Saving resources by going evaporative: how evaporative cooling technologies and water cooled chillers can significantly reduce energy

Similar documents
Air Conditioning Inspections for Buildings Condensers

Water-cooled chillers with High Speed Centrifugal Compressors

The products covered by the Regulation can be classified as follows:

EN aquatech.piovan.com

CTI Sponsored Educational Program

Appendix 13. Categories of Cooling and Heating systems

HVAC Water chiller selection and optimisation of operation

Modular Air-cooled Chillers

2013 Guideline for Specifying the Thermal Performance of Cool Storage Equipment. AHRI Guideline T (I-P)

AC SYSTEM CONFIGURATION- CENTRAL CHILLER PLANT

MECHANICAL SERVICES 101. Ian White

Commercial Buildings Chilled water systems efficiency By Jens Nørgaard, Senior Application Manager, Grundfos, Denmark

R134a. DCLC Series 50Hz. Water Cooled Centrifugal Chillers Cooling Capacity: 300 to 1500 TR (1055 to 5274 kw)

COMMISSION REGULATION (EU) No /.. of

Life-Cycle Energy Costs and Greenhouse Gas Emissions for Gas Turbine Power

2. CURRICULUM. Sl. No.

Chillers, air and water cooled, featuring centrifugal compressors with magnetic levitation, from 200 to kw

Fundamental Principles of Air Conditioners for Information Technology

Technical Catalogue. Air-Cooled Liquid Chillers with screw compressors Nominal cooling capacity: kw 50 Hz

Chiller Plant Design. Julian R. de Bullet President debullet Consulting

GEA Blu chillers. GEA BluAstrum, GEA BluGenium, GEA BluAir: A new generation of compact ammonia chillers

AHRI 920 Performance Rating and Comparisons of DX-DOAS Unit Efficiency

HOW IT RELATES TO PERFORMANCE IN REFRIGERATED COMPRESSED AIR DRYERS

Closed Circuit Cooling Towers

Evaporative-Cooled vs. Air-Cooled Chillers: Kirtland AFB Case Study

Kawasaki centrifugal chiller using water as a refrigerant. Sep 26 th 2017 Kawasaki Heavy Industries, Ltd. Machinery Division Hayato Sakamoto

Be sustainable while protecting your business

Air conditioning 23XRV

Customers. The core of our innovation. Feeding&Conveying Drying Dosing Temperature Control Refrigeration. Granulation

COMPARING AIR COOLER RATINGS PART 1: Not All Rating Methods are Created Equal

Energy Efficiency Through Waste Heat Recovery. Heat Recovery Centrifugal Chillers and Templifier Water Heaters

Efficient Motor Technology for the Home Appliance Industry

COMMERCIAL HVAC SYSTEMS Water Source Heat Pump Systems

How about Savings in Time, Money, Energy and Longer Life?

SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS UNIT OBJECTIVES UNIT OBJECTIVES 3/22/2012

Daikin VRV Sizing & Simulation Plug-in User Guide

MU053: CHILLERS: Operation & Maintenance of Chilled Water Systems

ASHRAE JOURNAL ON REHEAT

Optimisation of cooling coil performance during operation stage for improved humidity control

Closing the Loop What s best for your system?

Appendix A. Glossary of Common Terms

Development of centrifugal chiller and heat pump using low GWP refrigerant

APPA Institute for Facilities Management. Energy & Utilities Cooling Production (316) Purpose of Today s Presentation. Agenda

EKS/HE. MultiScroll Air-cooled liquid chillers High efficiency. Solution B - Base I - Integrata

What is Cooling S.Sen

MODELLING AND OPTIMIZATION OF DIRECT EXPANSION AIR CONDITIONING SYSTEM FOR COMMERCIAL BUILDING ENERGY SAVING

ErP. ErP READY. The Eco-Design Directive ErP for refrigerator systems and heat pumps. READY

Application of two hybrid control methods of expansion valves and vapor injected compression to heat pumps

Daikin VRV Systems Plugin VE2012 User Guide

GEA Air Handling Units Modular configuration. Integrated refrigeration with optimized energy efficiency GEA CAIRplus.

Engineered for flexibility and performance

EREBA ACCESS. Easy and fast installation Hydronic module available Compact, reliable and efficient USE RANGE CONFORMITY

Study and Design Considerations of HRSG Evaporators in Fast Start Combined Cycle Plants. Govind Rengarajan, P.E.CEM, Dan Taylor

AIR-COOLED LIQUID CHILLER FOR OUTSIDE INSTALLATION FROM 4,3 TO 35,1 kw

Chillers EWAQ-E-/F- EWYQ-F- Air cooled multi-scroll chillers and heat pumps

CARRIER edesign SUITE NEWS. Interpreting High (Low) Peak Design Airflow Sizing Results for HVAC. Equipment Selection.

Chilled Water system

Air-Cooled Variable Speed Drive Screw Chillers. Super Efficient Super Quiet. Cooling Capacity Range kw R134a

WP2 European Product Analysis, Task 2.1 Determining energy efficiency criteria, D 2.1 Periodic Criteria Papers (first set)

TrilliumSeries Condenser 1 TRILLIUMSERIES CONDENSER 10 ECOFLEX CONTROLS 11 SELECTION AND PAYBACK ANALYSIS SOFTWARE 3 BENEFITS 8 MODES OF OPERATION

Oxyvap Evaporative Cooling Applications

Chiller Vs VRF Comparison

Method to test HVAC equipment at part load conditions

By Thomas H. Durkin, P.E., Member ASHRAE, and James B. (Burt) Rishel, P.E., Fellow/Life Member ASHRAE

Topic 2. ME 414/514 HVAC Systems Overview Topic 2. Equipment. Outline

precision controlled industrial process chillers cooling capacity: ,255,668 BTU /hr ( tons) improved productivity & reduced costs

Sustainable Refrigerant Solutions for HVAC-R. Laurent Abbas, Wissam Rached, Brett Van Horn

Variable Refrigerant Flow (VRF) Systems

100% Outdoor Air Dehumidification Methods

ETI-Z Series Centrifugal Chiller Applied Low GWP Refrigerant to Contribute to the Prevention of Global Warming

EC Fans Growing in Popularity

terminal units only provide sensible cooling, a separate dehumidification system is usually needed.

THERMAL ICE STORAGE: Application & Design Guide

COMPACT ADSORPTION CHILLERS WITH COATED ADSORBER HEAT EXCHANGERS

your comfort. our world. Altherma Flex Type Renewable heat pump system for every environment

Energy Use in Refrigeration Systems

BRINE CIRCULATED ICE THERMAL STORAGE SYSTEM DESIGN - CASE ILLUSTRATION - Partial Ice Storage for Air Conditioning Application

ENERGY SAVINGS THROUGH LIQUID PRESSURE AMPLIFICATION IN A DAIRY PLANT REFRIGERATION SYSTEM. A. Hadawey, Y. T. Ge, S. A. Tassou

Mitsubishi Electric Guide to Chiller Technologies. Information Guide 58

European Researcher, 2014, Vol.(75), 5-2

Feasibility of a Liquid Desiccant Application in an Evaporative. Cooling Assisted 100% Outdoor Air System

DISTRIBUTION SYSTEMS. Water Piping and Pumps

Heat Recovery Dehumidification (HRD) system. Designed for municipal swimming pools

Specs for endconsumers. communication

Energy Efficiency Requirements for Air Conditioners, Chillers and Close Control Units

Liquid Desiccant Technology Delivers Energy Cost Reductions and Indoor Air Quality Improvements. White Paper

AND AIR-CONDITIONING. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

INTRODUCTION HVAC BASICS AND HVAC SYSTEM EFFICIENCY IMPROVEMENT SECTION O 4/19/2012

HVAC Clinic. Helical Rotary & Centrifugal Water Chillers

Variable refrigerant flow (VRF) systems

DEMONSTRATION OF ADVANCED INTEGRATED HVAC&R SYSTEMS IN A LOBLAWS SUPERMARKET IN CANADA

System-CoolAC. Bharatividyapeeth College of Engineering, Deekshant Bharti Scholar, New Delhi, India

EXHAUST AIR HEAT PUMPS EVALUATED FOR NORDIC CIRCUMSTANCES

Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad B.Tech (III II SEM) MECHANICAL ENGINEERING

AQUASNAP JUNIOR 30RHV

1.1. SCOPE OF THE WORK:

Heat pump and energy recovery systems

INSTITUTE FOR ENVIRONMENTAL RESEARCH & SUSTAINABLE DEVELOPMENT NATIONAL OBSERVATORY OF ATHENS (NOA)

Technical college/ Baghdad 4th Year Week No. :- 11. The objectives of this lesson are to: Introduction:

Refrigeration Technology in Building Services Engineering

Transcription:

Saving resources by going evaporative: how evaporative cooling technologies and water cooled chillers can significantly reduce energy demands FRANCESCO SCUDERI 1 MARIA ELENA PROIETTI 2 NICOLA DE CARDENAS 3 ALESSAN- DRO FONTANA 4 PHILIP MONTRASIO 5 ANTONIO VISINTINI 6 1 Eurovent association - Technical and Regulatory Affairs Manager 2 Assoclima Funzionario Tecnico 3 Decsa srl Managing Director 4 M.i.t.a. srl Managing Director Assoclima Capo Gruppo Torri Evaporative 5 Evapco Europe srl Amministratore Delegato 6 Balticare srl Regional Manager South-East Europe SUMMARY Evaporative (latent) heat transfer is used in cooling towers, closed circuit cooling towers and evaporative condensers for the removal of waste heat from the HVAC processes. Compared to cooling with dry air (sensible heat transfer), evaporative cooling is more efficient; with 1 kilogram of water the heat removed is about 2200 kilojoule (heat of evaporation) while with 1 kilogram of air the heat removed is about 1 kilojoule per degree C. In addition, with evaporative technologies it is possible to decrease the process temperature up to about the wet bulb temperature (lower than dry temperature). These advantages have long been recognized by the market and, today, a great variety of evaporative cooling products exists in terms of size, concept and configuration. The Eurovent association has recently released the recommendation 9/12. This is an industry recommendation that constitutes the first European thermal performance efficiency standard for evaporative cooling equipment. The scheme has been developed over the past 14 months in a joint effort by 10+ cooling tower manufacturers that account for a joint market share of more than 90% in the EU28. In specific, it introduces: - the different evaporative cooling technologies available on the market, - background, scope and outline of the new performance and efficiency rating standard, - thermal energy efficiency definitions and targets, - thermal testing and uncertainty calculations, - efficiency target verification, - tools for an effective efficiency verification. When selecting a particular product, next to the thermal duty, there are often a number of other criteria to be met, such as sound radiation, layout, operating weight. Such criteria usually differ from project to project, but a common element in most purchase decisions is also the cost effectiveness of the evaporative cooling product.

Saving resources by going evaporative: how evaporative cooling technologies and water cooled chillers can significantly reduce energy demands Unfortunately, the most cost effective product is often not the one with the best energy efficiency. In fact, it can be experienced that the worst energy efficiency is usually linked to the cheapest product. With today s concern about global warming and the growing recognition of the need to save energy, purchase decisions solely based on cost effectiveness are no longer acceptable. In this direction, one of the measures taken by the EU Member States was the launch of the EU Fan Regulation 327/2011, which is currently being revised. This Regulation sets out the minimum energy efficiency requirements for fans (defined as the combination of rotor, stator and drive). Fans are being used in hundreds of thousands products and the logic behind the EU Fan Regulation is that a product with an efficient fan is also an efficient product. For evaporative cooling products, this is unfortunately not the case. Whilst in mechanically driven cooling towers the fan is undoubtedly the main energy consumer, the fan efficiency cannot be used as the sole measure of cooling tower efficiency. Unlike with air cooled heat exchangers using sensible heat transfer, the effectiveness of thermal heat transfer is not based on the aerodynamically performance of the product. Indeed, the thermal and energy efficiency of evaporative cooling equipment is based on the effective mixing of air and cooling water streams. Knowing that a major part of the electricity usage in Italy comes from the HVACR systems, any power reductions on those systems will support energy savings in general. This paper introduces the fundamentals of state-of-the-art of the evaporative cooling technologies. Amongst others, it highlights the advantages of evaporative cooling, and clarifies water consumption issues of this technology. With reference to the new Eurovent recommendation, this paper also illustrates a case study about how water cooled chiller systems with cooling towers reduce the power consumption by up to 50% compared to other technological solutions. Key words: cooling towers, evaporative technologies, water cooled chillers, energy saving, 1. INTRODUCTION The demand for energy efficient buildings and more stringent environmental sustainability requirements in the process industry have increased in recent years. As a consequence, the comfort and industrial cooling industry needed to be extremely dynamic in replying to the changing market demand. Evaporative cooling combines high thermal efficiency and cost effectiveness by achieving low cooling temperatures with minimum energy and water usage. Low cooling temperatures are essential for many processes to achieve high system efficiency. These processes consume less energy and in this regard evaporative cooling contributes to preserving natural resources and the environment. Evaporative cooling is the most efficient way to remove the excess heat from modern air conditioning systems and industrial processes and, as such, most suited to address the increasing of ambient temperatures due to the warming up of the atmosphere as well as the restrictions in energy usage and efficiency constraints.

Figure 1 - Air wet bulb and air dry bulb temperature Cooling towers are efficient and cost effective means of removing heat from air conditioning, refrigeration and industrial process cooling systems. They have been in use for more than half a century. They are compact, quiet, consume little energy and save more than 95% of the water in circulation. They are simple to operate and maintain and the system efficiency and safety are assured. 2. PRINCIPLE OF OPERATION Evaporative cooling is based on a natural principle by the evaporation of water when cooling a fluid or condensing a gas the heat is rejected into the atmosphere. This is achieved by having close contact between the water circuit and an airstream, whereby the major part of the heat is transferred to the air by evaporation of a small amount of the water and the heat is then carried away in the warm, saturated discharge air. With evaporative technologies it is possible to decrease the process temperature up to about the wet bulb temperature (lower than dry temperature). Compared to cooling with dry air (sensible heat transfer), evaporative cooling is more efficient; with 1 kilogram of water the heat removed is about 2200 kilojoule (heat of evaporation) while with 1 kilogram of air the heat removed is about 1 kilojoule per degree C. 2.1. Open circuit cooling tower Water from the heat source enters an inlet connection and is distributed over the fill pack through a spray distribution arrangement. Simultaneously, ambient air is induced or forced through the tower, causing a small portion of the water to evaporate. This evaporation removes heat from the remaining water. The cooled water falls into the tower sump from where it is returned to the heat source. It is open circuit as the water to be cooled is in contact with the atmosphere.

Saving resources by going evaporative: how evaporative cooling technologies and water cooled chillers can significantly reduce energy demands Figure 2 - Open circuit cooling tower. 2.2. Closed circuit cooling tower The fluid to be cooled is circulated inside the tubes of the heat exchange coil. A secondary system distributes water over the tubes of the coil. Simultaneously air is forced or drawn through the coil causing a portion of the secondary water to evaporate. This evaporation removes heat from the fluid inside the coil. The secondary water falls to the sump from where it is pumped over the coil again. This is called closed circuit as the fluid to be cooled is in a sealed loop and does not come into contact with the atmosphere. Figure 3 - Closed circuit cooling tower.

2.3. Mechanical forced draft cooling towers These cooling towers are characterised by the fan located in the entering air stream. Figure 4 - Mechanical forced draft cooling tower. 2.4. Mechanical induced draft cooling towers These cooling towers are characterised by the fan located in the discharge air stream.

Saving resources by going evaporative: how evaporative cooling technologies and water cooled chillers can significantly reduce energy demands Figure 5 - Mechanical induced draft cooling tower. 3. EVAPORATIVE COOLING EQUIPMENT PERFORMANCE EFFICIENCY: THE EUROVENT INDUSTRY RECOMMENDATION 9/12-2016 Fans are being used in hundreds of thousands products and the logic behind the EU Fan Regulation (Regulation (EU) 327/2011) is that a product with an efficient fan is also an efficient product. For evaporative cooling products, this is unfortunately not the case. Whilst in mechanically driven cooling towers the fan is undoubtedly the main energy consumer, the fan efficiency cannot be used as the sole measure of cooling tower efficiency. Unlike with air cooled heat exchangers using sensible heat transfer, the effectiveness of thermal heat transfer is not based on the aerodynamically performance of the product. Indeed, the thermal and energy efficiency of evaporative cooling equipment is based on the effective mixing of air and cooling water streams. The thermal performance of evaporative cooling products largely depends on the evaporation of water caused by effective mixing of water and air. The latent heat transfer, caused by evaporation, is not governed by aerodynamic principles only. In fact, aerodynamic efficiency plays only a minor role in the total heat transfer. It is for that reason that aerodynamic efficiency, for which fan efficiency is a good indicator, cannot be used to judge the thermal performance efficiency of evaporative cooling products. By taking into account the specific nature of evaporative heat transfer, the Eurovent Recommendation 9/12-2016 has defined the thermal energy efficiency for mechanical draught open wet and closed-circuit cooling towers. The thermal energy efficiency for mechanical draught open wet cooling towers is defined as the amount of heat rejection at specified inlet and outlet and entering wet bulb temperatures, expressed in kw heat rejection per kw absorbed shaft power at the fan drive system using water as the fluid type. The thermal energy efficiency for mechanical draught wet closed circuit cooling towers is defined as the amount of heat rejection at specified inlet and outlet and entering wet bulb temperatures, it is expressed in kw heat rejection per kw absorbed shaft power at the fan and spray pump drive system (using water as the fluid type). Where: - = water flow [kg/s] - c p = specific heat [kj/kgk] - T in = water inlet temperature [ C] - T out = water outlet temperature [ C] - P= power absorbed by fan and/or pump [kw] (1) According to the above definitions, the Eurovent Recommendation 9/12-2016 has also defined the minimum thermal energy efficiency target for both open wet cooling towers and for closed-circuit cooling towers. In order to be in line with the Regulation (EU) 327/2011, these targets take also into account the different kind of fans installed.

Temperatures ( C), inlet, outlet, kwth/kw centrifugal fans kwth/kw axial fans wet bulb 35/29,44/23,89 (ASHRAE) 40 80 35/25/20 42 84 32/27/21 36 72 Table 1: Minimum thermal energy efficiency targets for open wet cooling towers. Temperatures ( C), inlet, outlet, kwth/kw centrifugal fans kwth/kw axial fans wet bulb 38,89/32,22/23,89 (ASHRAE) 16 33 38/28/20 15 30 35/30/21 15 32 Table 2: Minimum thermal energy efficiency targets for closed-circuit cooling towers. The above approach has provided and continues to provide goals to improve the thermal energy efficiency of the evaporative cooling industry in Europe. In this respect national laws and EU regulations are encouraged to follow the Eurovent Recommendation s approach. 4. REFRIGERATION SYSTEMS: DRY COOLED VS. WATER COOLED SYS- TEMS Knowing that a major part of the electricity usage in Italy comes from the HVACR systems, any power reductions on those systems will support energy savings in general. 4.1. The compressor s lift The following example clarifies and explains why a water cooled refrigeration system is more efficient than an air cooled refrigeration system. It investigates a refrigeration system operating at Mediterranean climate condition and it aims to calculate the compressors lift. The lift is the work done by the compressor to raise refrigerant pressure from low to high level, it can be calculated as the delta temperature between the hot water leaving the condenser and the cold water leaving the evaporator. Where: - C lift = compressor lift [ C] - LCWT=water temperature leaving condenser [ C] - LEWT=water temperature leaving evaporator [ C] (2) As the compressor lift represents the compressors power input, it shall be intended as a true indicator of the system energy consumption. It must be stressed that the bigger is the lift the higher is the power input.

Saving resources by going evaporative: how evaporative cooling technologies and water cooled chillers can significantly reduce energy demands The below Figure 6 shows the most usual schematic of a dry cooled refrigeration system and the related refrigeration cycle. Figure 6 - Dry air cooled refrigeration system schematic and related refrigeration cycle. The performance of a dry cooled refrigeration cycle is dependent on the ambient air dry bulb temperature. The following assumptions are used in order to analyse the performance of this refrigeration system: - Ambient air design dry bulb temperature: 35 C - Condenser operating conditions: 47/42 C - Chilled water operating conditions: 6/13 C The compressors lift can be calculated as: 47 C- 6 C=41 C =LIFT DC

The below Figure 7 shows the most usual schematic of a water cooled refrigeration system using cooling tower equipment and the related refrigeration cycle. Figure 7 - Water cooled refrigeration system using cooling towers schematic and related refrigeration cycle. The performance of a water cooled refrigeration cycle using cooling tower equipment is dependent on the ambient air wet bulb temperature (see par. 2.). The following assumptions are used in order to analyse the performance of this refrigeration system: - Ambient air design wet bulb temperature: 25 C - Cooling tower operating conditions: 35/30 C - Chilled water operating conditions: 6/13 C The compressors lift shall be calculated as 35 C- 6 C=29 C =LIFT CT The above calculation leads to a compressors power input lower than the one in an air cooled refrigeration system and it easily confirms and provides further evidence that

Saving resources by going evaporative: how evaporative cooling technologies and water cooled chillers can significantly reduce energy demands a water cooled refrigeration systems equipped with cooling towers is more efficient than an air cooled refrigeration system. The refrigeration system energy saving can be calculated as: Where: - LIFT CT =Compressor s lift water cooled system [ C] - LIFT DC = Compressor s lift dry cooled system [ C] At the above defined climate conditions, the lift analysis has result in an energy saving of 30%. (3) 5. CASE STUDY: THE ATHENS OPERA THEATRE The Atene Opera Theatre, within the Stavros Niarchos Foundation Cultural Centre, has been investigated and analysed. This theatre has been designed by Mr Renzo Piano (architectural design), by the Arup Group (London, UK), and by the BMS Progetti (Milan, Italy). It must be pointed out that within the LEED certification scheme, this building has been qualified as LEED Platinum. 5.1. The cooling and the heat rejection systems The cooling system consists in 4 water cooled chillers: two at 2.000 kw capacity each and two at 1.000 kw capacity each. One of the 1.000 kw chiller is on stand-by at all times providing redundancy. The below Table 3 specifies the chillers technical data: # Description Equipment data Compressor: Centrifugal 1 Water cooled chiller 2 Water cooled chiller 3 Water cooled heat recovery chiller Refrigerant: R134A Cooling Capacity: 2.000 kw Water leaving /entering temperature: 7 C/13 C Condenser leaving/entering temperature: 35 C/29 C Compressor: Centrifugal Refrigerant: R134A Cooling Capacity: 2.000 kw Water leaving /entering temperature: 7 C/13 C Condenser leaving/entering temperature: 35 C/29 C Compressor: Screw Refrigerant: R134A Cooling Capacity: 1.000 kw Water leaving /entering temperature: 7 C/13 C

4 Water cooled heat recovery chiller Condenser leaving/entering temperature A: 37 C/31 C Condenser leaving/entering temperature B: 60 C/53 C Compressor: Screw Refrigerant: R134A Cooling Capacity: 1.000 kw Water leaving /entering temperature: 7 C/13 C Condenser leaving/entering temperature A: 37 C/31 C Condenser leaving/entering temperature B: 60 C/53 C Table 3: Chillers technical data. The below Table 4 specifies the cooling towers technical data: # Description Equipment data Dry bulb temperature: 40 C 1 Cooling tower 2 Cooling tower 3 Cooling tower Wet bulb temperature: 26,5 C Water entering/leaving temperature: 35 C/29 C Cooling Capacity: 2.000 kw Wet bulb temperature: 26,5 C Water entering/leaving temperature: 35 C/29 C Cooling Capacity: 2.000 kw Dry bulb temperature: 40 C Wet bulb temperature: 26,5 C Water entering/leaving temperature: 35 C/29 C Cooling Capacity: 2.000 kw Table 4: Cooling towers technical data. 5.2. Compressor s lift calculation and energy saving The Compressors lift can be easily calculated as in the formula 2. The lift due to the cooling towers installed can be calculated as: LIFT CT = 35 C-7 C= 28 C (4) The lift due to a dry cooled system operating at the equivalent climate conditions (dry bulb temperature 40 C, water in/out temperature= 50/45 C) can be calculated as: LIFT DC = 50 C-7 C=43 C (5) By using the formula (3), it is possible to calculate the refrigeration system energy: (6) CONCLUSION This paper has analysed the evaporative cooling technology, its principle of operation and its thermal energy efficiency.

Saving resources by going evaporative: how evaporative cooling technologies and water cooled chillers can significantly reduce energy demands Within a refrigeration system, it has also been investigated the compressor s lift. This has been analysed for both a dry cooled refrigeration system and a water cooled refrigeration system. This has result in an energy saving of about 30% by using water cooled technologies. Finally, it has been showed a case study, the Athens Opera Theatre. Based on the compressor s lift approach, the water cooled refrigeration system has resulted in an energy saving of about 35% compared to the standard dry cooled technologies. SYMBOLS C lift compressor lift [ C] c p specific heat [kj/kgk] LCWT water temperature leaving condenser [ C] LEWT water temperature leaving evaporator [ C] LIFTCT Lift due to cooling tower [ C] water flow [kg/s] P power absorbed by fan and/or pump [kw] Tin water inlet temperature [ C] Tout water outlet temperature [ C] REFERENCES Papers Merati R.G. 2010. 10th REHVA World Conference Sustainable energy use in Building poster session. Water vs air Condensation Energetic/economic comparison. Magazines Stefanutti L. 2016. Sostenibilità per la cultura. RCI, pagina 48 European Regulations European Parliament. 2011. Commission Regulation (EU) 327/2011 implementing directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for fans driven by motors with an electric input power between 125 W and 500 kw. Official Journal of the European Union n. 6.4.2011. Standards Eurovent. 2000. Recommendation 9/5 - Recommended code of practice to keep your cooling system efficient and safe. Brussels: Eurovent Association. Eurovent. 2002. Recommendation 9/6 - Eurovent guidelines on how to keep your evaporative cooling system safe. Brussels: Eurovent Association.