Module 5 Erosion & Sediment Control. Introduction To Geosynthetics In Transportation. Prepared by. For the Local Technical Assistance Program

Similar documents
Introduction To Geosynthetics In Transportation

AASHTO M Subsurface Drainage

Section Specification for Geotextile Used in Permanent Erosion Control Application

EROSION & SEDIMENT CONTROL

Technical Supplement 14D. Geosynthetics in Stream Restoration. (210 VI NEH, August 2007)

Section 714. GEOTEXTILE AND GEOCOMPOSITE DRAIN MATERIAL

E R O S I O N C O N T R O L

ACTIVITY: Geotextiles ES 12

V. EROSION CONTROL. -Drainage swales separation -Under rip-rap protected -Under rip-rap unprotected

UNIFIED FACILITIES GUIDE SPECIFICATION

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

Basic Geosynthetics: A Guide to Best Practices in Forest Engineering

Geosynthetics for Erosion Control and Reinforcement

UNIFIED FACILITIES GUIDE SPECIFICATION

Wisconsin Contractors Institute Continuing Education

III.DRAINAGE. This section describes the use of geotextiles in underdrains for two different field conditions:

FOR PROJECTS INITIATED AFTER FEBRUARY 1, 2010 REVISION 1 ITEM 709 TRIANGULAR FILTER FABRIC FENCE

Guidelines for Installing Rolled Erosion Control Products in Slope, Channel and Shoreline Applications Laurie Honnigford

APPLICATIONS IN FILTRATION AND DRAINAGE & EROSION CONTROL

Structural Storm Water Best Management Practices (BMPs)

MATERIAL SPECIFICATION FOR GEOTEXTILES

EARTH STABILIZATION GEOSYNTHETIC SOLUTIONS

SKAPS GEOTEXTILE SUBSURFACE DRAINAGE

American Railway Engineering and Maintenance of Way Association Letter Ballot

Geotextiles Submitted in partial fulfillment of the requirement for the award of degree of CIVIL

Part IV(a): BMPs for Erosion, Sediment, Velocity Control

HYDRAULIC DESIGN involves several basic

MATERIAL SPECIFICATION FOR GEOTEXTILES

COIR GEOTEXTILES. Er. Sheela Mary Cherian, M.Tech, Assistant Executive Engineer. Woven coir netting / Mesh matting used as geotextiles

A DIVISION OF L & M SUPPLY EROSION CONTROL BLANKETS, WATTLES AND LOGS

PERMANENT SEEDING. Overview of Sedimentation and Erosion Control Practices. Practice no. 6.11

Charudatta R. Prayag Deputy Director Ahmedabad Textile Industry s Research Association Ahmedabad

EROSION & SEDIMENT CONTROL

J. K. Gupta, Scientist D, Bureau of Indian Standards

Alternative Names: Erosion Control Matting, Erosion Control Netting, Rolled Erosion Control Products (RECP)

MATERIAL SPECIFICATION FOR GEOTEXTILES

Usage of Woven Geo-Textiles in the Construction Subgrade in Flexible Pavements

SECTION TABLE OF CONTENTS GEOTEXTILE TUBES PARAGRAPH TITLE PAGE NOS.

Drop-In Specifications INTEGRATED DRAINAGE SYSTEM GEOMEMBRANE

An Introduction to Geotextiles in Pavement and Drainage Applications

Overview of Geosynthetic Materials, Their Characteristics, Applications, and Design Considerations

SECTION 02230BP AGGREGATE BASE

Bowling Green, Kentucky Stormwater Best Management Practices (BMPs) Erosion Prevention Practices (EPPs) Activity: Nets and Mats (N and M)

Introduction. Functions of Non woven Geotextile (TechGeo) Separation. Filtration. Drainage. Containment. Tech Geo. . Geotextile Overview

Liner Construction & Testing Guidance Overview

Workshop On Capping Design In South Africa. Product Showcase By. Tyrone Naidoo

UNIFIED FACILITIES GUIDE SPECIFICATIONS

CI/SfB (11.1) (11.3) Common Arrangement R12. Uniclass D1372/L141. Landlok. Bio-degradable Erosion Control. Geosynthetics

Erosion Control for Home Builders in the. City of Jacksonville

East Coast Erosion Blankets

AASHTO s National Transportation Product Evaluation Program (NTPEP) Evaluation Program for Plants Producing Geotextiles. Pre-Audit Application Form

ENGINEERING USE OF GEOTEXTILES

Town of Essex Small Site Erosion Control Guide

GEOSYNTHETICS PRODUCT OVERVIEW

ARMY TM AIR FORCE AFJMAN

SOUTHEAST TEXAS CONTINUING EDUCATION ENGINEERING USE OF GEOTEXTILES

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

Urban Conservation Practice Physical Effects ESTABLISHMENT, GROWTH, AND HARVEST NUTRIENT MANAGEMENT

Low Flow Rates Low Filtration Sandy Soils Medium Flow Rates Medium Filtration Clayey Soils [1] High Flow Rates High Filtration Polluted Soils

INSTALLATION GUIDELINES FOR GEOTEXTILES USED IN FILTRATION AND DRAINAGE APPLICATIONS

the Products you need with Support that makes a Difference

Biodegradabale Soil Blankets Installation Technique

HIGH PERFORMANCE COAL COMBUSTION RESIDUAL (CCR) SOLUTIONS

GEOSYNTHETICS IN TRANSPORTATION

SPECIAL SPECIFICATION 3687 Impermeable Liner

Moisture Content Effect on Sliding Shear Test Parameters in Woven Geotextile Reinforced Pilani Soil

Coir Block System (fabric attached coir block) add New Dimension to Streambank Stabilization Projects

1993 Specifications CSJ SPECIAL SPECIFICATION ITEM Impermeable Liner

geotextiles bidim Nonwoven polyester geotextile Made in Australia Designed for performance RECYCLED Quality ISO 9001

geotextiles bidim Nonwoven polyester geotextile Made in Australia Designed for performance RECYCLED

The following general requirements will be met for all planter box installations:

SILT FENCE MACHINE SLICED ERO-1A STEEL FENCE POST (T-POST), MINIMUM 5' LONG, 6' MAXIMUM SPACING.

STANDARD SPECIFICATIONS SECTION TEMPORARY EROSION AND SEDIMENT CONTROL

TECHNICAL GUIDE ON THE SELECTION & SPECIFICATION OF GLOBAL SYNTHETICS GEOTEXTILES FOR TRANSPORTATION APPLICATIONS

Guidelines for Streambank Protection

What Is Water Erosion?

The Roles of Geotextile in Erosion & Sediment Control

I N D U S T R I A L Y A R D S

Minnesota Local Road Research Board. Training Module for Designing and Constructing with Geosynthetics

GEOWEB slope & shoreline protection OVERVIEW

EROSION CONTROL SYSTEMS

G E O T E X T I L E s o l u t i o n s

Geosynthetics and Their Applications

Fortrac 3D Geogrid. High-Tensile Anti-Slip Reinforcement with Soil Retention Function

STREAM ALTERATION PRACTICES

RevETMax TM INSTALLATION GUIDE

DUPONT TM PLANTEX LANDSCAPE SOLUTIONS Guidebook

Tech Spec 22. Geosynthetics for Segmental Concrete Pavements. History

Table 4.7.1: Swales Potential Application and Storm Water Regulation

Selecting the Right Closure Cap Option for Your Surface Impoundment or CCR Landfill

Geosynthetics for Segmental Concrete Pavements

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

Geotextiles and Loess: Long-Term Flow

Geotextile Tube Structures: Example Contract Specifications

Erosion Control. A guide to ABG surface erosion protection methods

CHAPTER 2. VEGETATION AND SOIL STABILIZATION CONTROL MEASURES

Low Gradient Velocity Control Short Term Steep Gradient [1] Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent

Subsurface Infiltration Bed

to hard armor

General Information. Site Conditions. 9b 9b. 9a 1b. Best Management Practices Illustration

Transcription:

Module 5 Erosion & Sediment Control Introduction To Geosynthetics In Transportation Prepared by July 2007 For the Local Technical Assistance Program

The Geosynthetic Materials Association (GMA) represents all segments of the geosynthetics industry n Manufacturers n Companies that test or supply material or services to the industry GMA activities further the acceptance and use of geosynthetic materials in a variety of applications. n Trade association n Bimonthly magazine n Conferences and trade show For additional information please contact: n Andrew Aho, Managing Director, GMA n Phone: 651 225 6907 or 800 636 5042 n E-mail: GMAtechline@ifai.com n Website: www.gmanow.com. In 2007 Geosynthetics magazine (formerly GFR) enters its 25th year of publication.

Preface This short-course introduces geosynthetics from the perspective of practical application. It is intended to serve as a general reference in the field for those who are building structures that include geosynthetics.

Geosynthetics The most versatile and cost-effective ground modification materials.

Contents Introduction Geosynthetic Functions Geosynthetic Materials Geosynthetic Applications n Erosion and Sediment Control Simplified Generic Specifications

Introduction to Geosynthetics Geosynthetics, including: Geotextiles Geomembranes Geonets Geogrids Geocomposites Geosynthetic clay liners Are often used in combination with conventional materials, offer numerous advantages over traditional materials

Geosynthetic Separator Geosynthetics can perform numerous functions, including the separation function. In roadways, a separator keeps the base aggregate and the subgrade from mixing.

Geosynthetic Filter A geosynthetic performs the filtration function when it allows water to pass while restricting the movement of soil particles.

Geosynthetic Categories Geotextiles both woven and nonwoven make up the largest percentage of geosynthetics used in transportation applications. Geogrid 6% Other 2% Woven 32% Nonwoven 60% USA Market

Geotextiles Geotextiles, like other geosynthetics, are manufactured in state-of-the-art facilities using sophisticated equipment.

Geotextiles Polymers Almost all are polyester or polypropylene. n Polypropylene is lighter than water (specific gravity of 0.9), strong and very durable. n Polyester is heavier than water, has excellent strength and creep properties, and is compatible with most common soil environments. Structures Nonwoven Woven Other n Knitted n Stitch bonded

Nonwovens Manufactured from (short) staple fibers or continuous filaments randomly distributed in layers onto a moving belt to form a "web". The web then is needled or heat and pressure bonded to interlock the fibers.

Needle-punched Nonwoven Geotextiles Needle-punched nonwovens are felt-like and very flexible.

Heatbonded Nonwoven Geotextiles Heat-bonded nonwovens are thinner and have greater stiffness.

Wovens Weaving is a process of interlacing yarns to make a fabric. Woven geotextiles are made from weaving slit film, monofilament, or multifilament yarns.

Slit Film Woven Geotextiles Slit film woven geotextiles provide economical separation of materials.

Monofilament Woven Geotextiles Monofilament woven geotextiles provide enhanced filtration properties.

Fibrillated and Multifilament Woven Geotextiles Multifilament woven geotextiles provide enhanced tensile strength.

Erosion Control Nets, Meshes & Blankets Open weave meshes (left) and blankets (right) can provide dependable, temporary erosion protection while nurturing vegetation establishment.

Turf Reinforcement Mats These flexible, synthetic, 3 dimensional mats are designed to be used in conjunction with topsoil and seed or turf to create strong, durable and continuous soil root mat matrices which can provide nearly twice the erosion protection of plain grass alone.

Fabric Formed Revetments q Fabric formed revetments (FFR) are constructed by pumping a very fluid fine aggregate grout into a fabric envelope consisting of 2 layers connected by tie chords or by interweaving. q FFRs provide the durability of rigid linings, such as cast in place concrete.

Geocellular Confinement Systems Geocellular confinement systems (GCS) are 3 dimensional honeycomb like structures filled with soil, rock or concrete.

Silt Fence A well-designed silt fence is made of a durable geotextile attached to support posts with the bottom edge securely buried.

Turbidity Curtains Reusable floating geosynthetic panels that prevent sediment from shore side construction or off shore filling and dredging operations from moving off site.

Geosynthetics In Erosion & Sediment Control Rolled Erosion Control Products, RECPs Hard Armor Systems Silt Fence q Erosion occurs when soil particles are displaced due to the impact of raindrops, moving water or wind. q Sedimentation occurs when eroded particles (sediments), carried by water or wind, are deposited in another location where they can cause problems. Thus, erosion and sediment controls are used together to minimize environmental impacts.

Negative Effects Of Erosion Erosion And More Sedimentation Leads to Sedimentation And Ultimately Causes Flooding along with Other Problems

Hard Armor Systems Soil slopes and channels exposed to constant concentrated flows, currents, or waves cannot support vegetation; so they must be protected from erosion by a properly constructed hard armor systems.

Introduction to the Problem q When a hard armor system is in place, water can seep in and out of the slope or channel, but the force of the water is resisted by the armor. q As the water seeps, it can gradually carry soil particles with it. The resulting voids cause armor support to be lost over time. q This process is called piping. An Undermined Hard Armor System

Typical Problems A properly constructed armor system includes a filter layer placed between the bank soil and the armor to prevent piping. Traditional filter layers have been graded sand and aggregate layers. These graded filters are very costly to construct because they are constructed of select graded materials. Also, the filter layer must be a controlled thickness. On a steep slope, it can be very difficult to properly construct. For these two reasons, filter layers are often and mistakenly - not included.

The Solution Geotextiles overcome the drawbacks of graded sand and aggregate filters. First, they are manufactured with specific hydraulic and soil retention properties, which can be easily selected to complement the soil that needs protection. Secondly, they can be installed with ease on slopes even under water.

The Geotextile Solution A hard armor system is properly constructed when it includes a filter geotextile.

Installation Of Geotextiles Under Hard Armor Proper hard armor construction includes: q Site preparation q Deployment of the geotextile q Placement of the armor layer Shoreline Protection - riprap with Geotextile

Site Prep & Geotextile Deployment The slope or channel should be graded smoothly and compacted, if possible. Unroll the geotextile on the prepared soil. The geotextile should be placed parallel to small ditch and stream alignments and perpendicular to lake or ocean shores. This alignment minimizes the exposure of the geotextile to current or wave uplift. Overlap the geotextile a minimum of 1.5 ft (0.5 m) in order to provide continuous erosion protection. Secure the geotextile in place using 6-18 in (15-45 cm) pins or staples, fill material or rocks.

Placement Of The Armor Layer The armor, such as riprap or concrete blocks, should be placed in accordance with accepted practices. Placing armor stone on a woven geotextile.

Placement Of The Armor Layer Placing armor stone on a nonwoven geotextile

Placement Of The Armor Layer Concrete block systems must also be protected by a geotextile filter layer.

Placement Of The Armor Layer q The drop height should be held to a minimum, and care must be exercised to avoid damage to the geotextile. q If a drop height greater than 3 feet is anticipated, a heavier, more durable geotextile will be required. Excessive Drop Height / Damage

Rolled Erosion Control Products (RECPs) q Temporary, degradable RECPs are used to prevent loss of soil from the seedbed and to enhance the establishment of vegetation where the vegetation alone should provide sufficient site protection once established. q Long term, nondegradable RECPs, often called turf reinforcement mats (TRMs), furnish erosion protection and extend the erosion control limits of vegetation, soil, rock, or other materials. More on these materials can be found at www.ectc.org.

SILT FENCE n Sediment control barriers, such as silt fence, are needed to prevent constructiongenerated silt from being carried into nearby waterways or onto adjoining properties. n These barriers serve (1) to decrease the velocity of moving water, and (2) to trap suspended sediment.

Typical Solutions - Problems q Improper placement of the traditional barriers, such as straw bales, has allowed undercutting and end flow, which have actually resulted in additions to rather than removal of sediment from runoff waters. q Inadequate maintenance and cleaning efforts have tended to greatly lower the effectiveness of these barriers. Typical straw bale installation (failure)

Silt Fence Silt fences can trap a much higher percentage of the suspended sediments than can straw bales. When properly performing, a well designed silt fence will: q Initially screen silt and sand particles from runoff. q Form a soil filter adjacent to the sift fence, reducing the flow of water through the fence. q Create a pond behind the fence which serves as a sedimentation basin to collect runoff water and retain suspended sediments.

Silt Fence The Benefits Silt fence provides the following benefits over traditional sediment control structures: Minimal labor required to install Low cost Highly efficient in removing sediment Very durable and sometimes reusable

Silt Fence Installation - Details Silt fence must be securely buried in the ground and adequately supported.

Silt Fence Installation - Location Unless otherwise specified, silt fence should be placed where it will intercept all runoff from the site. Extend the fence far enough uphill to prevent runoff from escaping around the ends. When continuing the fence line with a new roll of fencing, install the new fence to prevent silt from passing between the end of the existing fence and the beginning of the new.

Silt Fence Maintenance Routine maintenance should be performed on all silt fencing. The fence line should be inspected after each significant rain event as well as at specified intervals. If silt buildup is discovered, it should be cleaned from the fabric either by sweeping or by hand shoveling. When fabric begins deteriorating either because of U.V. exposure or vandalism/debris, it should be replaced or a new fence should be installed adjacent to the old.

Simplified Generic Specifications For Routine Applications* (*The specification of critical geosynthetic applications will generally require the input of a qualified engineering professional) Specification Criteria: Construction Survivability In-Service Performance q Geotextiles for routine applications are easily specified by using generic specifications such as AASHTO M288 and FHWA FP-03. q The specifications use common geotextile properties to specify geotextiles based on empirical evidence of construction survivability and in-service performance over three decades. q The FP-03 specifications are available for downloading at no charge at www.wfl.fha.dot.gov/design/specs/fp03.htm.

Simplified Generic Specifications For Routine Applications FP03 FP-03 specifications rely on a single table for each application that addresses both survivability-related properties and in-service performance-related properties. Survivability & Performance Properties n Table 714-1 Subsurface Drainage n Table 714-2 Separation n Table 714-3 Stabilization n Table 714-4 Permanent Erosion Control n Table 714-5 Temporary Silt Fence n Table 714-6 Paving Fabric (All values in tables, with the exception of AOS, represent minimum average roll values in the weakest principal direction.)

FP03, Table 714-4 Permanent Erosion Control Geotextile Requirements Test Methods Units Specifications (1) Type IV-A Type IV-B Type IV-C Type IV-D Type IV-E Type IV-F Grab strength ASTM D 4632 N 1400 / 900 1400 / 900 1400 / 900 1100 / 700 1100 / 700 1100 / 700 Sewn seam strength ASTM D 4632 N 1260 / 810 1260 / 810 1260 / 810 990 / 630 990 / 630 990 / 630 Tear strength ASTM D 4533 N 500 / 350 500 / 350 500 / 350 400 (3) / 250 400 (3) / 250 400 (3) / 250 Puncture strength ASTM D 4833 N 500 / 350 500 / 350 500 / 350 400 / 250 400 / 250 400 / 250 Burst strength ASTM D 3786 kpa 3500 / 1750 3500 / 1750 3500 / 1750 2750 / 1350 2750 / 1350 2750 / 1350 Permittivity ASTM D 4491 sec 1 0.7 0.2 0.1 0.7 0.2 0.1 Apparent opening size ASTM D 4751 mm 0.43 (2) 0.25 (2) 0.22 (2) 0.43 (2) 0.25 (2) 0.22 (2) Ultraviolet stability ASTM D 4355 % 50% retained strength after 500 hours exposure (1) The first values in a column apply to geotextiles that break at < 50% elongation (ASTM D 4632). The second values in a column apply to geotextiles that break at 50% elongation (ASTM D 4632). (2) Maximum average roll value. (3) The minimum average tear strength for woven monofilament geotextile is 245 N. FP03, Table 714-4 provides both survivability and performance properties for geotextiles used for permanent erosion control. M288 can be used to guide the specification of the appropriate geotextile type. Yellow designates the equivalent of the M288 specification default.

Permanent Erosion Control Geotextile Types Survivability: Default geotextile selection is Type IVA, B, or C. As a general guideline, the default geotextile selection is appropriate for conditions of equal or less severity than either of the following: Armor layer stone weights do not exceed 100 kg, stone drop height is less than 1 m, and no aggregate bedding layer is required. Armor layer stone weighs more than 100 kg, stone drop height is less than 1 m, and the geotextile is protected by a 150-mm thick aggregate bedding layer designed to be compatible with the armor layer. More severe applications require an assessment of geotextile survivability based on a field trial section and may require a geotextile with strength properties.

Permanent Erosion Control Geotextile Types Cont d The engineer may specify a Type IVD, E, or F geotextile based on one or more of the following: The engineer has found Type IVD, E, or F geotextiles to have sufficient survivability based on field experience. The engineer has found Type IVD, E, or F geotextiles to have sufficient survivability based on laboratory testing and visual inspection of a geotextile sample removed from a field test section constructed under anticipated field conditions. Armor layer stone weighs less than 100 kg, stone drop height is less than 1 m, and the geotextile is protected by a 150-mm thick aggregate bedding layer designed to be compatible with the armor layer. Armor layer stone weights do not exceed 100 kg, and stone is placed with a zero drop height.

Permanent Erosion Control Geotextile Types In-Service Performance: These default filtration property values are based on grain size analysis of in situ soil in accordance with T 88. n If the percent passing the 0.075mm sieve is < 15, use Type IVA or IVD. n If the percent passing the 0.075mm sieve is between 15 and 50, use Type IVB or IVE. n If the percent passing the 0.075mm sieve is > 50, use Type IVC or IVF. In addition to the default permittivity value, the engineer may require geotextile permeability and/or performance testing based on engineering design for drainage systems in problematic soil environments. Site-specific geotextile design should be performed if one or more of the following problematic soil environments are encountered: unstable or highly erodible soils such as non-cohesive silts; gap graded soils; alternating sand/silt laminated soils; dispersive clays; and/or rock flour. For cohesive soils with a plasticity index greater than seven, geotextile maximum average roll value for apparent opening size is 0.30 mm.

FP03, Table 714-5 Temporary Silt Fence Requirements Grab strength - MD Grab strength - XD Permittivity Test Methods ASTM D 4632 ASTM D 4632 ASTM D 4491 Unit s Type V-A Type V- B (2) Specifications Type V- C (3) N 400 550 550 N 400 450 450 sec 1 0.05 0.05 0.05 (1) Maximum average roll value. (2) Elongation at break 50 percent elongation (ASTM D 4632). (3) Elongation at break < 50 percent elongation (ASTM D 4632). Apparent opening size Ultraviolet stability ASTM D 4751 ASTM D 4355 mm 0.60 (1) 0.60 (1) 0.60 (1) % 50% retained strength after 500 hours exposure Type V-A: Supported by 14-gage steel wire with a mesh spacing of 150 x 150 mm or polymeric mesh of equivalent strength, and posts at no more than 1.2m spacing. Types V-B and C are unsupported, except for posts spaced at no more than 1.2m and 2.0m, respectively. FP03, Table 714-5 provides both survivability and performance properties for geotextiles used for silt fence. M288 can be used to guide the specification of the appropriate geotextile type. Yellow designates the equivalent of the M288 specification default.

Questions THINK GMAtechline@ifai.com

Thank You! For more information go to www.gmanow.com