Changes of State pg K

Similar documents
Changes of phase usually involve a transfer of energy Evaporation

Changes of State. Lesson 1

LESSON CLUSTER 8 Explaining Evaporation and Boiling

LESSON CLUSTER 9 Explaining Condensation and the Water Cycle

TEACHER BACKGROUND INFORMATION Water Cycle

Heat Transfer: Conduction. Heat Transfer: Conduction

Fourth Edition HEAT TRANSFER AND CHANGE OF PHASE

Physical Mechanism of Convection. Conduction and convection are similar in that both mechanisms require the presence of a material medium.

Conceptual Physics Fundamentals

Science Class 6 Chapters 13, 14 and

THERMODYNAMICS PREPARED BY DW & JD

More heat energy means more of what type of energy? Does the mass change? So, what must change? What is the same in both containers?

Thermal Energy. Conduction, Convection, and Radiation. Before You Read. Read to Learn. Conduction. section 2

Transfer of Heat. There are three ways in which heat is transferred from one body to another. These are

Thermal Energy Study Guide

Humidity An excuse for the 80s

Activity Sheet Chapter 2, Lesson 3 Changes of State Condensation

Heat Transfer. Heat Transfer. Thermal Equilibrium. Thermal Inequilibrium

Heat and Specific Heat

Thermal Energy Worksheets

Unit THE NATURE OF HEAT

PHYSICS FORM 5 TRANSFER OF THERMAL ENERGY

I. C O N T E N T S T A N D A R D S

Weather: Why do we have weather? Does it serve a purpose?

UNIQUE COLLEGE OF COMPUTER SCIENCES General Certificate of Education Ordinary Level

Minutes with Lamp On

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois

Freezing (solid), Melting (liquid), Evaporation (gas) Study Presentation INCLUDING WATER STATE CHANGE GRAPHS

MET 200 Lecture 5: Water. Fall Weather and Birds. Radar Story. Previous Lecture Seasons and Diurnal Cycle. Outline Seasons Diurnal Cycle 8 PM 9 PM

13. Fun with Magnets

CHAPTER 3 BASIC STEAM CYCLE

Lecture 7 Water in the Atmosphere

Heat: Activity: Friction: Temperature: What is Heat? Names. What is heat? How would you define or describe it?

St. Anthony's Canossian Secondary School Sec 3E Science (Physics) Chapter 9 Transfer of Thermal Energy. Name: ( ) Class: Sec Date:

Water in the air experiment discussion - Where did the water on the outside of the cups come from? How do you know?

What Will Happen? If you leave a hot drink on the table and wait for a while, does the drink heat up or cool off?

Heat and temperature. Making a thermometer

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division

Lesson 5. Introduction Water We Talking About? Learning Outcomes & Assessment. Time. Resources. Activities. Handouts. Video.

IGCSE PHYSICS GRADE 11 TERM 1 ASSESSMENT BOOKLET

Warm Up Go to Spiral.ac and answer the quickfire question. Class Codes: B1/2 - XGJVV B3/4 - YBPUW A7/8 - BPHHN

liquid heating The density of the liquid changes as its temperature increases. This causes energy to be transferred throughout the liquid.

Science 7 Chapter 6 Section 1

Science 7. Unit 3. Heat and. Temperature

Fundamentals of Heat Transfer

Water in the Atmosphere

1. What are the scales of temperature? What are the formulas to convert among them? Fahrenheit, Celsius, Kelvin

Physical Mechanism of Convection. Conduction and convection are similar in that both mechanisms require the presence of a material medium.

Fundamentals of Heat Transfer

THIRD GRADE SCIENCE (SCIENCE3_4)

1 Why Do Changes in State Take Place? / What Is Boiling? / What Is Evaporation?

ST. GABRIEL S SECONDARY SCHOOL Lower Secondary Science Chapter 7 Transfer of Thermal Energy

Answer Coming to A Boil Questions

a. CFCs. b. HCFCs. c. Pressurized nitrogen. d. Compressed dry air. 17. The state of the refrigerant leaving the condenser of a refrigeration system

Science Test Revision

Melting and Freezing. STEM Activity 1: What melts in the heat of the sun? Background information and Science information

ISLAMAYA ENGLISH SCHOOL

Science Test: Heat Energy

Astronaut ice cream, anyone

2 Thermal Physics. Thermal Physics. 1. Simple kinetic molecular model of matter 2. Thermal properties 3. Transfer of thermal energy

It pays to go green with solakool

Based on results from TIMSS Lesson plan on investigative science. Evaporation

February 18, What is heat? Touch each image to see how the water molecules react.

Heat Transfer. Heat. Thermal Energy: Heat 1

5. Transfer of thermal energy

FS 231: Final Exam (5-6-05) Part A (Closed Book): 60 points

3B Heat, Light and Sound

Conduction, Convection, and Radiation Lab Page 1 of 5

Looking at states. Did you know? Fun facts to introduce the new topic. Challenge the children to find more.

VISUAL PHYSICS ONLINE THERMODYNAMICS WHAT HAPPENS WHEN SOMETHING IS HEATED? LATENT HEAT

Some Demonstration Experiments: Effects of Air Motion, Evaporation, and Pressure Changes on Temperature

Study Island. Generation Date: 04/01/2014 Generated By: Cheryl Shelton Title: grade 3 Physical Science

Chapter 5: Atmospheric Moisture

Water: A Never-Ending Story

Estimate the energy stored in unit gram of the food in J per gram.

YOUR BASIC REFRIGERAION SYSTEM SVASD MAY 26, 2011

PLANT TRANSPIRATION IN THE CLOUD FOREST Transpiration Introduction

Condensation. Some causes, some advice. GGF Condensation Brochure_web.indd 1

Section 9. Comparing Energy Consumption: More for Your Money. What Do You See? What Do You Think? Investigate. Learning Outcomes

Central Valley Chemical Safety Day. March 26, 2010 Tulare, CA

Week 1 Day 1-2 (combine) Thermal Energy

Activity Heat Transfer

HVAC/R Refrigerant Cycle Basics


Building your terrarium:

JENNY KARPELENIA....vondow

1. Loose electrons quickly move and transfer energy to other electrons that migrate through the material.

MARIYA INTERNATIONAL SCHOOL AL-JUBAIL L-8 PHYSICS WORKSHEET(Heat & energy )

Moisture in the Atmosphere. GEOG/ENST 2331 Lecture 9 Ahrens: Chapter 4

Heat can change into other forms of energy and vice versa. Heat is measured in the unit of energy, the joule (J).

Thermodynamics II Chapter 5 Refrigeration

Transfer of Thermal Energy

Heat Energy. Heat Energy. A Science A Z Physical Series. Word Count: 1,301. Written by Felicia Brown. Visit

Selecting an Environmental Test Chamber

People living in the desert need to wear special clothing in order for them to keep cool.

THERMAL CONDUCTION. placed in a different position. Can you explain why the matches go out?

St. Anthony's Canossian Secondary School Sec 3NA Science (Physics) Chapter 7 Transfer of Thermal Energy. Name: ( ) Class: Sec Date:

AIR CONDITIONING. Carrier Corporation 2002 Cat. No

Use this Construction/HVAC Glossary to answer the questions below.

LYOTRAP FREEZE-DRYING MACHINE OPERATING INSTRUCTIONS

Transcription:

Changes of State pg. 48-53 K Key Terms Melting melting point freezing vaporization Evaporation boiling boiling point condensation Sublimation 48K Picture an ice cream cone on a hot summer day. The ice cream quickly starts to drip onto your hand. You re not surprised. You know that ice cream melts if it s not kept cold. But why does the ice cream melt? Particles of a substance at a warmer temperature have more thermal energy than particles of that same substance at a cooler temperature. Remember from Chapter 1 that thermal energy always flows as heat from a warmer substance to a cooler substance. So, when you take ice cream outside on a hot summer day, it absorbs thermal ene4rgy from the air and your hand. The added energy changes the ice cream from a solid to a liquid. Changes Between Solid and Liquid (49K) How does the physical state of a substance relate to its thermal energy? Particles of a liquid have more thermal energy than particles of the same substance in solid form. As a gas, the particles of this same substance have even more thermal energy. A

substance changes state when its thermal energy increases or decreases sufficiently. A change from solid to liquid involves an increase in thermal energy. As you can guess, a change from liquid to solid is just the opposite: It involves a decrease in thermal energy. Melting The change in state from a solid to a liquid is called melting. In most pure substances, melting occurs at a specific temperature, called the melting point. Because melting point is a characteristic property of a substance, chemists often compare melting points when trying to identify an unknown material. The melting point of pure water, for example, is 0 degrees C. What happens to the particles of a substance as it melts? Think of an ice cube taken from the freezer. The energy to melt the ice comes mostly from the air in the room. At first, the added thermal energy makes the water molecules vibrate faster, raising their temperature. At its melting point, the particles of a solid substance are vibrating so fast that they break free from their fixed positions. At 0 degrees C, the temperature of the ice stops increasing. Any added energy continues to change the arrangement of the water molecules from ice crystals into liquid water. The ice melts. 50 K Freezing The change of state from liquid to solid is called freezing. It is just the reverse of melting. At its freezing temperature, the particles of a liquid are moving so slowly that they begin to form regular patterns. When you put liquid water into a freezer, for example, the water loses energy to the cold air in the freezer. The water molecules move more and more slowly as they lose energy. Over time, the water becomes solid ice. When water begins to freeze, its temperature remains at 0 degrees C. until freezing is complete. The freezing point of water, 0 degrees C, is the same as its melting point.

Changes Between Liquid and Gas Have you ever wondered how clouds form, or why rain falls from clouds? And why do puddles dry up after a rain shower! To answer these questions, you need to look at what happens when changes occur between the liquid and gas states. The change from a liquid to a gas is called vaporization (vay puhr ih ZAY shun). Vaporization takes place when the particles in a liquid gain enough energy to form a gas. There are two main types of vaporization evaporation and boiling. Evaporation Vaporization that takes place only on thr surface of a liquid is called evaporation (ee vap uh RAY shun). A shrinking puddle is an example. Water in the puddle gains energy from the ground, the air, or the sun. The added energy enables some of the water molecules on the surface of the puddle to escape into the air, or evaporate. 51K Boiling Another kind of vaporization is called boiling. Boiling occurs when a liquid changes to a gas below its surface as well as at the surface. You see the results of this process when the boiling liquid bubbles. The temperature at which a liquid boils is called its boiling point. As with melting points, chemists use boiling points to help identify an unknown substance. With boiling, the gasses change below the surface and occur throughout the entire liquid being boil

Boiling Point and Air Pressure The boiling point of a substance depends on the pressure of the air above it. The lower the pressure, the less energy needed for the particles of the liquid to escape into the air. In places close to sea level, the boiling point of water is 200 degrees C. In the mountains, however, air pressure is lower and so is water s boiling point. In Denver, Colorado, where the elevation is 1,600 meters above sea level, water boils at 95 degrees C. The following information IS NOT in your book but I think it may help you to understand better about boiling point and the effect of the air pressure on that boiling point: WHY THE BOILING POINT OF A LIQUID IS AFFECTED BY THE ATMOSPHERIC PRESSURE? The atmosphere contain molecules that are in constant motion. They exert a downward force on a liquid s surface. The higher the air pressure, the harder it is for the liquid to evaporate. Therefore, the boiling point of a solvent or liquid is affected by the atmospheric pressure. A liquid in a high pressure environment boils at a higher temperature. When placed in a lower pressure environment it boils at a lower temperature. Why the air pressure above.

You often hear the saying the air is thinner on a mountain and some people get nose bleed, dizziness and nausea with altitude because there is less oxygen. If you re put on a mountain top, the height of air (H) above you is lower than in the valley. Therefore, the atmospheric pressure you experience will be lower. When the atmospheric pressure is reduced, the water molecules on the surface of the water need less energy to bounce upwards to escape into the atmosphere. Therefore the water is able to boil at a lower boiling point. Evaporation also takes place at a faster rate There! Now you know! And so, back we go to the book page 52 K: Condensation The opposite of vaporization is called condensation. One way you can observe condensation is by breathing on a mirror. When warm water vapor in your

breath reaches the cooler surface of the mirror, the water vapor condenses into liquid droplets. Condensation occurs when particles in a gas lose enough thermal energy to form a liquid. For example, clouds typically form when water vapor in the atmosphere condenses into liquid droplets. When the droplets get heavy enough, they fall to the ground as rain. You cannot see water vapor. Water vapor is a colorless gas that is impossible to see. The steam you see above a kettle of boiling water is not water vapor, and neither are clouds or fog. What you see in those cases are tiny droplets of liquid water suspended in air.

53K Changes Between Solid and Gas If you live where the winters are cold, you may have noticed that snow seems to disappear even when the temperature stays well below freezing. This change is the result of sublimation. Sublimation occurs when the surface particles of a solid gain enough energy that they form a gas. During sublimation, particles of a solid do not pass through the liquid state as they form a gas. One example of sublimation occurs with dry ice. Dry ice is the common name for solid carbon dioxide. At ordinary atmospheric pressures, carbon dioxide cannot exist as a liquid. So instead of melting, solid carbon dioxide changes directly into a gas. As it changes state, the carbon dioxide absorbs thermal energy. This property helps keep materials near dry ice cold and dry. For this reason, using dry ice is a way to keep temperature low when a refrigerator is not available. When dry ice becomes a gas, it cools water vapor in the nearby air. The water vapor then condenses into a liquid forming fog around the dry ice.