Experimental Investigation of an Indirect Evaporative Cooler Consisting of a Heat Pipe Embedded in Porous Ceramic

Similar documents
Design and Development of Modified Air Cooler and Storage System

Experimental investigation of Hybrid Nanofluid on wickless heat pipe heat exchanger thermal performance

Specific Energy Consumption comparative study of Hot Air dryer and Heat Pump dryer for highland drying process Sayompon Srina

Experimentation of Heat Pipe Used In Nano-Fluids

MINIATURE HEAT TRANSPORT SYSTEMS WITH LOOP HEAT PIPES

Numerical study of heat pipe application in heat recovery systems

1.1. SCOPE OF THE WORK:

Available online Journal of Scientific and Engineering Research, 2018, 5(11): Research Article

Global Journal of Engineering Science and Research Management

Numerical Studies On The Performance Of Methanol Based Air To Air Heat Pipe Heat Exchanger

COOLING OF DESKTOP COMPUTER USING HEAT PIPES

Thermal Performance of a Loop Thermosyphon

Design Procedure for a Liquid Dessicant and Evaporative Cooling Assisted 100% Outdoor Air System

Enhancement of COP using Nanoadditives in Domestic Refrigerator

Experimental & Analytical Investigation on Modified Solar Dryer with Recirculation of Air

K.F. Fong *, C.K. Lee, T.T. Chow

15. Heat Pipes in Electronics (1)

Performance Analysis of Domestic Refrigeration System with Thermoelectric Module

Role of Nano-technology for improving of thermal performances of vapour compression refrigeration system (VCRS): An Overview

TRANSMISSIVITY BEHAVIOR OF SHREDDED SCRAP TIRE DRAINAGE LAYER IN LANDFILL COVER SYSTEM *

Feasibility of a Liquid Desiccant Application in an Evaporative. Cooling Assisted 100% Outdoor Air System

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 4, 2011

Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland. Experimental study of a novel dew point indirect evaporative cooler

Open and Closed Door Moisture Transport and Corresponding Energy Consumption in Household Refrigerator

Experimental Study of Direct Contact Condensation of Steam on Water Droplets

Experimental Study on Waste Heat Recovery from the Pyrolysis Stack using Heat Pipe

Analysis of Evaporative Cooler and Tube in Tube Heat Exchanger in Intercooling of Gas Turbine

PERFORMANCE EVALUATION OF TWO STAGE AIR COOLER IN DIFFERENT SPEED

EXPERIMENTAL INVESTIGATION OF COMPARISION OF AIR COOLED AND WATER COOLED CONDENSER ATTACHED WITH COOLING TOWER

EFFECT OF PAG OIL CIRCULATION RATE ON THE HEAT TRANSFER PERFORMANCE OF AIR-COOLED HEAT EXCHANGER IN CARBON DIOXIDE HEAT PUMP SYSTEM

IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 12 May 2015 ISSN (online):

THE ANALYSIS AND EXPERIMENTAL INVESTIGATION OF HEAT PUMP SYSTEM USING THERMOBANK AND COS EJECTOR CYCLE

Design and Development of Combined Direct and Indirect Evaporative Cooling System

Experimental Investigation of a Multi Effect Membrane Based Regenerator for High Concentration Aqueous LiCL Solution as Desiccant

Dynamic performance of a novel dew point air conditioning for the UK buildings

Subscripts 1-4 States of the given system Comp Compressor Cond Condenser E Evaporator vol Volumetric G Gas L Liquid

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

Theoretical Performance Analysis Of Direct Evaporative Cooler In Hot And Dry Climates

APPLICATION OF MINI HEAT PIPES FOR THERMAL MANAGEMENT OF OPTO-ELECTRONIC INSTRUMENTS

GAS FREE REFRIGERATOR USING PELTIER MODULE

Compression of Fins pipe and simple Heat pipe Using CFD

EXPERIMENTAL STUDY OF AIR FLOW RATE EFFECTS ON HUMIDIFICATION PARAMETERS WITH PREHEATING AND DEHUMIDIFICATION PROCESS CHANGING

WHITE PAPER. ANSI/AHRI Standard for Fan and Coil Evaporators - Benefits and Costs

0Effect of Fin on the Performance Characteristics of Close and Open Loop Pulsating Heat Pipe

EVALUATION OF REFRIGERANT R290 AS A REPLACEMENT TO R22

CHAPTER I INTRODUCTION. In the modern life, electronic equipments have made their way

Keywords : Evaporative cooling, Saturation efficiency, Cooling capacity, Cooling pad, Cellulose, Aspen, Coconut coir. IJSER

CFD Analysis of temperature dissipation from a hollow metallic pipe through circular fins using Ansys 14.5

Two Stage Indirect/Direct Evaporative Cooling

Development of Gas-Liquid Two-Phase Flow Distributor for Improving Energy Efficiency in Air-Conditioners

MODELLING AND OPTIMIZATION OF DIRECT EXPANSION AIR CONDITIONING SYSTEM FOR COMMERCIAL BUILDING ENERGY SAVING

AN EXPERIMENTAL STUDY OF A REFRIGERATING PLANT WHEN REPLACING R22 WITH HFCs REFRIGERANTS

Performance Analysis of Heat Pipe using Different Screen Mesh Sizes Manikandan.K * 1, Senthilkumar.R 2,

Experimental study on mass transfer comparison of two liquid desiccants aqueous solutions

An Experimental Study on Clothes Drying Using Waste Heat from Split Type Air Conditioner

Experimental Analysis of Open, Simple and Modified Greenhouse Dryers for Drying Potato Flakes under Forced Convection

Experimental Investigation of a Heat Pump Assisted Fluidized Bed Dryer

Design, Manufacturing of Chilled Water System for Process Cooling Application

A new test procedure to measure the soil-water characteristic curves using a small-scale centrifuge

ASSESSMENT OF R430A REFRIGERANT AS A POSSIBLE SUBSTITUTE TO R134A REFRIGERANT IN LARGE CAPACITY FREEZER

solution, due to the partial vapor pressure difference between the air and the desiccant solution. Then, the moisture from the diluted solution is rem

HOW TO REDUCE ENERGY CONSUMPTION OF BUILT-IN REFRIGERATORS?

EXPERIMENTAL INVESTIGATION OF HYBRID NANOFLUID ON THERMOSYPHON TYPE WICKLESS HEAT PIPE HEAT EXCHANGER THERMAL PERFORMANCE

Effect of Operating Parameters on the Performance of Direct Evaporative Cooler

A study on performance improvement of corrugated type total heat exchanger considering the structure of flow passage on surface

Design and Development of Water Cooled Condenser for Domestic Refrigerator

Variable far infrared radiation (VFIR) technique for cubic carrot drying

ENERGY UTILIZATION IN CERAMIC TILES INDUSTRIES

ijcrr Vol 04 issue 07 Category: Research Received on:06/02/12 Revised on:17/02/12 Accepted on:02/03/12

Effect of Vacuum Cooling Operation Parameters on Cooling Time and Weight Loss of Chinese Cabbage

Recent Advances in Energy, Environment and Economic Development

Improving and Comparing the Coefficient of Performance of Domestic Refgirator by using Refrigerants R134a and R600a

EXPLORING POSSIBILITIES WITH THE DEVELOPMENT OF THE LOOP HEAT PIPE TECHNOLOGY. Roger R. Riehl

Regenerator Design for Open Cycle Liquid Desiccant Systems Theoretical and Experimental Investigations

Experimental Study of Modified Refrigerator Cum Air Conditioning and Water Cooler System

Heat transfer and heating rate of food stuffs in commercial shop ovens

Performance Comparison of Ejector Expansion Refrigeration Cycle with Throttled Expansion Cycle Using R-170 as Refrigerant

EXPERIMENTAL INVESTIGATIONS ON AL 2 O 3 NANO REFRIGERANT WITH DIFFUSER AT CONDENSER INLET IN A VCR SYSTEM

Design, Construction and Testing of Simple Solar Maize Dryer

AN EXPERIMENTAL INVESTIGATION INTO THE EFFECT OF THERMOSTAT SETTINGS ON THE ENERGY CONSUMPTION OF HOUSEHOLD REFRIGERATORS

Open Access Operation Modes and Energy Analysis of a New Ice-Storage Air- Conditioning System

FABRICATION SOLAR REFRIGERATION SYSTEM BY PELTIER EFFECT

A Review on Potential of Indirect Evaporative Cooling System

CFD Analysis of a 24 Hour Operating Solar Refrigeration Absorption Technology

Design and Experimental Studies on Modified Solar Dryer

ENERGY SAVING IN A DOMESTIC SPLIT-TYPE AIR CONDITIONER WITH EVAPORATIVE COOLING SYSTEMS

WASTE HEAT RECOVERY FROM DOMESTIC REFRIGERATOR Soma A. Biswas 1, Sandeep M. Joshi 2 1,2 Pillai College of Engineering

Feasibility study of the passive solar room dehumidifying system using the sorption property of a wooden attic space through field measurement

Experimental Study on Compact Heat Pump System for Clothes Drying Using CO 2 as a Refrigerant. Abstract

Experimental study of Hydrocarbon Refrigerant Mixture R290/R600a as an alternative to Refrigerant R134a used in a Domestic Refrigerator

PERFORMANCE OF SOLID DESICCANT COOLING WITH SOLAR ENERGY IN HOT AND HUMID CLIMATE

Performance of an Improved Household Refrigerator/Freezer

Mallikarjun 1, Anandkumar S Malipatil 2

Open Cycle Liquid Desiccant Air Conditioning Systems Theoretical and Experimental Investigations

Experimental Study of Fins Effect on Thermal Performance of HPHX for Air Conditioning System

PART I - MODELING DRYING OF THREE-DIMENSIONAL PULP MOLDED STRUCTURES - EXPERIMENTAL PROGRAM

Specific Energy Consumption of Heat Pump Drying System

ETI-Z Series Centrifugal Chiller Applied Low GWP Refrigerant to Contribute to the Prevention of Global Warming

THE COOLING CAPACITY AND PRESSURE DROP IN A HYBRID CLOSED CIRCUIT COOLING TOWER

Chilled Water system

Transcription:

The Journal of Engineering Research 1 (2004) 46-52 Experimental Investigation of an Indirect Evaporative Cooler Consisting of a Heat Pipe Embedded in Porous Ceramic S. Riffat* and J. Zhu School of the Built Environment, University of Nottingham, NG7 2RD, UK Received 24 May 2003; accepted 5 November, 2003 ÉîØdG üfé ün ÒKÉJ ÉÑàN ÜÉŒ âjôlg.péøf Éîa øª e GôM ܃ÑfG øe ƒµªÿ ô TÉÑeÓdG ôîñàdéh OÈŸ ÉØ Uh ábƒdg Ω~ J : ü îà ùÿg 3Ω 18 á S SÉ«b áaôz ~jèj OÈŸG á«yéa á SGO â ɪc.OÈŸG á«yéa Y ÉîØdG ܃ÑfÓd»LÉÿG ô dgh G~ G ª Sh ájòaéædéc.éîødg øe Hôe Îe πµd ù«ù S SÉ«e Y álo 3h8 G~ à IGô G álo VÉØîfG ßMƒd ~bh.ô TÉÑeÓdG ôîñàdéh ~jèàdg,~jèj S,PÉØf Éîa, GôM ܃ÑfG :á«méàøÿg ägoôøÿg Abstract: An indirect evaporative cooler incorporating a porous ceramic and a heat pipe was described. Experiments were carried out to examine the effects of various ceramic properties, such as porosity, wall thickness, and outside diameter. Use of the cooler for a chilled ceiling in an environmental chamber was also investigated. A temperature drop of 3.8 o C per square metre of ceramic surface area was achieved for an 18 m chamber. Keywords: Heat pipe, porous ceramic, Chilled ceiling, Indirect evaporative cooling 1. Introduction Requirements for comfortable living and working conditions have resulted in an increased demand for air conditioning. The latter is normally carried out using a vapour compression system powered by electricity and incorporating a chlorofluorocarbon (CFC) refrigerant. Generation of electricity by conventional means results in vast quantities of CO 2 being released to the atmosphere. Concerns over global warming and the environmental damage caused by CFC refrigerants have stimulated research to develop alternate systems for air conditioning. One such system is based on evaporative cooling. This technique eliminates environmental damage and offers energy savings in running costs. Among the various methods of evaporative cooling, indirect evaporative cooling has been used widely in industrial and commercial air conditioning (Joudi and Mehdi, 2000; Suri, 2001), not only because it operates at very low energy cost, but also because it cools the air without adding moisture to it. Indirect evaporative cooling may be applied to buildings in the form of a chilled ceiling. This technique is becoming increasingly popular in many European countries as an alternative means of air conditioning (Costelloe and Finn, 2003; Gasparella and Longo, 2003). *Corresponding author Email:saffa.riffat@nottingham.ac.uk Indirect evaporative coolers use evaporation of moisture in the outside air to produce a cooling effect. This is transferred to the supply air via a heat exchaner or thermal conductor without the addition of moisture to the supply stream. 2. Methodology 2.1 Cooler Description The cooler consists of a porous ceramic and a heat pipe (Riffat, 2001), Figure 1. The cool source is a porous ceramic filled with water. When outside dry air passes across the surface of the ceramic, it causes water to siphon to its surface through the multitude of pores. The water then evaporates and creates a cooling effect. The heat pipe used in this system acts as the heat exchanger, and transfers the coolness to the supply air. The condenser section of the heat pipe is embedded in the porous ceramic, Figure 2. The air supply stream is cooled when it passes across the evaporator section of the heat pipe. Its heat is absorbed by the heat pipe s working fluid, causing the latter to evaporate. The vapour then condenses at the condenser section of the heat pipe and surrenders its heat to the water in the ceramic. 2.2 Porous ceramic This experimental investigation studied the effects of

47 Riffat and Zhu / The Journal of Engineering Research 1 (2004) 46-52 Figure 1. Cooler with heat pipe embedded in porous ceramic Water vapour Fins Cold air Porous ceramic Wick Supply water Evaporator section of heat pipe Warm air Figure 2. Indirect evaporative Condenser section of heat pipe Cold water several factors on the performance of the ceramic cooler. 2.2.1 Ceramic porosity The ceramics were made from clay material with the chemical composition shown in Table 1. However, the Table 1. Ceramic composition Component Composition (%) SiO 2 69.39 Al 2 O 2 19.23 Fe 2 O 3 0.47 TiO 2 0.26 MgO 0.18 CaO 0.84 K 2 O 1.62 Na 2 O 0.36 LOI 6.91 Table 2. Ceramic fired Porosity % Firing Temperature ( o C) 29.7 1020 6.5 32.8 950 5.5 34.6 810 4.5 Firing Cycle (hr) processes of manufacture were different and ceramics with different apparent porosities were obtained from batches fired at different temperatures, Table 2. The expressed porosity is a percentage by volume, and it was determined from the amount of water absorbed by the ceramic. 2.2.2 Ceramic wall thickness Ceramics with different wall thickness, i.e., 10mm, 15mm and 20mm, were investigated. The outside dimensions of the ceramics were kept constant and so consequently the inside volumes were slightly different in each case. 2.2.3 Ceramic outside dimension Cylindrical ceramics with diameters of 60mm, 120mm and 240mm were investigated with other parameters being kept the same. The cylindrical surface area for water evaporation therefore increased proportionately. 2.2.4 Thermal conductivity Copper wool was packed between the ceramic and the heat pipe when the investigation of thermal conductivity was carried out. Heat was therefore transferred from the heat pipe to the ceramic by both water and copper wool under this condition.

Riffat and Zhu / The Journal of Engineering Research 1 (2004) 46-52 48 Cool air Cool air Evaporator section of heat pipe Fan Figure 3. Chilled Ceiling Hot air 2.3. Cooler Construction 2.3.1 Cooler unit The sealed tube of the heat pipe was constructed of phosphorus deoxidized non-arsenical copper. The tube had an outside diameter 20mm and length 950mm; the fin height was 15mm and the length of the evaporative section was 350mm. The length of the heat pipe condenser section (embedded in ceramic) was 400mm. A screen mesh was used as the wick of the heat pipe, and the working fluid was distilled water. The outside length of the ceramic was 420mm. 2.3.2 Chilled ceiling A group of indirect evaporative coolers was assembled to form the chilled ceiling, Figure 3. Ceramics with a porosity of 32.8%, an outside diameter of 60mm and a wall thickness of 10mm, without copper wool, were used. Only the evaporative section of the heat pipe was fixed in the frame. The chilled ceiling dimension was 450mm (L) 420mm (W) 340mm (H). The evaporator section of the heat pipe was in the room and a fan was used to blow the room hot air through the heat pipe evaporative section from the bottom of the chilled ceiling. The cooled air left from both sides of the ceiling and returned to the room. After becoming hot, the air was recycled. The adiabatic heat pipe section was in the wall of room. The porous ceramics were on the outside of the room. The total surface area for water evaporation was 0.712 m 2. 2.4 Experiments 2.4.1 Cooler test The cooler apparatus largely consisted of two wind tunnels that were thermally isolated from their surroundings, Figure 4. The ceramics were installed in the outside air stream tunnel. The evaporator section of the heat pipes was installed in the supply air stream tunnel. The adiabatic section of the heat pipe was between the two tunnels. Each tunnel had an air velocity sensor, and two temperature sensors for inlet and outlet air streams. In the outside air stream tunnel, two humidity sensors were installed for measuring the inlet and outlet air humidities. All sensors were connected to a datataker that sent the data to a computer. The air stream velocities were adjusted via two fans. A humidifier or dehumidifier controlled the inlet humidity of the outside air stream. Heaters regulated the inlet air stream temperatures of the two tunnels. A total of nine types of ceramic were tested in this study. They were divided into three groups; one group with different porosities, a second group with different wall thicknesses, and the third group with different outside diameters. Each group of ceramics was tested under the same inlet air stream parameters, e.g., temperature, velocity and humidity. The thermal conductivity test was carried out using ceramics with copper wool. Ceramics with, and without, copper wool were tested under the same conditions. The cooling capacity is defined as:

49 Riffat and Zhu / The Journal of Engineering Research 1 (2004) 46-52 Adiabatic section of heat pipe Evaporator section of heat pipe Supply air stream tunnel Porous Ceramic Outside air stream tunnel Figure 4. Experimental set-up for cooler Environmental chamber Porous ceramics Room 2 Room 1 Figure 5. Environmental Chamber [1] Herein, V 3 is the supply air stream velocity, S 3 is the crosssectional area of the supply air stream tunnel, ρ is the air density of the supply air stream, C p is the specific heat capacity of the supply air stream, T 3 and T 4 are the inlet and outlet air temperatures of supply air stream, respectively, and S c is the total surface area of ceramic for water evaporation in outside air stream tunnel. 2.4.2 Chilled ceiling test The chilled ceiling test was carried out using an environmental chamber, Figure. 5. Two identical rooms in the chamber were selected based on the cooler performance. The walls of the rooms were made of a sandwich of 3mm wood board, 50mm polystyrene board and 3mm wood board. The roofs were 3mm wood board, 50mm polystyrene board and 20mm wood board. The inside dimensions of each room were 3m (L) 2.4m (W) 2.5m (H). The chilled ceiling was installed in Room 1. Seven temperature sensors and two humidity sensors were installed in the environmental chamber in order to measure the surrounding temperature and humidity. There were eight temperature sensors in each room to allow an average room temperature to be obtained. All sensors were connected to a datataker attached to a computer. The two rooms had the same heat loads throughout the experiments. Prior to the tests, they had the same temperature. The doors and windows of the two rooms were closed during the tests.

Riffat and Zhu / The Journal of Engineering Research 1 (2004) 46-52 50 Table 3. Effect of ceramic porosity Porosity (%) 29.7 32.8 34.6 Inlet Outlet Velocity Inlet Outlet Velocity T1(oC) RH 1 (%) T 2 ( o C) RH 2 (%) V 1 (m/s) T 3 ( o C) T 4 ( o C) V 3 (m/s) (W/m 2 ) 35.4 22.4 31.8 33.6 1.08 35.0 32.2 0.36 29.70 35.2 22.9 31.9 32.2 1.56 34.9 31.8 0.37 33.58 35.2 23.1 32.2 31.6 2.03 35.2 31.9 0.39 36.05 34.9 40.3 31.4 57.1 1.07 35.2 32.0 0.44 41.03 35.6 36.6 32.0 51.5 1.52 35.3 31.9 0.46 44.68 35.3 37.6 31.9 51.2 1.97 35.4 31.9 0.46 46.49 35.1 35.0 30.9 52.3 1.14 35.1 31.1 0.46 52.52 35.3 32.8 31.4 47.6 1.58 35.1 31.0 0.46 53.35 35.6 32.9 31.6 46.7 2.01 35.2 30.5 0.43 59.21 Table 4. Effect of ceramic wall thickness Thick - ness Inlet Outlet Velocity Inlet Outlet Velocity (mm) T1( o C) 1 RH (%) T 2 ( o C) (%) RH 2 V 1 (m/s) T 3 ( o C) T 4 ( o C) V 3 (m/s) (W/m 2 ) 35.3 32.8 31.4 47.6 1.58 35.1 31.0 0.46 53.35 10 35.6 32.9 31.6 46.7 2.01 35.2 30.5 0.43 59.21 35.2 33.2 31.4 46.3 2.31 34.9 29.8 0.42 62.40 35.4 27.0 30.8 44.6 1.53 35.5 31.8 0.46 48.94 15 35.8 31.6 31.8 46.2 2.01 35.8 31.7 0.46 53.72 35.6 31.4 31.7 45.2 2.31 35.7 31.4 0.46 56.71 35.3 29.5 31.7 42.8 1.57 35.0 31.5 0.43 43.63 20 35.3 30.5 31.7 43.2 2.02 35.1 31.2 0.42 47.83 35.6 32.5 32.4 43.3 2.35 35.5 31.5 0.46 52.67 Table 5. Effect of ceramic outside diameter Diameter Inlet Outlet Velocity Inlet Outlet Velocity (mm) T 1 ( o C) 1 (%) RH T 2 ( o C) 2 (%) RH V 1 (m/s) T 3 ( o C) T 4 ( o C) V 3 (m/s) (W/m 2 ) 60 35.7 33.6 33.8 42.7 0.59 35.2 32.6 0.42 65.65 120 35.4 37.0 30.8 61.6 0.43 35.4 32.3 0.44 40.24 240 35.2 37.7 27.2 72.7 0.54 35.4 31.1 0.45 28.17 Table 6. Effect of thermal conductivity With copper Inlet Outlet Velocity Inlet Outlet Velocity (W/m wool ) T 1 ( o C) RH 1 (%) T 2 ( o C) RH 2 (%) V 1 (m/s) T 3 ( o C) T 4 ( o C) V 3 (m/s 35.2 33.5 30.1 59.4 0.43 35.2 32.0 0.46 42.26 35.0 33.3 30.7 51.9 1.07 34.9 31.4 0.45 45.80 No 35.4 27.0 30.8 44.6 1.53 35.5 31.8 0.46 48.94 35.8 31.6 31.8 46.2 2.01 35.8 31.7 0.46 53.72 35.6 31.4 31.7 45.2 2.31 35.7 31.4 0.46 56.71 35.6 27.1 29.7 55.5 0.49 35.7 32.4 0.48 45.15 35.4 27.2 30.2 47.9 1.04 35.5 31.9 0.47 48.45 Yes 35.8 33.9 31.1 51.0 1.52 35.3 31.4 0.46 52.36 34.8 33.9 30.5 49.5 2.02 35.2 30.7 0.45 59.09 36.0 30.0 31.2 45.1 2.30 35.6 31.0 0.48 63.27

51 Riffat and Zhu / The Journal of Engineering Research 1 (2004) 46-52 45 40 T [deg] or RH [%] 35 30 25 Environment-T Room2-T Room1-T Environment-RH 20 15 0 30 60 90 120 150 180 Time [min] Figure 6. Room temperature in environmental chamber 3. Results and Discussion 3.1 Cooler 3.1.1 Effect of ceramic porosity It was found that cooling capacity increased with ceramic porosity due to increased evaporation for ceramics with high permeability, Table 3. For example, cooling capacity increased from 44.68 W/m 2 to 53.35 W/m 2 as the porosity increased from 32.8% to 34.6% under the same inlet air conditions (including outside air tunnel temperature T 1, relative humidity RH 1 and velocity V 1, and supply air tunnel T 3 and V 3 ). The average rate of increase of cooling capacity was 4.89 (W/m 2 )/% within this air velocity range. 3.1.2 Effect of ceramic wall thickness Cooling capacity decreased with increasing ceramic wall thickness, as shown in Table 4. For example, cooling capacity decreased from 59.21 W/m 2 to 53.72 W/m 2 as ceramic wall thickness increased from 10 mm to 15 mm under the same inlet air conditions. This was due to the increased resistance to water permeance at greater wall thicknesses. The average decreasing rate of cooling capacity was 1.03 (W/m 2 )/mm. The ceramic wall should therefore be as thin as possible taking into account design strength limitations. 3.1.3 Effect of ceramic outside diameter Cooling capacity decreased with increasing outside diameter as shown in Table 5, even though the total cooling ability ( multiply surface area) increased. For example, cooling capacity decreased from 65.65 W/m 2 to 28.17 W/m 2 as ceramic outside diameter increased from 60 mm to 240 mm under the same inlet air conditions. This was due to increasing heat transfer resistance between the heat pipe condenser and the ceramic as the ceramic diameter increased. This demonstrated that it is not possible to enhance the cooler performance continuously by solely increasing the surface area of ceramic. The heat transfer resistance needs to be considered simultaneously. In these tests, the ceramic outside dimensions had an influence on air flow modes in the outside tunnel. This uncertainty effect will be considered in future investigations. 3.1.4 Effect of thermal conductivity Cooling capacities were enhanced when copper wool was inserted into the ceramic, Table 6. For example, the cooling capacity increased from 48.94 W/m 2 to 52.36 W/m 2 under the same inlet air conditions. This was because the thermal conductivity of water is very low compared with the heat pipe. The main heat transfer resistance was due to the water in the ceramic. Copper has a high thermal conductivity, and so the heat transfer ability was improved by packing copper wool into the ceramic. The average increase in the rate of cooling capacity was 8.2% in these tests. 3.2 Chilled ceiling The variations in the temperatures of the two rooms were the same, Figure 6. The heat transfer and internal heat load were the same for the two rooms. The temperature difference of the two rooms was therefore achieved by

Riffat and Zhu / The Journal of Engineering Research 1 (2004) 46-52 52 the chilled ceiling. Initially, the temperatures of the rooms were the same. The temperature of Room 1 fell quickly at the beginning but after 3 minutes the temperature difference became almost constant. A temperature drop of 3.8 oc per square metre of ceramic surface area was achieved under the average temperature 39.4 o C and the average relative humidity 20.3% of environmental chamber. 4. Conclusions The performance of an indirect evaporative cooler with a porous ceramic and a heat pipe was investigated. The application of the cooler to a chilled ceiling was also studied. The investigation revealed that cooling capacity increased with ceramic porosity, the average rate of increase was 4.89 (W/m 2 )/%. Cooling capacity decreased with ceramic wall thickness, the average rate of decrease was 1.03 (W/m 2 )/mm. The ceramic wall thickness should therefore be as small as possible within the constraints of structural strength requirements. Cooling capacities can be enhanced by inserting copper wool into the ceramic; the average rate of increase was 8.2%. A temperature drop of 3.8 o C per square metre of ceramic surface area was achieved for a room with an internal volume of 18 m 3 fitted with a chilled ceiling using the indirect evaporative cooler. References Costelloe, B., and Finn, D., 2003, Indirect Evaporative Cooling Potential in Air-Water System in Temperature Climates, Energy and Buildings, Vol. 35, pp. 573-591. Gasparella, A., and Longo, G. A, 2003, Indirect Evaporative Cooling and Economy Cycle in Summer Air Conditioning, International Journal of Energy Research, Vol. 27, No. 7, pp. 625-637. Joudi, A. K., and Mehdi, M. S., 2000, Application of Indirect Evaporative Cooling to Variable Domestic Cooling Load, Energy Conversion & Management, Vol. 41, pp. 1931-1951. Riffat, B. S., 2001, Cooling Apparatus (Porous pot), Patent No. PCT/GB00/04025. Suri, R. K., 2001, Energy-Saving Potential of an Indirect Evaporative Cooler, Applied Energy, Vol. 69, No. 1, pp. 69-76. Acknowledgements This project was funded by the Engineering and Physical Sciences Research Council, UK.