Pruning is one of the oldest

Similar documents
10. Canopy Management

Arnold Schumann(UF/IFAS, CREC) Soil Testing for Crop Nutrient Recommendations and Management November 13, 2014 GCREC, FL

Evaluation and Demonstration of New Stone Fruit Systems

By now, most citrus growers in Florida are well aware

Arnold Schumann, Kevin Hostler, Laura Waldo (UF/IFAS, CREC) 2013 Fluid Forum February 18-19, 2013 Scottsdale, AZ

Introduction. Objectives of training and pruning

Training and Pruning Florida Peaches, Nectarines, and Plums 1

Pruning Blueberry Plants in Florida 1

Pruning for Cropload Management and Productivity Winter Pruning Workshop Dr. Mercy Olmstead, UF/IFAS

AL TERNA TE BEARING OF CITRUS IN FLORmA

Training and Pruning Florida Peaches, Nectarines, and Plums 1

Training and Pruning Florida Peaches, Nectarines, and Plums 1

Training and Pruning Florida Peaches, Nectarines, and Plums1

Evan G. Johnson Citrus Growers Institute April 8, 2014

Pruning for Cropload Management and Productivity 2012 WINTER PRUNING WORKSHOP DR. MERCY OLMSTEAD

Integration of Tree Spacing, Pruning and Rootstock Selection for Efficient Almond Production

Field Evaluation of Rootstocks in USDA Program

PEACH TREE PRUNING. Texas Agricultural Extension Service. -...,..-- Pe<;fJ& H~btt/ Pe<;fJ&

Unsurpassed Technology Real field data. Real results. Real restoration.

SPRING AND SUMMER MANAGEMENT PRACTICES FOR TABLE GRAPES. Andrew Teubes Viticultural Consultant

Arnold Schumann, Kevin Hostler, Laura Waldo, Wije Bandaranayake (UF/IFAS, CREC) 2015 Fluid Forum February 17, 2015 Scottsdale, AZ

Training and Pruning Almond Trees

Guide to Growing Breadfruit

Effect of Method of Application of Double Superphosphate on the Yield and Phosphorus Uptake by Sugar Beets 1

By some estimates, up to 40 percent of all citrus trees in

Growing for Your Market

CITRUS PRUNING. Pruning techniques for tree health, pest control, fruit production and size control

Your Florida Dooryard Citrus Guide - Young Tree Care 1

CITRUS PRUNING. Pruning techniques for tree health, pest control, fruit production and size control.

Growing Fruit to Market Requirements NETTING CITRUS TO MEET MARKET REQUIREMENTS

Maximizing Vine Crop production with Proper Environmental Control

8/23/2013. Grape Cultivars for West-Central Missouri Vineyard Terminology Trellis Systems The Cordon Budget Canopy Management Techniques

Pruning and Training Fruit Trees

The introduction of dwarfing cherry rootstocks, such as

Pruning and Training Deciduous Fruit Trees for the Dooryard 1

Pruning mature and encroached avocado trees to restimulate and maintain production and fruit quality

Apple I. Tuesday afternoon 2:00 pm

Citrus Notes. December Inside this Issue: Vol Dear Growers,

Potential impact of global warming on citrus production. L. Gene Albrigo Citrus Research & Education Center University of Florida

Hawaii Agriculture Research Center -1- Vegetable Report 2. Hawaii Agriculture Research Center Vegetable Report 2 January 2000

Soil and Plant Basics 2016 EKS Grazing School September 20, 2016

Beginning Viticulture

Funded Projects to Aid Growers in the HLB Battle

Training Young Walnut Trees

PRUNINGIAPPLE TREES. in eastern Canada CANADA DEPARTMENT OF AGRICULTURE PUBLICATION C212 P c. 3

What and Where to Prune

Citrus Tree Pruning Principles and Practices 1

Central Florida Youth

Training and Pruning Peach Trees

New Cherry Training Systems Show Promise Lynn E. Long, Extension Horticulturist Oregon State University Extension Service/Wasco County

Canopy Management Strategies

GROWTH AND PERFORMANCE OF OWN-ROOTED CHANDLER AND VINA COMPARED TO PARADOX ROOTED TREES

Pruning Fruit Trees. Vince Urbina Colorado State Forest Service

Avocado Tree Pruning in Chile

Vegetarian Newsletter

Quantifying Limitations to Balanced Cropping

Project Report ROOT GROWTH DURING SOD TRANSPLANTING. Bingru Huang, Associate professor

Pruning Ornamental and Fruit Trees

California Avocado Society 1955 Yearbook 39: PHOSPHATE RESPONSE IN AVOCADO TREES

Unit D: Fruit and Vegetable Crop Production. Lesson 4: Growing and Maintaining Tree Fruits

PRUNING IN COFFEE INTRODUCTION:

COMPETITION AMONG VEGETATIVE AND REPRODUCTIVE CYCLES AND ROLE OF PRUNING. Musacchi, S.

CULTURE. Dr. Gary C. Pavlis, Ph. D. Atlantic County Agricultural Agent

How to Fertilize Smart

Light Management in Pecan Orchard in Semi-Arid Regions. Jim Walworth, University of Arizona & Richard Heerema, New Mexico State University

Managing Sa naging linity in Florida Citrus Brian Boman

Management of Microsprinkler Systems for Florida Citrus 1

Canopy Management Strategies

Increasing the growth rate by any means decreases the juvenile period

Forcing Containerized Roses in a Retractable Roof Greenhouse and Outdoors in a Semi-Arid Climate

2/18/2009. Do you have: Time Space Expertise Realistic expectations. Teryl R. Roper Dept. of Horticulture University of Wisconsin-Madison

UNITED STATES DEPARTMENT OF AGRICULTURE Agricultural Research Service Washington, D.C

Welcome To Ultrateck Laboratories Inc. New Fertilak-E Concentrate Natural Biological Fertilizer Activator

Virginia Tech VIRGINIA POLYTEHNIC INSTITUTE AND STATE UNIVERSITY

Horticulture 2018 Newsletter No. 23 June 12, Claflin, 2021 Throckmorton Plant Science Cntr. Manhattan, KS (785)

Managing Soil Borne Diseases

FERTILIZER, IRRIGATION STUDIES ON AVOCADOS AND LIMES ON THE ROCKDALE SOILS OF THE HOMESTEAD AREA

Comparison of Soil Grown Cannabis Plants in a Plastic Pot, a Fabric Pot and an Octopot Grow System 1

Training and Pruning Newly Planted Deciduous Fruit Trees

Microirrigation of Young Blueberries in Florida 1

(35) PROHEXADIONE CALCIUM (APOGEE ) REDUCES GROWTH OF CONTAINER GROWN CITRUS ROOTSTOCK SEEDLINGS

University of California Cooperative Extension Tulare County. Grape Notes. DELAYED GROWTH PREVALENT IN VINEYARDS THIS SPRING Bill Peacock

Training & Pruning Fruit Trees AG-29

Central Florida Youth

Plant Growth Hormone Technology

Chemical Blossom Thinning of Peaches and Nectarines 1997 CTFA Report

TRAINING AND PRUNING FRUIT PLANTS. Elizabeth Wahle (with contributions from Sonja Lallemand) February 2015 GROWING A NEW GENERATION

#3: Fertilize Appropriately

Principles Involved in Tree Management of Higher Density Avocado Orchards

Differences in Organic Fertilizer Response

OPTIMIZING ORANGE GROVE FACTORS FOR FRUIT PRODUCTION AND HARVESTING

Reverse Poster Pruning fruit trees. 2. Thinning fruit trees. 3. Effective fruit tree watering and feeding. 4. Pest and disease control

Increasing the Market Share for New Zealand Olive Oil

Research Update. Revising Your Phosphorus Fertilization Strategy. Phosphorus fertilization strategies for greenhouse crops are in flux.

When to Prune? Late Winter-Early Spring

CMG GardenNotes #613 Structural Training of Young Shade Trees

Fruit Size Management Guide Part 2

Establishing new trees possible impacts of rootstock propagation method on young tree growth Ute Albrecht

Title: Nitrogen uptake, partitioning and utilization of Concord grapevines

2016 World Crops Research Update - Okra and Eggplant

Transcription:

Pruning and controlled-release fertilizer to rehabilitate HLB trees By Tripti Vashisth and Troy Gainey Pruning is one of the oldest horticultural practices that changes the form and growth of a tree. The pruning process 1) adjusts tree shape and the ratio of framework to fruitbearing shell of the canopy, 2) alters the shoot/root ratio and 3) changes the carbohydrate (food storage) status of the tree. Under Florida weather conditions, citrus trees often produce vigorous vegetative growth that can result in overcrowding and shading. Shading reduces yield and foliage on the lower parts of the trees. Sunlight not only influences flowering and fruit set, but also enhances fruit quality and color development. Increased sunlight penetration within the tree canopy might also allow foliage to dry quicker after a rain shower and could help reduce establishment of fungal pathogens. Therefore, adjustments must be made to the tree canopy to maximize sunlight interception. TYPES OF CUTS Thinning out and heading back are the main types of pruning cuts (Figure 1). Thinning out is a selective pruning method often done with handheld equipment that involves the removal of complete branches down to the main trunk. Thinning out is a common pruning method in peaches and plums to maximize light penetration in the canopy for better fruit set and growth. Heading back removes the terminal portion of a shoot or branch, removing apical dominance and stimulating lateral bud breaks (Figure 1). As a result, trees are more branched and compact. Mechanical hedging and topping are the main forms of mass heading back used to prune mature trees in Florida. HLB-AFFECTED TREES Previous research has shown that HLB-affected trees have a reduced root system and a higher rate of root turnover. In a greenhouse experiment, a significant imbalance in root-to-shoot Figure 1. Basic pruning cuts are thinning and heading back. Florida citrus groves are mostly pruned by heading back. a b c Figure 1a: Tree before pruning Figure 1b: Thinning Selective removal of branches (green and red) Figure 1c: Thinning Open canopy d e f Figure 1d: Heading Back Non-selective removal of terminal portion of branches (green and red) Figure 1e: Heading Back Terminal portion of branches is removed Figure 1f: Heading Back After heading back, new lateral growth 22

ratio was observed in HLB-affected trees as compared to same-age, healthy trees (Figure 2). The diminished root system cannot support the existing above-ground canopy and fruit Figure 2. Root-to-shoot ratio in greenhouse HLB-affected and healthy plants. A low root-to-shoot ratio suggests that root systems might not be sufficient to meet shoot-system requirements. production. As a result, the tree enters into a continuous carbohydrate stress cycle and declines in overall health. To intervene in this vicious cycle of imbalance and carbohydrate stress, pruning is needed to correct the rootto-shoot ratio to benefit the tree. In addition to pruning, it is important to promote rejuvenation of the tree, for which plant nutrition plays a critical role in regrowth and development. HLB-affected trees have a smaller root system and thinner canopy; therefore nutrient uptake is often limited at any given time. Thus, it seems reasonable that a small and constant supply of nutrients throughout the growing season should provide the stressed root system a better chance to effectively take up nutrients. PRUNING AND CRF EXPERIMENT In January 2015, a 3-year trial was initiated to evaluate pruning as well as source of fertilizer in combination. A grove of 15-year-old Hamlin on Swingle rootstock trees was expressing significant HLB symptoms and produced about 160 to 180 pounds of fruit per tree in 2014. The initial tree canopy size was estimated at 12 A PROBLEM SOLVER FOR PHOSPHORUS FIXATION Up to 75 percent of your applied phosphorus (P) is wasted due to fixation in the soil. Quite frankly, you might as well spend your money on something else. The fix for this P fixation? AVAIL HV. This patented polymer-based technology is now available for specialty crops but has been battle tested for over a decade on more than 72 million acres of specialty and broad-acre crops. By making more P available for plant uptake, AVAIL technology gets your crop off to a quicker and more vibrant start, making plants more resistant to environmental stressors and improving crop quality, resulting in higher yields. Whether it s citrus, sugarcane, or vegetables, you might want to rethink your phosphorus nutrient use efficiency management. Start by going to vlsci.com/avail-fl or 863.588.7240. Important: Always read and follow label use directions. AVAIL HV is a registered trademark of Verdesian Life Sciences. 2017 Verdesian Life Sciences. All rights reserved. 1710 OB 57063 23

Canopy Volume (cubic meters) Figure 3. Canopy volume for each of four pruning treatments. Figure 4. Mean yield for each of four pruning treatments. Figure 5. Mean Brix of juice in fruit from each of four pruning treatments. Brix was measured in 10 fruits per tree at the time of harvest. Figure 6. Mean percent fruit drop for each of four pruning treatments. Pre-harvest fruit drop was monitored from September through the harvest in December. Additional information for figures 3-6: Blue bars represent trees that received only conventional fertilizer (CNV). Gray bars represent trees that received only controlled-release fertilizer (CRF). The treatments include 0 percent, no canopy removal (control treatment); 25 percent reduction, canopy topped at 9 feet; 50 percent reduction, canopy topped at 6 feet; and 80 percent reduction, canopy topped and all the major branches severely pruned (buckhorned). Different forms of fertilizer were found to be not significantly different. Therefore, the data within each pruning treatment was pooled for both the fertilizers. Sets of bars with the same letter are not significantly different. 24 feet in height and 11 to 12 feet in width. Four pruning treatments were imposed on replicate trees to achieve specific reductions in canopy volume at specific heights. The four pruning treatments were: 1) 0 percent, no canopy removal (control treatment) 2) 25 percent reduction, canopy topped at 9 feet 3) 50 percent reduction, canopy topped at 6 feet 4) 80 percent reduction, canopy topped and all the major branches severely pruned (buckhorned) The two sources of fertilizer used were:

1) Conventional fertilizer (CNV, dry granular) applied at 200 pounds per acre nitrogen in five split applications 2) Controlled-release fertilizer (CRF) applied at 150 pounds per acre nitrogen, split in three applications Within each pruning treatment, half of the trees received CNV and the other half received CRF. Throughout this report, the treatments are referred to as 0 percent, 25 percent, 50 percent and 80 percent. For this 3-year trial, the data being collected includes percent change in tree canopy volume, percent pre-harvest fruit drop, fruit quality and total yield in pounds. 2016 HARVEST RESULTS All the trees that were pruned produced new flush that looked healthy with no HLB symptoms (initially). The 80 percent pruned trees grew vigorously over the course of two years, but are still significantly smaller than the canopy of control trees (0 percent pruning) for both CRF and CNV (Figure 3, page 24). The 25-percent and 50-percent pruned tree canopies grew back and now are not significantly different from the 0 percent control pruning treatment. In the first year, the yield for 25 percent, 50 percent and 80 percent were significantly lower than the control trees as canopy removal included fruiting wood. Conversely, in the second year, the yields of all pruned trees were significantly improved. Both 25 percent and 50 percent pruning yields were comparable to 0 percent pruning following the canopy volume pattern, and 80 percent pruned trees showed the lowest fruit yield (Figure 4, page 24). The 25 percent pruning had the highest fruit set among all the treatments and the control during year two. A significant correlation was observed between canopy volume and yield, reinforcing the plant model or correlation that higher canopy volume can support higher numbers of fruit. The Brix value of juice from the fruit was observed to decrease with a decrease in canopy volume. Fruit in the 0 percent pruning treatment had the highest Brix followed by the 50 percent, 25 percent and 80 percent pruning treatments (Figure 5, page 24). In the first year after pruning, a significant increase in pre-harvest fruit drop occurred in both the 25 percent and 50 percent treatments (60 to 80 percent fruit drop). This did not occur in the 80 percent pruning treatment, as the fruit set was lower and, therefore, resulted in less fruit drop. In the second year after pruning, overall fruit drop was lower in all the treatments, and significantly higher fruit drop was observed in the 80 percent pruning treatment (Figure 6, page 24). A clear inverse relationship between canopy th ANNIVERSARY Est. 1987 Organic Chelated Nitrogen jhbiotech.com info@jhbiotech.com (805) 650-8933 26

volume and fruit drop was observed. No significant differences were observed between the two forms of fertilizer for any of the measured parameters. This was surprising since the CRF was applied only three times a year and at a 25 percent lower rate of nitrogen than that of the CNV. Therefore, it is suggested that with the use of CRF, the amount of nitrogen applied and resources associated with multiple applications of fertilizer can be reduced. Generally, when applying CRF, rate of N can be reduced by 25 percent as compared to CNV. SUMMARY This trial will be continued for third-year data collection. However, based on two years of study, it s apparent that severely pruned trees cannot catch up with control trees in yield and fruit quality, probably due to the resource allocation required to restore vegetative growth rather than reproductive growth. The 25 percent pruning treatment seems to be promising in rejuvenating tree health, correcting root-to-shoot ratio imbalance, and as a general grove management strategy. During this regrowth period, attention should be paid to leafminer and psyllid control as pruning results in simultaneous emergence of new flush in all of the trees, making them more attractive to foliar pests. Use of CRF is a good alternative to CNV to ensure nutrients are available to trees throughout the year, as well as to reduce production costs by reducing the fertilizer application rate and mandating fewer applications. COMEBACKS ARE NATURAL WITH US As part of our hurricane recovery initiative in Florida, receive $25 back for every 2.5 gallon jug of CROP-SET you purchase through February 2018. * Your Alltech Crop Science representative: Ed Dickinson (863) 287-8974 edickinson@alltech.com Nutrients and enzymes in CROP-SET enhance the plant s response to nutrition, reduce the effects of external stresses and lead to optimized root growth for fast recovery. Acknowledgment: The authors acknowledge ICL Specialty Fertilizers (formerly Everiss) for donating CRF for this study. Tripti Vashisth is an assistant professor and Troy Gainey is a senior biological scientist, both at the University of Florida Institute of Food and Agricultural Sciences Citrus Research and Education Center in Lake Alfred. AlltechCropScience.com AlltechNaturally @Alltech *Promotion applies to purchases of 2.5 gallon jugs only. 2017 Alltech Crop Science. CROP-SET is OMRI-listed for use in organic production by Improcrop USA, Inc. 27