistance at the locations A and C because the soil around the columns may fail prior

3 to the failure of the columns or the slip surfaces may go around the columns to create noncircular slip surface or the columns may behave as piles punching into the upper or lower soil layer as described by Broms and Wong (1985). In addition, the centrifuge model tests done by Kitazume and Terashi (1991) indicated that the DM columns failed by bending under a combination of vertical and horizontal forces. Broms (1999) also indicated that horizontal forces would reduce the bearing capacity of DM columns. Since the bending strengths of the DM columns are much lower than their shear strengths, Kitazume et al. (1997) was concerned about the possibility of overestimation using Bishop s slip circle analysis in the current design. A B C Figure 2. Potential slip locations through DM columns In recent years, numerical methods have been increasingly used for analyzing slope stability including the computation of its factor of safety. San et al. (1994) indicated that finite element and limit equilibrium methods could consistently determine the locations of critical slip surfaces and required tensile strength of reinforcement in geosynthetic-reinforced slopes. Dawson et al. (1999) concluded that the factors of safety of unreinforced slopes obtained using a finite difference method (FLAC - Fast Lagrangian Analysis of Continua) were in good agreement with those using the limit equilibrium method with a log-spiral slip surface. Han et al. (2002) used the same finite difference software (FLAC) to obtain the identical corresponding factors of safety of unreinforced and geosynthetic-reinforced slopes as the Bishop s modified method (limit equilibrium method). The technique used for computing the factor of safety of slope stability in the numerical method is discussed in the following section. As compared with limit equilibrium methods, numerical methods have the following advantages in solving the factor of safety of slope stability (Cundall, 2002): (1) no pre-defined slip surface is needed; (2) the slip surface can be any shapes; (3) no assumptions are needed for functions of inter-slice force angles; (4) multiple failure surfaces are possible; (5) structures (such as footings, tunnels, etc.) and/or structural elements (such as beams, cables, etc.) and interfaces can be included; and (6) kinematics is satisfied. However, numerical methods generally require the user to have more knowledge and experience in order to properly use it. A complicated and large size problem may require significant computation time. The inclusion of structural elements and interfaces may create numerical instability. It is difficult to

4 perform a specific search when it is sometimes needed (for example, surficial slope stability needs to be prevented in order to study the deep-seated slope stability). The comparisons of numerical solutions and limit equilibrium methods are presented in Table 1. Considering the complexity of the failure mechanisms, the finite difference method (FLAC) was adopted in this study to evaluate the deep-seated slope stability of embankments over DM foundations. The computed factors of safety by the numerical method were compared with those obtained using Bishop s circular slip surface method and the Spencer s three-part wedge method. Table 1. Comparisons of Numerical Solutions and Limit Equilibrium Methods (Cundall, 2002) Numerical solution Limit equilibrium Equilibrium Satisfied everywhere Satisfied only for specific objects (slices) Stresses Computed everywhere using field equations Computed approximately on certain surfaces Deformation Part of the solution Not considered Failure Yield condition satisfied everywhere; failure surfaces develop automatically as condition dictate Failure allowed only on certain pre-defined surfaces; no check on yield condition elsewhere Kinematics The mechanisms that develop satisfy kinematic constraints Kinematics are not considered mechanisms may not be feasible Numerical Method The finite difference program (FLAC 2D Version 4.0) developed by the Itasca Consulting Group, Inc. was adopted in this study for numerical analyses of slope stability of embankments over DM foundations. A shear strength reduction technique was adopted in this program to solve for a factor of safety of slope stability. Dawson et al. (1999) exhibited the use of the shear strength reduction technique in this finite difference program and verified numerical results with limit equilibrium results for simple slopes. In this technique, a series of trial factors of safety are used to adjust the cohesion, c and the friction angle, φ, of soil as follows: c φ trial trial 1 = FS trial c 1 = arctan FS trial tan φ Adjusted cohesion and friction angle of soil layers are re-inputted in the model for equilibrium analysis. The factor of safety is sought when the specific adjusted

5 cohesion and friction angle make the slope become instability from a verge stable condition or verge stable from an unstable condition. Modeling The geometry and material properties of the models used in this study are shown in Figure 3. Deep mixed columns were modeled as continuous walls. Mohr-Coulomb failure criteria were used for embankment fill, soft soil, firm soil, and deep mixed walls. The properties of embankment fill, soft soil, and firm soil were kept constant. The unit weight of all the soil layers including DM walls was 18kN/m 3. In this study, DM walls are installed at the toe, the shoulder, and the mid-point between the toe and the shoulder with a thickness of 1.0m or 2.0m although they can be installed under the whole embankment in practice. For a parametric study, the DM walls have an undrained shear strength varying from 100kPa to 1000kPa and friction angle equal to zero. The same models were used in numerical and limit equilibrium analyses. 20m 10m 30m Soil-cement column c=100 to 1000kPa, φ= Embankment fill 5m c=0, φ=34 0 1m or 2m Soft soil c=10kpa, φ=0 0 10m Firm soil c=100kpa, φ=0 0 5m Figure 3. Numerical Analysis Model Analysis of Results Numerical Analyses An embankment over untreated ground was selected as a baseline case. The shearstrain rate contours of this case were shown in Figure 4. It is shown that high shear strain rates developed in the embankment and the soft soil, which created a critical slip zone. The shape of this critical slip zone is circular, which is consistent with the slip surface assumed in Bishop s method. It is apparent that the critical slip zone was bottomed out by the firm soil underneath the soft soil. Figure 5 presents shear-strain rate contours for an embankment over a DM foundation. There is no continuous shear-strain rate zone. It is shown that the shear-strain rate contours intercepted by soil-cement walls. The high shear-strain rate zones developed in the embankment and soft soil in front and behind the DM walls. In front of the column at the toe, the

6 high shear-strain rate zone was caused by the rotation of the column towards the soft soil. ( )x10-8 ( )x10-8 ( )x10-8 (7.5-10)x10-8 ( )x10-8 (7.5-10)x10-8 ( )x10-8 (5-7.5)x10-8 Soft soil Firm soil Figure 4. Shear Strain Rates Developed in the Embankment and Untreated Ground (6-8)x10-8 (4-6)x10-8 >10x10-8 (8-10)x10-8 (6-8)x10-8 (4-6)x10-8 < 4x10-8 (2-4)x10-8 Column Column Column (2-4)x10-8 Soft soil Firm soil Figure 5. Shear Strain Rates Developed in the Embankment and thedm Foundation (wall thickness = 1.0m; undrained shear strength of DM column, c u = 100kPa) Since the critical slip surface was not very obvious based on the shear strain rate contours in the embankment and the DM foundation, the velocity vectors obtained by the numerical method were plotted in Figure 6 to assist in evaluating the critical slip surface. The velocity vectors shown in Figure 6 represent the movement of the slope and the soft soil with DM columns. The shape of the critical slip surface can be approximately considered as a three-part wedge type. This critical slip surface was simulated in the slope stability analysis using Spencer s three-part wedge method in the next section.

7 Figure 6. Velocity Vectors Developed in the Embankment and the DM Foundation (wall thickness = 1.0m; undrained shear strength of DM column, c u = 100kPa) Limit Equilibrium Analyses The limit equilibrium program, ReSSA2.0, developed by ADAMA Engineering, Inc., was used in this study to conduct slope stability analyses using Bishop s modified method and Spencer s three-part wedge method. The tangent to critical circles at their points of exit for Bishop s method is limited in ReSSA to a maximum of 50 degrees. This limitation is to avoid numerical errors leading to misleading values of factor of safety when the circles emerge too steeply (Whitman and Bailey, 1967). The critical slip surface based on Bishop s modified method for the embankment over DM columns is shown in Figure 7. Since the slip surface cut through three rows of DM walls, all DM walls mobilized their full strengths. Figure 7. Bishop s Circular Slip Surface Analysis (wall thickness = 1.0m; undrained shear strength of DM column, c u = 100kPa) The critical slip surface based on Spencer s three-part wedge method for the embankment over DM columns is shown in Figure 8. As compared with the shape of critical slip surface based on the velocity vectors, the three-part wedge slip surface

8 has a good representation of the critical slip surface obtained by the numerical method. Factor of safety Figure 8. Critical Slip Surface in Three-Part Wedge Analysis (undrained shear strength of DM column, c u = 100kPa) The computed factors of safety against deep-seated slope failure using the FLAC numerical method, Bishop s modified method, and Spencer s three-part wedge method are plotted in Figure 9. When the undrained shear strength of DM walls is equal to 10kPa, it represents a case with an untreated ground. It is shown that all three methods computed almost identical factors of safety. With an increase of the undrained shear strength of DM walls, the factors of safety computed by these three methods become different. Bishop s modified method yielded significantly higher factors of safety than those obtained by the numerical method when the undrained shear strength of the DM walls is higher. The difference may result from the misrepresentation of the circular slip surface and fully mobilized strength of DM walls assumed in Bishop s method for this specific problem. However, the three-part wedge method yielded lower or conservative factors of safety as compared with the numerical method. Spencer s method assumed that the interslice force angles from the left and right vertical sides of each slice are equal. The inclusion of vertical strong elements (DM walls) may change functions of interslice force angles between the left and right vertical sides of slice. Conclusions Numerical analyses indicated that the critical slip surface of the embankment over a deep mixed foundation for this specific problem was not circular. Bishop s modified method computed significantly higher factors of safety than the numerical method when the undrained shear strength of the deep mixed walls. Spencer s three-part wedge method yielded lower factors of safety than the numerical method.

9 2.5 2 Three-row soil-cement walls Wall thickness = 1m Factor of Safety, FOS Bishop's modified method Numerical method (FLAC) Three-part wedge method Undrained Shear Strength of DM Walls, c u (kpa) (a) Three-row soil-cement walls Wall thickness = 2m Factor of Safety, FOS Bishop's modified method Numerical method (FLAC) Three-part wedge method Undrained Shear Strength of DM Walls, c u (kpa) (b) Figure 9. Computed Factors of Safety using Limit Equilibrium and Numerical Methods (wall thickness = 2.0m)

10 Acknowledgement This research work was conducted under the research fellowship provided by the Japan Society for Promotion of Science (JSPS) for the first author as a visiting associate professor at Saga University, Japan. This support is greatly appreciated. The authors are thankful for valuable discussions with Prof. N. Miura at Saga University on this specific research topic. References Bishop, A.W. (1955). The use of the slip circle in the stability analysis of slopes. Geotechnique, 5, Broms, B.B. and Wong, I.H. (1985). Embankment piles. Third International Geotechnical Seminar Soil Improvement Methods, Singapore, November. Broms, B.B. (1999). Can lime/cement columns be used in Singapore and Southeast Asia? 3 rd GRC Lecture, Nov. 19, Nanyang Technological University and NTU- PWD Geotechnical research Centre, 214p. Cundall, P.A. (2002). The replacement of limit equilibrium methods in design with numerical solutions for factor of safety. Powerpoint presentation, Itasca Consulting Group, Inc. Dawson, E.M., Roth, W.H., and Drescher, A. (1999). Slope stability analysis by strength reduction. Geotechnique 49(6), Han, J., Leshchinsky, D., and Shao, Y. (2002). Influence of tensile stiffness of geosynthetic reinforcements on performance of reinforced slopes. Proceedings of Geosynthetics 7 th ICG, Delmas, Gourc & Girard (eds), Swets & Zeitlinger, Lisse, Itasca Consulting Group, Inc. (2002). FLAC/Slope User s Guide, 1 st Edition, 82p. Kitazume, M. and Terashi, M. (1991). Effect of local soil improvement on the behavior of revetment. Proc. Geo-Coast 91, 1, Kitazume, M., Omine, K., Miyake, M., and Fujisawa, H. (1997). JGS TC Report: Japanese design procedures and recent activities of DMM. Grouting and Deep Mixing, Yonekura, Terashi, and Shibazaki (eds), Balkema, Rotterdam, San, K.C., Leshchinsky, D., and Matsui, T. (1994). Geosynthetic reinforced slopes: limit equilibrium and finite element analyses. Soils and Foundations, 34(2), Terashi, M. (2002). The state of practice in deep mixing methods. ASCE Geotechnical Special Publication No. 120, L.F. Johnsen, D.A. Bruce, and M. J. Byle (eds.), Vol. 1, Whitman and Bailey (1967). Use of computers for slope stability analysis. Journal of Soil Mechanics and Foundation Engineering, ASCE, 93(SM4),

Slope stability assessment

Slope stability assessment Engineering manual No. 25 Updated: 03/2018 Slope stability assessment Program: FEM File: Demo_manual_25.gmk The objective of this manual is to analyse the slope stability degree (factor of safety) using

More information

THREE DIMENSIONAL SLOPE STABILITY

THREE DIMENSIONAL SLOPE STABILITY THREE DIMENSIONAL SLOPE STABILITY Timothy D. Stark, Ph.D, PE Associate Professor of Civil and Environmental Engineering University of Illinois at Urbana-Champaign 205 N. Mathews Ave. Urbana, IL 61801 (217)

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of Civil Engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 8

More information

Numerical Analysis of the Bearing Capacity of Strip Footing Adjacent to Slope

Numerical Analysis of the Bearing Capacity of Strip Footing Adjacent to Slope International Journal of Science and Engineering Investigations vol. 4, issue 46, November 25 ISSN: 225-8843 Numerical Analysis of the Bearing Capacity of Strip Footing Adjacent to Slope Mohammadreza Hamzehpour

More information

Reinforcement with Geosynthetics

Reinforcement with Geosynthetics Reinforcement with Geosynthetics GEO-SLOPE International Ltd. www.geo-slope.com 1200, 700-6th Ave SW, Calgary, AB, Canada T2P 0T8 Main: +1 403 269 2002 Fax: +1 888 463 2239 Introduction Reinforced earth

More information

Stability analysis of slopes with surcharge by LEM and FEM

Stability analysis of slopes with surcharge by LEM and FEM International Journal of Advanced Structures and Geotechnical Engineering ISSN 2319-5347, Vol. 04, No. 04, October 2015 Stability analysis of slopes with surcharge by LEM and FEM MD. MONIRUZZAMAN MONI,

More information

GUIDE FOR SELECTING AN APPROPRIATE METHOD TO ANALYZE THE STABILITY OF SLOPES ON RECLAIMED SURFACE MINES 1

GUIDE FOR SELECTING AN APPROPRIATE METHOD TO ANALYZE THE STABILITY OF SLOPES ON RECLAIMED SURFACE MINES 1 GUIDE FOR SELECTING AN APPROPRIATE METHOD TO ANALYZE THE STABILITY OF SLOPES ON RECLAIMED SURFACE MINES 1 John J. Bowders, Jr. and Sun Chai Lee 2 Abstract: Geotechnical engineers have long Recognized the

More information

A DETAILED ANALYSIS OF SLOPE STABILITY USING FINITE ELEMENT METHOD (FEM)

A DETAILED ANALYSIS OF SLOPE STABILITY USING FINITE ELEMENT METHOD (FEM) A DETAILED ANALYSIS OF SLOPE STABILITY USING FINITE ELEMENT METHOD (FEM) S. Halder 1*, M. O. Imam 2 & M. S. Basir 1 1 Department of Civil & Water Resources Engineering, Chittagong University of Engineering

More information

Effect of Placement of Footing on Stability of Slope

Effect of Placement of Footing on Stability of Slope Scientific Journal of Impact Factor (SJIF) : 3.134 ISSN (Print) : 2348-6406 ISSN (Online): 2348-4470 International Journal of Advance Engineering and Research Development Effect of Placement of Footing

More information

Full Scale Model Test of Soil Reinforcement on Soft Soil Deposition with Inclined Timber Pile

Full Scale Model Test of Soil Reinforcement on Soft Soil Deposition with Inclined Timber Pile Full Scale Model Test of Soil Reinforcement on Soft Soil Deposition with Inclined Timber Pile Suheriyatna 1, L. Samang 2, M. W. Tjaronge 3 and T. Harianto 4 1 Doctoral Student, Department of Civil Engineering,

More information

A comparison of numerical algorithms in the analysis of pile reinforced slopes

A comparison of numerical algorithms in the analysis of pile reinforced slopes 175 A comparison of numerical algorithms in the analysis of pile reinforced slopes D. V. Griffiths 1, F. ASCE, Hang Lin 2 and Ping Cao 3 1 Division of Engineering, Colorado School of Mines, Golden, Colorado,

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of civil engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 7

More information

[Gupta* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Gupta* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 [Gupta* et al., 5(7): July, 6] ISSN: 77-9655 IC Value: 3. Impact Factor: 4.6 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY EFFECT OF DENSITY AND MOISTURE ON THE SLOPE STABILITY

More information

Finite Element Methods against Limit Equilibrium Approaches for Slope Stability Analysis

Finite Element Methods against Limit Equilibrium Approaches for Slope Stability Analysis Finite Element Methods against Limit Equilibrium Approaches for Slope Stability Analysis H. Khabbaz 1, B. Fatahi 1, C. Nucifora 1 1 Centre for Built Infrastructure Research, School of Civil and Environmental

More information

Keywords: slope stability, numerical analysis, rainfall, infiltration. Yu. Ando 1, Kentaro. Suda 2, Shinji. Konishi 3 and Hirokazu.

Keywords: slope stability, numerical analysis, rainfall, infiltration. Yu. Ando 1, Kentaro. Suda 2, Shinji. Konishi 3 and Hirokazu. Proceedings of Slope 25, September 27-3 th 25 SLOPE STABLITY ANALYSIS REGARDING RAINFALL-INDUCED LANDSLIDES BY COUPLING SATURATED-UNSATURATED SEEPAGE ANALYSIS AND RIGID PLASTIC FINITE ELEMENT METHOD Yu.

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 22 Module 5: Lecture -4 on Stability of Slopes Sudden drawdown Determination of most critical slip surface Criteria for most critical slip surface = Minimum factor of safety Trial and error approach involves

More information

EAT 212 SOIL MECHANICS

EAT 212 SOIL MECHANICS EAT 212 SOIL MECHANICS Chapter 4: SHEAR STRENGTH OF SOIL PREPARED BY SHAMILAH ANUDAI@ANUAR CONTENT Shear failure in soil Drained and Undrained condition Mohr-coulomb failure Shear strength of saturated

More information

Stability of Inclined Strip Anchors in Purely Cohesive Soil

Stability of Inclined Strip Anchors in Purely Cohesive Soil Stability of Inclined Strip Anchors in Purely Cohesive Soil R. S. Merifield 1 ; A. V. Lyamin 2 ; and S. W. Sloan 3 Abstract: Soil anchors are commonly used as foundation systems for structures requiring

More information

Piles subject to excavation-induced soil movement in clay

Piles subject to excavation-induced soil movement in clay Piles subject to -induced soil movement in clay Des foundations soumis au mouvement du sol du a l' dans l'argile D.E.L. Ong, C.F. Leung & Y.K. Chow Centre for Soft Ground Engineering, National University

More information

Load-Carrying Capacity of Stone Column Encased with Geotextile. Anil Kumar Sahu 1 and Ishan Shankar 2

Load-Carrying Capacity of Stone Column Encased with Geotextile. Anil Kumar Sahu 1 and Ishan Shankar 2 Load-Carrying Capacity of Stone Column Encased with Geotextile Anil Kumar Sahu 1 and Ishan Shankar 2 1 Professor, Department of Civil Engineering, Delhi Technological University, Delhi, India (sahuanilkr@yahoo.co.in)

More information

Study on Effect of Water on Stability or Instability of the Earth Slopes

Study on Effect of Water on Stability or Instability of the Earth Slopes International Research Journal of Applied and Basic Sciences 2014 Available online at www.irjabs.com ISSN 2251-838X / Vol, 8 (9): 1482-1487 Science Explorer Publications Study on Effect of Water on Stability

More information

Settlement analysis of Shahid Kalantari highway embankment and assessment of the effect of geotextile reinforcement layer

Settlement analysis of Shahid Kalantari highway embankment and assessment of the effect of geotextile reinforcement layer 3 r d International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 28-3 June 212, Near East University, Nicosia, North Cyprus Settlement analysis of Shahid Kalantari highway

More information

PULLOUT CAPACITY OF HORIZONTAL AND INCLINED PLATE ANCHORS IN CLAYEY SOILS

PULLOUT CAPACITY OF HORIZONTAL AND INCLINED PLATE ANCHORS IN CLAYEY SOILS PULLOUT CAPACITY OF HORIZONTAL AND INCLINED PLATE ANCHORS IN CLAYEY SOILS BALESHWAR SINGH Associate Professor Department of Civil Engineering Indian Institute of Technology Guwahati Guwahati 78139, India

More information

Backfill Stress and Strain Information within a Centrifuge Geosynthetic-Reinforced Slope Model under Working Stress and Large Soil Strain Conditions

Backfill Stress and Strain Information within a Centrifuge Geosynthetic-Reinforced Slope Model under Working Stress and Large Soil Strain Conditions GeoCongress 2012 ASCE 2012 461 Yang, K-H., Zornberg, J.G., Liu, C-N. and Lin, H-D. (2012). Backfill Stress and Strain Information within a Centrifuge Geosynthetic-Reinforced Slope under Working Stress

More information

Analysis of Pullout Resistance of Soil-Nailing in Lateritic Soil

Analysis of Pullout Resistance of Soil-Nailing in Lateritic Soil Analysis of Pullout Resistance of Soil-Nailing in Lateritic Soil B,L.A. Isaka 1, B.C. Madushanka 1 and N.H. Priyankara 1 1 Department of Civil and Environmental Engineering Faculty of Engineering University

More information

RESPONSE OF ANCHOR IN TWO-PHASE MATERIAL UNDER UPLIFT

RESPONSE OF ANCHOR IN TWO-PHASE MATERIAL UNDER UPLIFT IGC 29, Guntur, INDIA RESPONSE OF ANCHOR IN TWO-PHASE MATERIAL UNDER UPLIFT K. Ilamparuthi Professor and Head, Division of Soil Mechanics and Foundation Engineering, Anna University, Chennai 25, India.

More information

Experimental tests for geosynthetics anchorage trenches

Experimental tests for geosynthetics anchorage trenches Experimental tests for geosynthetics anchorage trenches Girard H. Cemagref, Bordeaux, France Briançon L Cnam, Paris, France Rey E. Cnam, Paris, France Keywords: geosynthetics, anchorage trench, full-scale

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

CHAPTER 8 SLOPE STABILITY ANALYSIS

CHAPTER 8 SLOPE STABILITY ANALYSIS TM 5-818-1 / AFM 88-3. Chap. 7 CHAPTER 8 SLOPE STABILITY ANALYSIS 8-1. General. This chapter is concerned with characteristics and critical aspects of the stability of excavation slopes; methods of designing

More information

Slope Stability of Soft Clay Embankment for Flood Protection

Slope Stability of Soft Clay Embankment for Flood Protection Research Article Slope Stability of Soft Clay Embankment for Flood Protection Vannee Sooksatra and Pawinee Jinga* Department of Civil Engineering, College of Engineering, Rangsit University, Phaholyothin

More information

DRAFT ONONDAGA LAKE CAPPING AND DREDGE AREA AND DEPTH INITIAL DESIGN SUBMITTAL H.3 STATIC SLOPE STABILITY ANALYSES

DRAFT ONONDAGA LAKE CAPPING AND DREDGE AREA AND DEPTH INITIAL DESIGN SUBMITTAL H.3 STATIC SLOPE STABILITY ANALYSES DRAFT ONONDAGA LAKE CAPPING AND DREDGE AREA AND DEPTH INITIAL DESIGN SUBMITTAL H.3 STATIC SLOPE STABILITY ANALYSES Parsons P:\Honeywell -SYR\444576 2008 Capping\09 Reports\9.3 December 2009_Capping and

More information

EFFECT OF RELICT JOINTS IN RAIN INDUCED SLOPE FAILURES IN RESIDUAL SOIL

EFFECT OF RELICT JOINTS IN RAIN INDUCED SLOPE FAILURES IN RESIDUAL SOIL EFFECT OF RELICT JOINTS IN RAIN INDUCED SLOPE FAILURES IN RESIDUAL SOIL Neethimappiriya Tharmalingam, Student (Email: neethi_26@yahoo.com) N.W.H. Lakshamana, Student (Email: hansaka8888@yahoo.com) R.D.T.B.

More information

COMPARISON OF SHEAR STRENGTH PARAMETERS OF BLACK COTTON SOIL WITH EFFECT OF RELATIVE COMPACTION

COMPARISON OF SHEAR STRENGTH PARAMETERS OF BLACK COTTON SOIL WITH EFFECT OF RELATIVE COMPACTION Vol-2 Issue-4 16 COMPARISON OF SHEAR STRENGTH PARAMETERS OF BLACK COTTON SOIL WITH EFFECT OF RELATIVE COMPACTION Prof. Usha k. Patel Assistant Professor, LDCE Prof. M. G. Vanza Associate Professor, LDCE

More information

LARGE-SCALE SHEAR TESTS ON INTERFACE SHEAR PERFORMANCE OF LANDFILL LINER SYSTEMS

LARGE-SCALE SHEAR TESTS ON INTERFACE SHEAR PERFORMANCE OF LANDFILL LINER SYSTEMS Proceeding of the 4 th Asian Regional Conference on Geosynthetics June 17-2, 28 Shanghai, China LARGE-SCALE SHEAR TESTS ON INTERFACE SHEAR PERFORMANCE OF LANDFILL LINER SYSTEMS M. Kamon 1, S. Mariappan

More information

Development of a Slope Stability Program for Transmission Towers

Development of a Slope Stability Program for Transmission Towers Development of a Slope Stability Program for Transmission Towers *Jung-Tae Kim 1), Youngjong Sim 2), Ah-Ram Kim 3), Gye-Chun Cho 4) and Dae-Hong Kim 5) 1), 3), 4) Department of Civil and Environmental

More information

Slope Stability Analysis

Slope Stability Analysis Slope Stability Analysis Vivek Assist. Professor, Civil Engineering, Lovely Professional University Phagwara, India Mandeep Multani Head of dept., Civil Engineering, Lovely Professional University Phagwara,

More information

4 Slope Stabilization Using EPS Geofoam at Route 23A

4 Slope Stabilization Using EPS Geofoam at Route 23A Slope Stabilization Using EPS Geofoam at Route 23A 4.1 Introduction Geofoam introduced in recent years has provided solutions to a number of engineering problems. One of these problems is the slope stability

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of Civil Engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module-12 LECTURE-

More information

Soil-Structure Interaction of a Piled Raft Foundation in Clay a 3D Numerical Study

Soil-Structure Interaction of a Piled Raft Foundation in Clay a 3D Numerical Study 388 J. Eng. Technol. Sci., Vol. 48, No. 4, 2016, 388-407 Soil-Structure Interaction of a Piled Raft Foundation in Clay a 3D Numerical Study Endra Susila 1,* & Nita Anggraini 2 1 Geotechnical Engineering

More information

Effect of pile sleeve opening and length below seabed on the bearing capacity of offshore jacket mudmats

Effect of pile sleeve opening and length below seabed on the bearing capacity of offshore jacket mudmats NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May Effect of pile sleeve opening and length below seabed on the bearing capacity

More information

Consolidation Stress Effect On Strength Of Lime Stabilized Soil

Consolidation Stress Effect On Strength Of Lime Stabilized Soil RESEARCH ARTICLE OPEN ACCESS Consolidation Stress Effect On Strength Of Stabilized Soil K. Saranya*, Dr. M. Muttharam** *(Department of Civil Engineering, Research Scholar, Anna University, Chennai-25)

More information

Behavior of single pile adjacent to slope embedded in reinforced sand under lateral load

Behavior of single pile adjacent to slope embedded in reinforced sand under lateral load Behavior of single pile adjacent to slope embedded in reinforced sand under lateral load M. A. El sawwaf Prof. of Geotechnical Engineering Faculty of Engineering, Tanta University Egypt Email: Mos.sawaf@hotmail.com

More information

FINAL COVER VENEER STABILITY ANALYSES FOR SCA DESIGN

FINAL COVER VENEER STABILITY ANALYSES FOR SCA DESIGN DRAFT ONONDAGA LAKE SEDIMENT CONSOLIDATION AREA CIVIL & GEOTECHNICAL FINAL DESIGN 12B12BAPPENDIX L FINAL COVER VENEER STABILITY ANALYSES FOR SCA DESIGN p:\honeywell -syr\444853 - lake detail design\09

More information

Identifying Residual Soil Parameters for Numerical Analysis of Soil. Nailed Walls

Identifying Residual Soil Parameters for Numerical Analysis of Soil. Nailed Walls Identifying Residual Soil Parameters for Numerical Analysis of Soil Nailed Walls Atefeh Asoudeh BSc, MSc Griffith School of Engineering Science Group Griffith University Submitted in fulfilment of the

More information

Numerical Analysis of Leakage through Geomembrane Lining Systems for Dams

Numerical Analysis of Leakage through Geomembrane Lining Systems for Dams The First Pan American Geosynthetics Conference & Exhibition 25 March 2008, Cancun, Mexico Numerical Analysis of Leakage through Geomembrane Lining Systems for Dams C.T. Weber, University of Texas at Austin,

More information

LOAD TRANSFER MECHANISM IN PULL-OUT TESTS

LOAD TRANSFER MECHANISM IN PULL-OUT TESTS Technical Paper by I.M. Alobaidi, D.J. Hoare and G.S. Ghataora LOAD TRANSFER MECHANISM IN PULL-OUT TESTS ABSTRACT: This paper presents a numerical method to predict soil-geotextile interface friction parameters.

More information

Analysis of Embankments with Different Fill Materials using Plaxis-2D

Analysis of Embankments with Different Fill Materials using Plaxis-2D Analysis of Embankments with Different Fill Materials using Plaxis-2D A.Laxminarayana 1, M. Naresh 2 1 PG Student, Department of civil engineering, JNTUH, Hyderabad, Telangana, India 2 Assistant Professor,

More information

Proposed Design Graphs of Geotextile Reinforcement on Soft Clay under Various Field Conditions

Proposed Design Graphs of Geotextile Reinforcement on Soft Clay under Various Field Conditions Civil Engineering Dimension, Vol. 18, No. 2, September 2016, 109-116 ISSN 1410-9530 print / ISSN 1979-570X online CED 2016, 18(1), DOI: 10.9744/CED.18.2.109-116 Proposed Design Graphs of Geotextile Reinforcement

More information

NUMERICAL STUDY ON STABILITY OF PLATE ANCHOR IN SLOPING GROUND

NUMERICAL STUDY ON STABILITY OF PLATE ANCHOR IN SLOPING GROUND Proceedings of the 4 th International Conference on Civil Engineering for Sustainable Development (ICCESD 2018), 9~11 February 2018, KUET, Khulna, Bangladesh (ISBN-978-984-34-3502-6) NUMERICAL STUDY ON

More information

EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL

EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL Vanapalli, S.K., Pufahl, D.E., and Fredlund, D.G. (University of Saskatchewan, Saskatoon, SK., Canada, S7N 5A9) Abstract An experimental

More information

Design of Unpaved Roads A Geotechnical Perspective

Design of Unpaved Roads A Geotechnical Perspective - CGTR 217 - NERIST Design of Unpaved Roads A Geotechnical Perspective Arindam Dey Assistant Professor Department of Civil Engineering Geotechnical Engineering Division IIT Guwahati 2 Introduction Road

More information

Research Article Three-Dimensional Stability Analysis of a Homogeneous Slope Reinforced with Micropiles

Research Article Three-Dimensional Stability Analysis of a Homogeneous Slope Reinforced with Micropiles Mathematical Problems in Engineering, Article ID 864017, 11 pages http://dx.doi.org/10.1155/2014/864017 Research Article Three-Dimensional Stability Analysis of a Homogeneous Slope Reinforced with Micropiles

More information

Exposed geomembrane covers: Part 1 - geomembrane stresses

Exposed geomembrane covers: Part 1 - geomembrane stresses Exposed geomembrane covers: Part 1 - geomembrane stresses By Gregory N. Richardson, Ph.D. P.E., principal of GN Richardson and Assoc. During the late 1980s and early 1990s, many mixed-waste disposal areas

More information

1. Introduction. Abstract. Keywords: Liquid limit, plastic limit, fall cone, undrained shear strength, water content.

1. Introduction. Abstract. Keywords: Liquid limit, plastic limit, fall cone, undrained shear strength, water content. Comparison In Undrained Shear Strength Between Low And High Liquid Limit Soils Neelu Das *1, Binu Sarma 2, Shashikant Singh 3 and Bidyut Bikash Sutradhar 4 1( Assistant Professor, Department of Civil Engineering,

More information

Program ReSlope (3.0) : Supplemental Notes Dov Leshchinsky, PhD ADAMA Engineering, Inc. 33 The Horseshoe Newark, Delaware 19711, USA

Program ReSlope (3.0) : Supplemental Notes Dov Leshchinsky, PhD ADAMA Engineering, Inc. 33 The Horseshoe Newark, Delaware 19711, USA Program ReSlope (3.0) : Supplemental Notes Dov Leshchinsky, PhD ADAMA Engineering, Inc. 33 The Horseshoe Newark, Delaware 19711, USA 1.0 ABOUT THIS DOCUMENT This document and the one appearing as Help

More information

EFFECT OF BOLT CONNECTION OF SQUARE-SHAPED GEOCELL MODEL ON PULLOUT TEST RESULTS

EFFECT OF BOLT CONNECTION OF SQUARE-SHAPED GEOCELL MODEL ON PULLOUT TEST RESULTS EFFECT OF BOLT CONNECTION OF SQUARE-SHAPED GEOCELL MODEL ON PULLOUT TEST RESULTS Zelong XU 1, Takashi KIYOTA 2, Sam Ronald OLOYA 3, Christian HAUSSNER 3 1 Ph. D. student, Institute of Industrial Science,

More information

1 Introduction. 2 General Pile Analysis Features. 2.1 Pile Internal Forces and Displacements

1 Introduction. 2 General Pile Analysis Features. 2.1 Pile Internal Forces and Displacements RSPile version 1.0 RSPile is a general pile analysis software for analyzing driven pile installation, axially loaded piles and laterally loaded piles. It is capable of computing the axial capacity for

More information

2.2 Soils 3 DIRECT SHEAR TEST

2.2 Soils 3 DIRECT SHEAR TEST 507 c) GT TS 50: Nonwoven needle-punched, continuous filament, polypropylene geotextile, with mass per unit area of 200 g/m 2 and thickness of 1.9mm. d) Smooth HDPE geomembrane (GM) with average thickness

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 23 Module 5: Lecture -5 on Stability of Slopes Slope stabilization methods Slope stabilization methods generally reduce driving forces, increase resisting forces, or both. Driving forces can be reduced

More information

Rapid Drawdown with Multi-Stage

Rapid Drawdown with Multi-Stage 1 Introduction Rapid Drawdown with Multi-Stage Stability analysis during rapid drawdown is an important consideration in the design of embankment dams. During rapid drawdown, the stabilizing effect of

More information

Bearing Capacity Theory. Bearing Capacity

Bearing Capacity Theory. Bearing Capacity Bearing Capacity Theory Bearing Capacity 1 Bearing Capacity Failure a) General Shear Failure Most common type of shear failure; occurs in strong soils and rocks b) Local Shear Failure Intermediate between

More information

Soil Strength and Slope Stability

Soil Strength and Slope Stability Soil Strength and Slope Stability J. Michael Duncan Stephen G. Wright @ WILEY JOHN WILEY & SONS, INC. CONTENTS Preface ix CHAPTER 1 INTRODUCTION 1 C HAPTER 2 EXAMPLES AND CAUSES OF SLOPE FAILURE 5 Examples

More information

Improvement of Granular Subgrade Soil by Using Geotextile and Jute Fiber

Improvement of Granular Subgrade Soil by Using Geotextile and Jute Fiber International Journal of Science, Technology and Society 2015; 3(5): 230-235 Published online August 3, 2015 (http://www.sciencepublishinggroup.com/j/ijsts) doi: 10.11648/j.ijsts.20150305.12 ISSN: 2330-7412

More information

Analysis of the stability of slopes reinforced by roots

Analysis of the stability of slopes reinforced by roots Design and Nature V 189 Analysis of the stability of slopes reinforced by roots F. Gentile1, G. Elia2 & R. Elia1 1 Department of Engineering and Management of the Agricultural, Livestock and Forest Systems

More information

Assessment of Geotextile Reinforced Embankment on Soft Clay Soil

Assessment of Geotextile Reinforced Embankment on Soft Clay Soil Assessment of Geotextile Reinforced Embankment on Soft Clay Soil M. Siavoshnia*, F. Kalantari and A. Shakiba Corresponding author: Civil Engineering Faculty, Neyaiesh Complex, Tehran Central Branch, Islamic

More information

PILE FOUNDATIONS CONTENTS: 1.0 Introduction. 1.1 Choice of pile type Driven (displacement) piles Bored (replacement) piles. 2.

PILE FOUNDATIONS CONTENTS: 1.0 Introduction. 1.1 Choice of pile type Driven (displacement) piles Bored (replacement) piles. 2. PILE FOUNDATIONS CONTENTS: 1.0 Introduction 1.1 Choice of pile type 1.1.1 Driven (displacement) piles 1.1.2 Bored (replacement) piles 2.0 Analysis 2.0.1 Driving formulae 2.0.2 Soil mechanics 2.1 Piles

More information

vulcanhammer.net Visit our companion site

vulcanhammer.net Visit our companion site this document downloaded from vulcanhammer.net Since 1997, your complete online resource for information geotecnical engineering and deep foundations: The Wave Equation Page for Piling Online books on

More information

Shear Strength of Soils

Shear Strength of Soils Shear Strength of Soils Shear failure Soils generally fail in shear strip footing embankment failure surface mobilised shear resistance At failure, shear stress along the failure surface reaches the shear

More information

Undrained lateral capacity of I-shaped concrete piles

Undrained lateral capacity of I-shaped concrete piles Songklanakarin J. Sci. Technol. 39 (6), 751-758, Nov. - Dec. 2017 http://www.sjst.psu.ac.th Original Article Undrained lateral capacity of I-shaped concrete piles Suraparb Keawsawasvong and Boonchai Ukritchon

More information

Field tests on the lateral capacity of poles embedded in Auckland residual clay

Field tests on the lateral capacity of poles embedded in Auckland residual clay Proc. 18 th NZGS Geotechnical Symposium on Soil-Structure Interaction. Ed. CY Chin, Auckland Field tests on the lateral capacity of poles embedded in Auckland residual clay Peter Rodgers Mercury Bay Civil

More information

Effect of characteristics of unsaturated soils on the stability of slopes subject to rainfall

Effect of characteristics of unsaturated soils on the stability of slopes subject to rainfall Japanese Geotechnical Society Special Publication The 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering Effect of characteristics of unsaturated soils on the stability of slopes

More information

Behaviour of a Strip Footing on Compacted Pond Ash Reinforced with Coir Geotextiles

Behaviour of a Strip Footing on Compacted Pond Ash Reinforced with Coir Geotextiles Behaviour of a Strip Footing on Compacted Pond Ash Reinforced with Coir Geotextiles Dr. Goutam Kumar Pothal, Dr. G. Venkatappa Rao 2 Assistant Professor, Department of Civil Engineering Indira Gandhi Institute

More information

Modified geotextile tube a new geotextile tube for optimized retaining efficiency and dewatering rate

Modified geotextile tube a new geotextile tube for optimized retaining efficiency and dewatering rate Modified geotextile tube a new geotextile tube for optimized retaining efficiency and dewatering rate Hyeong-Joo Kim 1), Tae-Woong Park 2), Sung-Gil Moon 3), Hyeong-Soo Kim 4), Ri Zhang 5), and *Peter

More information

An Experimental Study on Variation of Shear Strength for Layered Soils

An Experimental Study on Variation of Shear Strength for Layered Soils An Experimental Study on Variation of Shear Strength for Layered Soils Mr. Hemantkumar Ronad 1 DCE, M.Tech in Geotechnical Engg. Department of Civil Engineering 1, Basaveshwar Engineering College, Bagalkot-587102.

More information

APPENDIX D. Slope Stability Analysis Results for Soil and Overburden Storage Mounds

APPENDIX D. Slope Stability Analysis Results for Soil and Overburden Storage Mounds Geotechnical Assessment Report APPENDIX D Slope Stability Analysis Results for Soil and Overburden Storage Mounds DABGeot/09059GA/Final Geotechnical Assessment Report STABILITY OF SOIL AND OVERBURDEN STORAGE

More information

SUBGRADE IMPROVEMENT OF CLAYEY SOIL WITH THE USE OF GEOTEXTILES

SUBGRADE IMPROVEMENT OF CLAYEY SOIL WITH THE USE OF GEOTEXTILES SUBGRADE IMPROVEMENT OF CLAYEY SOIL WITH THE USE OF GEOTEXTILES 1 Soma Prashanth Kumar, 2 Mohammed Asif T L, 3 Mane S R Rohith 1 Assistant Professor, Department of Civil Engineering, JBIET, Moinabad, (India)

More information

COHESIONLESS SOIL PROPERTIES IMPROVEMENT USING BENTONITE

COHESIONLESS SOIL PROPERTIES IMPROVEMENT USING BENTONITE COHESIONLESS SOIL PROPERTIES IMPROVEMENT USING BENTONITE Khalida A. Daud Department of Architectural Engineering, Al-Nahrain University, Baghdad, Iraq E-Mail: khalida_dwd@yahoo.com ABSTRACT Construction

More information

THE PERFORMANCE OF STRENGTHENING SLOPE USING SHOTCRETE AND ANCHOR BY FINITE ELEMENT METHOD (FEM)

THE PERFORMANCE OF STRENGTHENING SLOPE USING SHOTCRETE AND ANCHOR BY FINITE ELEMENT METHOD (FEM) THE PERFORMANCE OF STRENGTHENING SLOPE USING SHOTCRETE AND ANCHOR BY FINITE ELEMENT METHOD (FEM) Tri Harianto 1*, Lawalenna Samang 2, Takenori Hino 3, Fakhriyah Usman 4 and Akbar Walenna 5 1 Associate

More information

Transition of soil strength during suction pile retrieval

Transition of soil strength during suction pile retrieval Maritime Heritage and Modern Ports 415 Transition of soil strength during suction pile retrieval S. Bang 1, Y. Cho 2 & K. Jones 1 1 Department of Civil and Environmental Engineering, South Dakota School

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

Available online at ScienceDirect. Procedia Engineering 125 (2015 )

Available online at  ScienceDirect. Procedia Engineering 125 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 125 (2015 ) 331 337 The 5th International Conference of Euro Asia Civil Engineering Forum (EACEF-5) Effect of Area Development

More information

GEOTEXTILE DEFORMATION ANALYSIS OF GEOSYNTHETIC CLAY LINERS WITH FEM

GEOTEXTILE DEFORMATION ANALYSIS OF GEOSYNTHETIC CLAY LINERS WITH FEM Geotextile deformation analysis of Geosynthetic Clay Liners under high hydraulic heads with Finite Element Method VII International Conference on Textile Composites and Inflatable Structures STRUCTURAL

More information

Reliability Analysis of Slope Stability using Monte Carlo Simulation and Comparison with Deterministic Analysis

Reliability Analysis of Slope Stability using Monte Carlo Simulation and Comparison with Deterministic Analysis Reliability Analysis of Slope Stability using Monte Carlo Simulation and Comparison with Deterministic Analysis Abstract R. K. Sharma Professor, Department of Civil Engineering, National Institute of Technology

More information

REDISTRIBUTION OF LOAD CARRIED BY SOIL UNDERNEATH PILED RAFT FOUNDATIONS DUE TO PILE SPACING AND GROUNDWATER AS WELL AS ECCENTRICITY

REDISTRIBUTION OF LOAD CARRIED BY SOIL UNDERNEATH PILED RAFT FOUNDATIONS DUE TO PILE SPACING AND GROUNDWATER AS WELL AS ECCENTRICITY International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 3, March 2018, pp. 36 55, Article ID: IJCIET_09_03_005 Available online at http://http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=3

More information

Keywords: Unsaturated flow, infiltration, marginal fill, rainfall, nonwoven geotextile, sand cushion 1 INTRODUCTION

Keywords: Unsaturated flow, infiltration, marginal fill, rainfall, nonwoven geotextile, sand cushion 1 INTRODUCTION Numerical study of infiltration into unsaturated clay slopes with nonwoven geotextile drains sandwiched in sand cushions: featuring the capillary barrier effect Joseph Nganga Thuo & Kuo-Hsin Yang Department

More information

A STUDY ON BEARING CAPACITY OF STRIP FOOTING ON LAYERED SOIL SYSTEM

A STUDY ON BEARING CAPACITY OF STRIP FOOTING ON LAYERED SOIL SYSTEM International Conference on GEOTECHNIQUES FOR INFRASTRUCTURE PROJECTS 27 th & 28 th February 2017, Thiruvananthapuram A STUDY ON BEARING CAPACITY OF STRIP FOOTING ON LAYERED SOIL SYSTEM ANITHA K.S. PG

More information

Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration Nurly Gofar 1,* and Harianto Rahardjo 1 1 School of Civil Engineering, Nanyang Technological University, 50 Nanyang

More information

Mechanical Behavior of Soil Geotextile Composites: Effect of Soil Type

Mechanical Behavior of Soil Geotextile Composites: Effect of Soil Type Mechanical Behavior of Geotextile Composites: Effect of Type A.I. Droudakis and I.N. Markou Department of Civil Engineering, Democritus University of Thrace, Greece 12 Vas. Sofias str., GR-671 Xanthi,

More information

Lessons Learned From the Failure of a GCL/Geomembrane Barrier on a Side Slope Landfill Cover

Lessons Learned From the Failure of a GCL/Geomembrane Barrier on a Side Slope Landfill Cover Lessons Learned From the Failure of a GCL/Geomembrane Barrier on a Side Slope Landfill Cover by G. N. Richardson, R. S. Thiel and W. A. Marr ABSTRACT: A sliding failure which occurred during construction

More information

NUMERICAL ANALYSIS OF VERTICAL UPLIFT RESISTANCE OF HORIZONTAL STRIP ANCHOR EMBEDDED IN COHESIVE FRICTIONAL WEIGHTLESS SOIL

NUMERICAL ANALYSIS OF VERTICAL UPLIFT RESISTANCE OF HORIZONTAL STRIP ANCHOR EMBEDDED IN COHESIVE FRICTIONAL WEIGHTLESS SOIL Proceedings of 3rd International Conference on Advances in Civil Engineering, 21-23 December 216, CUET, Chittagong, angladesh Islam, Imam, Ali, oque, Rahman and aque (eds.) NUMERICAL ANALYSIS OF VERTICAL

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of civil engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 3

More information

A Review on Pull-Out Capacity of Helical Anchors in Clay And Sand

A Review on Pull-Out Capacity of Helical Anchors in Clay And Sand Quest Journals Journal of Architecture and Civil Engineering Volume 3 ~ Issue 6 (2017) pp: 24-32 ISSN(Online) : 2321-8193 www.questjournals.org Research Paper A Review on Pull-Out Capacity of Helical Anchors

More information

Spatial variation of soil properties

Spatial variation of soil properties 1 Introduction Spatial variation of soil properties The undrained strength of a soft soil deposit is frequently a function of the effective overburden; that is, the strength varies with depth. Sometimes,

More information

Chapter 8 REMEDIAL MEASURES 8.1 FACETS IN HAZARD CATEGORY

Chapter 8 REMEDIAL MEASURES 8.1 FACETS IN HAZARD CATEGORY Chapter 8 REMEDIAL MEASURES 8.1 FACETS IN HAZARD CATEGORY Stabilization of rock slope happens when the driving force acting on a potentially unstable rock slope is reduced, while the resisting force increases

More information

1 SITE AND PROJECT DESCRIPTION

1 SITE AND PROJECT DESCRIPTION February 14, 2017 Our File Ref.: 160796 Denis Lacroix 6909 Notre Dame Street Ottawa, Ontario K1C 1H6 Subject: Slope Stability Analysis 6909 Notre Dame Street Ottawa, Ontario Pursuant to your request, LRL

More information

SOIL STABILIZATION USING NATURAL FIBER COIR

SOIL STABILIZATION USING NATURAL FIBER COIR SOIL STABILIZATION USING NATURAL FIBER COIR Pooja Upadhyay 1, Yatendra Singh 2 1M.Tech student, Department of Civil Engineering, IEC Group of Institutions, U.P, India 2Assistant Professor, Department of

More information

Development of Bearing Capacity Factor in Clay Soil with Normalized Undrained Shear Strength Behavior using The Finite Element Method

Development of Bearing Capacity Factor in Clay Soil with Normalized Undrained Shear Strength Behavior using The Finite Element Method Lim ISSN 0853-2982 Jurnal Teoretis dan Terapan Bidang Rekayasa Sipil Development of Bearing Capacity Factor in Clay Soil with Normalized Undrained Shear Strength Behavior using The Finite Element Method

More information

Safety Factor Assessment Plant McDonough-Atkinson Ash Pond 3 (AP-3) and Ash Pond 4 (AP-4)

Safety Factor Assessment Plant McDonough-Atkinson Ash Pond 3 (AP-3) and Ash Pond 4 (AP-4) Safety Factor Assessment Plant McDonough-Atkinson Ash Pond 3 (AP-3) and Ash Pond 4 (AP-4) Prepared for: Georgia Power Company Prepared by: Golder Associates Inc. 3730 Chamblee Tucker Road Atlanta, Georgia,

More information

SOIL SLOPE STABILITY ANALYSIS. Analyses of slopes can be divided into two categories: 6,Chapter 13 J. MICHAEL DUNCAN

SOIL SLOPE STABILITY ANALYSIS. Analyses of slopes can be divided into two categories: 6,Chapter 13 J. MICHAEL DUNCAN 6,Chapter 13 J. MICHAEL DUNCAN SOIL SLOPE STABILITY ANALYSIS Analyses of slopes can be divided into two categories: those used to evaluate the stability of slopes and those used to estimate slope movement.

More information

LABORATORY STUDY ON THE CONSOLIDATION SETTLEMENT OF CLAY-FILLED GEOTEXTILE TUBE AND BAGS

LABORATORY STUDY ON THE CONSOLIDATION SETTLEMENT OF CLAY-FILLED GEOTEXTILE TUBE AND BAGS Journal of GeoEngineering, Vol. 6, No. 1, pp. Chew 41-45, et al.: April Laboratory 2011 Study on the Consolidation Settlement of Clay-Filled Geotextile Tube and Bags 41 LABORATORY STUDY ON THE CONSOLIDATION

More information