ANALYSIS OF THERMAL STRESSES IN HEAT EXCHANGER TO FIND OPTIMUM WALL THICKNESS THROUGH ANSYS

Similar documents
Falling Film Heat Exchangers for Solar Water Heaters

Performance of Water-in-Glass Evacuated Tube Solar Water Heaters

Heat Transfer in Evacuated Tubular Solar Collectors

Performance Analysis of a Thin Tube Water Heater for Egerton University Using Comsol

Heat Transfer Enhancement using Herringbone wavy & Smooth Wavy fin Heat Exchanger for Hydraulic Oil Cooling

INFLUENCE OF SOLAR RADIATION AND VENTILATION CONDITIONS ON HEAT BALANCE AND THERMAL COMFORT CONDITIONS IN LIVING-ROOMS

Performance of Shell and Tube Heat Exchanger under Varied Operating Conditions

Dynamic Simulation of Double Pipe Heat Exchanger using MATLAB simulink

MINIATURE HEAT TRANSPORT SYSTEMS WITH LOOP HEAT PIPES

EFFECT OF DIVERSE STREAM PATTERNS ON THE PERFORMANCE OF SOLAR AIR HEATER

Numerical study of heat pipe application in heat recovery systems

HEAT TRANSFER ANALYSIS OF 1-USER SERVER THROUGH CFD

PERFORMANCE OF VCRS SYSTEM WITH HEAT EXCHANGER AND PHASE CHANGE MATERIAL

Modeling and Simulation of Axial Fan Using CFD Hemant Kumawat

Analysis of Constant Pressure and Constant Area Mixing Ejector Expansion Refrigeration System using R-1270 as Refrigerant

Development of TRNSYS Models for Predicting the Performance of Water-in-Glass Evacuated Tube Solar Water Heaters in Australia

Analysis of Evaporative Cooler and Tube in Tube Heat Exchanger in Intercooling of Gas Turbine

Numerical Simulation of Fluid Flow and Heat Transfer in a Water Heater

Improving and Comparing the Coefficient of Performance of Domestic Refgirator by using Refrigerants R134a and R600a

Heat transfer and heating rate of food stuffs in commercial shop ovens

Experimental study on heat transfer characteristics of horizontal concentric tube using twisted wire brush inserts

MODELLING AND SIMULATION OF A ROOM WITH A RADIANT COOLING CEILING. Technicka 4, Prague 6, Czech Republic

Experimental Study and Analysis of Flat Plate Solar Water Heater with Different Flow Rates using of Circulating Pump

Numerical Stability Analysis of a Natural Circulation Steam Generator with a Non-uniform Heating Profile over the tube length

Experimental performance evaluation of heat pump by using CO 2. as a refrigerant. IOP Conference Series: Materials Science and Engineering

Experimental Analysis of Open, Simple and Modified Greenhouse Dryers for Drying Potato Flakes under Forced Convection

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

An Experimental Study on Evacuated Tube Solar Collector for Heating of Air in India Avadhesh Yadav, V.K. Bajpai

EXPERIMENTAL INVESTIGATIONS ON AL 2 O 3 NANO REFRIGERANT WITH DIFFUSER AT CONDENSER INLET IN A VCR SYSTEM

PERFORMANCE EVALUATION AND RECURRING JAMMING PROBLEM ANALYSIS OF AIR PREHEATER IN COAL-FIRED POWER PLANTS

Experimental Study And CFD Based Simulation of Closed Loop Pulsating Heat Pipe Using of Refrigerants (R-134a)

Mallikarjun 1, Anandkumar S Malipatil 2

Effect of Inclination Angle on Temperature Characteristics of Water in- Glass Evacuated Tubes

Design and Experimental Studies on Modified Solar Dryer

Performance Analysis of Solar Assisted Cascade Refrigeration System of Cold Storage System

Numerical Study on Improvement of COP of Vapour Compression Refrigeration System

Combination unit to support instruction in Thermodunamics, Fluid Mechanics, and Heat Transfer

NUMERICAL AND EXPERIMENTAL ANALYSIS OF A DEMAND-SIDE HEAT EXCHANGER FOR DOMESTIC HOT WATER HEATING

TRANSACTIONS ON ADVANCEMENTS IN SCIENCE AND TECHNOLOGY (TASTONLINE)

INSTRUMENTATION AND EVALUATION OF COMMERCIAL AND HOMEMADE PASSIVE SOLAR PANELS

Performance Study of Solar Heat Pipe with Different Working Fluids and Fill Ratios

Experimental investigation of Hybrid Nanofluid on wickless heat pipe heat exchanger thermal performance

Compression of Fins pipe and simple Heat pipe Using CFD

Design and Performance Analysis of One Ended Evacuated Tubes at Different Air Flow Rates Nitin Panwar 1

Performance Study of Triple Concentric Pipe Heat Exchanger

Basic Input Data Needed to Develop a High Performance Fan/Blower with Low Noise, Energy Saving and High Efficiency

DESIGN, FABRICATION & PERFORMANCE ANALYSIS OF SOLAR AIR HEATER

Performance Optimization of the Evaporative Condenser Design

EFFECTS OF VARIABLES ON NATURAL CONVECTIVE HEAT TRANSFER THROUGH V-CORRUGATED VERTICAL PLATES

Basic CFD model of heat pipe

Shuzo Murakami, Shinsuke Kato, and Taeyeon Kim Institute of Industrial Science, University of Tokyo Tokyo, Japan

Analysis of Coefficient of Performance & Heat Transfer Coefficient on Sterling Cycle Refrigeration system.

EVALUATING LOOP HEAT PIPE PERFORMANCE IMPROVEMENT USING CIRCUMFERENTIAL GROOVES. Nadjara dos Santos, Roger R. Riehl

[Eswaran, 3(3): March, 2014] ISSN: Impact Factor: 1.852

Air Conditioning System with Modified Condenser Ducts and Evaporative Cooling

CFD Analysis of a 24 Hour Operating Solar Refrigeration Absorption Technology

PCM-module to improve hot water heat stores with stratification: first tests in a complete solar system

American International Journal of Research in Science, Technology, Engineering & Mathematics

THERMAL PERFORMANCE ASSESSMENT OF GREENHOUSE SOLAR DRYER UNDER PASSIVE MODE

EXPLORING POSSIBILITIES WITH THE DEVELOPMENT OF THE LOOP HEAT PIPE TECHNOLOGY. Roger R. Riehl

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

STUDY ON TEMPERATURE, RH AND AIR FLOW VELOCITY DISTRIBUTION INSIDE THE GREENHOUSE EFFECT SOLAR DRYER

CHAPTER 2 EXPERIMENTAL APPARATUS AND PROCEDURES

Design and Fabrication of Water Refrigeration System by Creating Vacuum

Improving Heating Performance of a MPS Heat Pump System With Consideration of Compressor Heating Effects in Heat Exchanger Design

Physical Mechanism of Convection. Conduction and convection are similar in that both mechanisms require the presence of a material medium.

Experimental Investigation of Heat Transfer Enhancement from Waveform Pin-Fins

APPLICATION OF MINI HEAT PIPES FOR THERMAL MANAGEMENT OF OPTO-ELECTRONIC INSTRUMENTS

To investigate the surface properties for increasing efficiency of solar water heater

Performance analysis of solar water heater in NEH region of India

A STUDY ON COMPACT HEAT EXCHANGERS AND PERFORMANCE ANALYSIS

DESIGN AND ANALYSIS OF PIPE HEAT EXANGERS WITH INSIDE FINS

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

Dae-Hyun Jin. 8/2018-Present Assistant Professor of Mechanical Engineering, Taylor University, USA

Enhancement of COP in Vapour Compression Refrigeration System

Performance Analysis of Heat Pipe using Different Screen Mesh Sizes Manikandan.K * 1, Senthilkumar.R 2,

Thermal Performance Enhancement of Inclined Rib Roughness Solar Air Heater

Incorporating Aluminum Honeycomb to Increase Efficiency of U-tube Removable Heat Exchanger

I. INTRODUCTION. Types of Fins:

Numerical Studies On The Performance Of Methanol Based Air To Air Heat Pipe Heat Exchanger

Experimental Analysis of a Stirling Refrigerator Employing Jet-Impingement Heat Exchanger and Nanofluids

Temperature Control of Heat Exchanger Using Fuzzy Logic Controller

Experimentation of Heat Pipe Used In Nano-Fluids

IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 12 May 2015 ISSN (online):

A SIMPLIFIED MODEL FOR SIZING AND CHARACTERIZING A NATURAL CONVECTION HEAT EXCHANGER SYSTEM

Experimental & Analytical Investigation on Modified Solar Dryer with Recirculation of Air

To Improve Cop of Domestic Refrigerator with the Help of Water Cooling Condenser

Design of LPG Refrigeration System

Experimental Analysis of Performance Characteristics of Mini Channel Heat Exchangers

Performance Evaluation of Hybrid Solar Water Heating System Using Wire Screen Packed Solar Air Heater

The Development Of High Efficiency Air Conditioner With Two Compressors Of Different Capacities

TITLE: Improvement in Heat Transfer Rate and Dynamics of Shrouded Fanned Radiator System

Experimental Analysis on Effect of Design Parameters on the Performance of Single Loop Pulsating Heat Pipe

CFD Analysis of temperature dissipation from a hollow metallic pipe through circular fins using Ansys 14.5

A Review of Hydronic Balancing of Cooling Water Circuit

HEAT TRANSFER COEFFICIENT ENHANCEMENT IN NATURAL CONVECTION FROM HORIZONTAL RECTANGULAR FIN ARRAYS WITH PERFORATIONS

TWO-PHASE MICRO-CHANNEL HEAT SINK FOR SPACE CRAFT THERMAL CONTROL

Experimental Investigation of a Hybrid Evacuated Tube Solar Collector

Solar air heater duct having triangular protrusions As roughness elements on absorber plate

Hot Reservoir Stainless-Methanol Variable Conductance Heat Pipes for Constant Evaporator Temperature in Varying Ambient Conditions

Transcription:

ANALYSIS OF THERMAL STRESSES IN HEAT EXCHANGER TO FIND OPTIMUM WALL THICKNESS THROUGH ANSYS Dr.Hemachandra Reddy K 1, Dr.Naga Malleshwara Rao G 2 Registrar, JNTUA, Anantapuram, India 1 Professor & Principal, Shri Shirdi Sai Institute of Science & Engineering, Anantapuram, India 2 Abstract: External natural convection heat exchangers have evolved as a suitable alternative to forced convection as a means to transfer energy from hot fluid to cold fluid in hot water storage tanks. Determination of performance characteristics of these convection heat exchangers require complicated and lengthy experiments and such a practical problem has been raised during the experimentation of a research work in the heat transfer laboratory. This work uses ANSYS to predict the intensity of thermal stresses induced during heat transfer in the walls of heat exchanger and to find optimum thickness of heat exchanger wall without affecting heat transfer rate. In this research work a heat exchanger wall with two different thickness values 1.2 mm & 1.5 mm is modeled through ANSYS to study the behaviour of thermal gradient. Key words: External natural convection heat exchangers, ANSYS, heat transfer in the walls of heat exchanger, optimum thickness of heat exchanger wall. I. INTRODUTION Solar hot water systems offer an environmental friendly way to transfer solar radiation directly to thermal energy for heating water. In the last decade, the utilization of solar energy as a sustainable alternative to fossil fuel for water heating has received favorable attention and as a result, the world market for solar hot water products has increased significantly. These systems achieved a substantial energy savings, and a sufficient reduction of CO2 emissions annually. This has led to the development of cost-effective systems, including new concepts to reduce manufacturing cost, improve performance and optimize the energy utilization. The most common design of Solar Domestic Hot Water Systems (SDHWS) involves the use of a heat exchanger to transfer heat from the hot fluid to the water in the storage tank. Several heat exchanger configurations have been employed and the following configurations are among the most common. (i) Immersed coil or immersed tubes that are the heat exchanger installed inside the storage tank. (ii) External shell and tube heat exchanger with hot fluid pumped through the tubes and tank water (driven by natural convection) flowing through the wall. (iii) The mantle heat exchanger (MHE) in either its vertical form or the horizontal form consists of narrow annular jacket around the storage tank in which the hot fluid flows.[4] The work presented in this paper involves assessment of the heat exchange characteristics and evaluations of the longterm performance of a mantle heat exchanger for solar domestic hot water system A MHE is a cylindrical storage tank surrounded by an annulus through which hot fluid flows by transferring energy to the tank contents. The separating wall is the heat exchange surface. Fig. 1 shows a typical SDHW system with a vertical mantle heat exchanger where the tank serves as both solar tank and the auxiliary tank. Copyright to IJIRSET www.ijirset.com 3908

Fig 1. SDHW system with a mantle heat exchanger II. SALIENT FEATURES OF THE MANTLE HEAT EXCHANGER SYSTEM i). Thermal Stratification: The mantle tank system is one of the simplest ways of producing high heat exchanger effectiveness while promoting thermal stratification. The mantle configuration provides a large heat transfer area and effective distribution of the collector loop flow over the wall of the tank. Most of the incoming mantle fluid seeks the thermal equilibrium level in the mantle, and thermal stratification in the mantle and the inner link is not disturbed [1]. ii). Cost: The cost of tank is less compared to the increased performance initiated by the fine thermal stratification [2]. iii). Size limitation: The mantle tank design is not suitable for large low flow SDHW systems, as the heat transfer area gets too small for tanks with volumes over 800-1000 litres. [3]. III. EXPERIMENTS IN LABORATORY A vertical mantle type heat exchanger with the dimensions as shown in figure 2 is fabricated for the purpose of experimentation. The experimental set up is shown in figure 3. The mantle tank data is given in table 1. DATA OF MANTLE TANK TABLE 1. STAINLESS STEEL PROPERTIES: Grade: SS 304 Volume in inner tank [m 3 ] 0.0276 Specific heat [ J/Kg.K ] 460 Volume in inner tank above mantle [m 3 ] 0.01227 Density[Kg/m 3 ] 7820 Tank height [m] 0.900 Thermal Conductivity[W/m 2.K] 60 Inner diameter of tank [m] 0.1976 Thickness of tank wall [m] 0.0012 INSULATION: Mantle height [m] 0.400 Material Glass Wool Mantle tank diameter[m] 0.260 Insulation top, [m] 0.006 Mantle top (distance from bottom of tank) [m] 0.500 Insulation side above/below mantle, [m] 0.003 Mantle bottom(distance from bottom of tank) [m] 0.100 Mantle gap width [m] 0.030 Insulation side mantle,[m] Mantle inlet position from top of mantle[m] 0.05 / 0.10 0.003 Mantle inlet size [ inner diameter ] [m] 0.012 Insulation bottom, [m] Hot water tank volume[m 3 ] 0.073 Inner tank inlet size[m] 0.0254 Mantle Fluid Water 0.003 Copyright to IJIRSET www.ijirset.com 3909

IV. MANTLE HEAT EXCHANGER PERFORMANCE MEASUREMENTS An experimental arrangement is illustrated in fig 2 is set up to evaluate the overall heat transfer characteristics of the MHE and for the purpose of heat transfer coefficient measurements in the heat exchanger covering a range of mantle flow rates and thermal boundary conditions. These experiments are carried out at Heat Transfer Laboratory of JNT University, Anantapuram of Andhra Pradesh, India. Fig. 2. Experimental set up The mantle is constructed with an annular spacing of 30mm wrapped around the bottom half of a stainless steel (SS304 Grade) tank. The tank is insulated with glass wool. In the experiments, hot water is supplied to the hot side of the heat exchanger from a conventional hot water tank as the heat source. A schematic diagram of the indoor experimental setup is illustrated in fig 2 together with the instruments installed for the tests. Eight thermocouples made up of copper-constantan are fitted at different levels inside the core of the tank (fig1) and four thermocouples made up of copper-constantan are mounted on the mantle tank wall side of the heat exchange surface, to measure tank temperatures at different locations and to know the stratification. The inlet & outlet temperatures and flow rate of the hot water (mantle fluid) through the heat exchanger are also measured. The thermocouples are used to measure the temperatures of selected locations in the tank. 31/2 digit digital display is used to display the temperatures. V. PROCEDURE FOR ANSYS ANALYSIS Static analysis is used to determine the displacements, stresses, strains and forces in structures or components due to loads that do not induce significant inertia and damping effects. Steady loading in response conditions are assumed. The kinds of loading that can be applied in a static analysis include externally applied forces and pressures, steady state inertial forces such as gravity or rotational velocity imposed (non zero) displacements, temperature (for thermal strain). A static analysis can be either linear or non linear. In our present work we are going to consider linear statistic analysis. The procedure for static analysis consists of these main steps: Building the model Obtaining the solution. Reviewing the results. Build the model. A. Building the model In this step, the job name is specified and analysis title use PREP7 to define the element types, element real constraints, material properties and the model geometry element types both linear and non linear structural elements are allowed. The ANSYS elements library contains over 80 different element types. A unique number and prefix identity for each element type. Example: BEAM94, PLANE71, SOLID96 and PIPE16. B. Material properties Young s modules (Ex), Must be defined for a static analysis. If we plan to apply inertia loads (such as gravity) we define mass properties such as density (DENS). Similarly if we plan to apply thermal loads (temperatures); we define coefficient of thermal expansion. Copyright to IJIRSET www.ijirset.com 3910

C. Obtain the solution In this step we define the analysis type and options, apply loads and initial conditions the finite element solution. This involves three phases: 1) Pre processor phase. 2) Solution phase. 3) Post processor phase. 1) Pre-processor Pre processor has been developed so that the same program is available on micro, mini, super mini and main frame computer system to other. Pre processor is an interactive model builder to prepare FE (finite element) model and input data. The solution phase utilizes the input data developed by the pre processor, and dies the solution according to the problem definition. It creates input files to the temperature, etc., on the screen in the form of contours. The following section describes various capabilities and features of the pre-processor. 2) Solution The solution phase deals with the solution of the problem according to the problem definitions. All the tedious work of formulating and assembling of matrices are done by the computer, and finally displacements and stress values are given as output. Some of the capabilities ANSYS are linear static analysis, transient dynamic analysis etc. 3) Post processor It is a powerful user-friendly post processing program. Using interactive color graphics; it has extensive plotting features for displaying results obtained from the finite element analysis. One picture of analysis results (i.e., results in a visual form) can often reveal in seconds what would take an engineer hour to asses from a numerical output, saying a tabular form. The engineer may also see important aspects of the results that could be easily missed in a stack of numerical data. [5,6] VI. PROBLEM FORMULATION A mantle heat exchanger is designed and fabricated as a part of research work (Ph.D.), of the author member with a wall thickness of 1.2 mm. but a practical problem has risen while altering tried to provide extra fittings over the heat exchanger. Initially small thickness of 1.2 mm is chosen to have very effective heat transfer between the hot and cold fluids. Hence to avoid the fabrication problems without affecting the heat transfer rates an attempt is made to increase the wall thickness from 1.2 mm to 1.5 mm and the behaviour of thermal stresses induced during heating process is also studied. Structural stresses are also analysed using ANSYS. VII. RESULTS After modeling the mantle heat exchanger by going through the procedure explained above, the obtained results are tabulated and discussed. The properties of material selected in this study are given below: Thickness of tank wall = 1.2 mm, Material = stainless steel (SS: 304) Specific heat = 460 J/kg.k Density = 7.82 gm/m 3 Thermal conductivity = 15 w/m 2.k Copyright to IJIRSET www.ijirset.com 3911

Fig 4. Stress intensity by ANSYS for 1.2 mm thickness Fig 5. Stress intensity by ANSYS for 1.5mm thickness The maximum Thermal gradient observed in X-direction, Y-direction & Z-directions for 1.2 mm and 1.5 mm are as shown in table 2. Direction TABLE 2. THERMAL GRADIENT Thermal gradient Thermal gradient for 1.2 mm for 1.5 mm X 7.9999 7.7199 Y 5.5014 5.4578 Z 5.0020 4.9820 The maximum Thermal flux observed in X-direction, Y-direction & Z-directions for 1.2 mm and 1.5 mm is as shown in table 3. TABLE 3. THARMAL FLUX Direction Thermal flux for 1.2 mm Thermal flux for 1.5 mm X 951.63 933.96 Y 1190.7 177.5 Z 1137.4 1021.1 VII. CONCLUSION From the above study, the thickness of heat exchanger wall can be increased from 1.2 mm to 1.5 mm, as there is no declination in heat transfer rates. It is observed from the result table that, the maximum thermal gradient is 7.999 in X direction and the maximum thermal flux is 1190.7 in Y-direction for 1.2 mm thick wall. It is observed from the result table that, the maximum thermal gradient is 7.7199 in X direction and the maximum thermal flux is 1077.5 in Y- direction for 1.5 mm thick wall. As there is no difference in heat transfer rates and moreover the thermal stresses can be reduced if the thickness is increased to 1.5 mm. There is a slight increase in the cost of product, which can be afforded by compensating with the performance of heat exchanger. Copyright to IJIRSET www.ijirset.com 3912

REFERENCES 1. Soo Too Y.C.,Morrison G.L. and Behnia M, Vertical mantle heat exchangers for solar water heaters in proceeding of ANZSES Annual conference, December, Perth, Australia, 2004. 2. Soo Too Y.C., Morrison G.L., Design of mantle exchangers for solar water heaters; 13 international heat transfer conference, August, Sydney, Australia, 2006. 3. Fraser K.F. Hollands K.G.T., and Brunger A.P., An empirical model for natural convection heat exchangers in SDHW systems, solar energy, vol.55, pp75-84, 1995. 4. Farrington R.B and Bingham C, X Testing and Analysis of immersed heat exchangers, SER1/TR-254-2866, Golden CO, 1995. 5. ANSYS Manual 8.0 6. Solid works 2001 plus BIOGRAPHY The author, Dr Hema Chandra Reddy K received his MTech and PhD from JNTUH in Mechanical Engineering. He started his career as an academician. He presented many of his research papers in many countries. He is RUNNER-BOLT awardees from Indian Air-Force and also felicitated as the BEST TEACHER by the state government of Andhra Pradesh. He joined JNTUA as a Professor of Mechanical Engineering and served the department and the University at different levels as PLACEMENT OFFICER, TEQUIP NODAL OFFICER, DAP, and presently he is working as the REGISTRAR of JNTUA, Anantapuramu of AP in India. He guided many PhD scholars and his students are placed globally. The author, Dr G. Naga Malleshwara Rao received his MTech and PhD degrees in Mechanical Engineering from JNTUA in 2000 and 2010 respectively. He gained 7 years of industrial experience after his BTech from SVU at the levels of Production Engineer and Maintenance Engineer in Elgi Tyre and Tread Ltd. He has 15 years of teaching experience at the levels of Asst.Professor, Asso.Professor and Professor of Mechanical Engineering. At present he is working as a Professor and Principal of Shri Shirdi Sai Institute of Science and Engineering, Anantapuramu of AP in India. Copyright to IJIRSET www.ijirset.com 3913