Reducing Arc Flash Risks with Electrical Maintenance Safety Devices - Part 2

Similar documents
White Paper. Reducing Arc Flash Risks with Electrical Maintenance. Safety Devices. Abstract: iriss.com

Enhancing Current Maintenance Practices 04. Managing the Risk 06. Constant Monitoring of Electrical Enclosures 08

Delta T Alert: Wireless Temperature Monitoring of Electrical Enclosures

White Paper. Maintenance Inspection Windows on Transformers. Maintenance Inspection Windows on Transformers. Abstract: iriss.com

White Paper. NFPA 70E 2018 Edition Changes and Implications for. Personnel Performing Condition Based Maintenance. Abstract: iriss.

A Powerful Case for Infrared Windows

Case Study. Custom Solutions for High Arc Flash Incident Energy and. Interlocked Electrical Enclosures. Overview: iriss.com

Case Study. A Geothermal Energy Generation Facility Embraces Infrared. Polymer Window Inspections. Overview: iriss.com

White Paper. OSHA and NFPA 70 Understanding NFPA 70 and its. Implications in Electrical Inspections Abstract: iriss.com

CAP Series ,,,,, The Clear Choice. CAP Series Features: Who Says Infrared Windows Have to be Round? Certifications:

INFRARED WINDOW SERIES

NFPA 70B and CSA Z463 Standards for Electrical Maintenance Where Does Airborne Ultrasound Fit In?

Changes to NFPA 70E. - The Role of PdM &Safe PdM Work Practices. Tim Rohrer Exiscan LLC

Predictive Maintenance Training

IR Viewing Windows and Arc Ratings Dispelling the myth of Arc-Resistant IR Viewing Windows

T22 - Arc Flash Hazards and Arc Resistant Equipment- Understanding the Standards

Multi-Technology Fault Identification

Surface Acoustic Wave Technology based Temperature Monitoring of High Voltage and High Current Switchgear Boxes

Electrical Safety Compliance: NFPA 70E

Common Misconceptions Relating to Infrared Inspection Ports

Infrared Windows and Arc Ratings: Dispelling the Myth of Arc-Resistant IR Windows

VPFR. cma. Product Brochure. Industrial-Grade Infrared Inspection Viewing Panes

White paper. OSHA and NFPA 70 Safer by Design The History of IRISS. Infrared Windows. Abstract: iriss.com

Guide to Compliance with the Electrical Workplace Safety Standards in the United States

NFPA 70B and the Importance of Electrical Predictive Maintenance

WHY ELECTRICAL PREVENTIVE MAINTENANCE IS ESSENTIAL TO A SAFE AND PRODUCTIVE WORKPLACE

Are Electrical Switchgear Surveys Still the Low-Hanging Fruit of Infrared Thermography?

Fluke IR Windows Easier NFPA 70E compliance without compromising on product performance.

Fluke IR Windows Easier NFPA 70E compliance without compromising on product performance. Fluke-Direct.com

Arc Flash Protection Training - NFPA 70e Electrical Safety

Compliance without compromise Safety without sacrifice

NECA S System Approach to Electrical Safety for NFPA 70E

HESNI ANNUAL CONFERENCE May 3, 2012 Aramark Conference Center, Downers Grove

DISTRIBUTION OPERATIONS AND MAINTENANCE

May is National Electrical Safety Month, an AND THE ELECTRICAL INSPECTOR. by Mark Hilbert and Laura L. Hildreth

COMPLIANCE without compromise SAFETY without sacrifice YOUR RESULTS MATTER

NFEC FIRE SAFETY SEMINAR Krish Mysore

Product Catalog. Ultrasound Leak Detection and Condition Based Monitoring

PGR-8800 TECHNICAL FAQ

Air Compressor Electrical Fire

VeriSafe Absence of Voltage Tester The safe way to verify the absence of voltage

NATIONAL ELECTRICAL CODE (NEC) & NFPA 70E ARC FLASH ELECTRICAL SAFETY

infrared inspections efficient solutions. focused results.

The safe way to verify the absence of voltage.

NFPA 70E Elevates Safety. with Heightened Risk Awareness

October Airborne & Structure-Borne Ultrasound as a key component to Predictive Maintenance

Property risk solutions

Electrical Safety Requirements

ONTARIO Electrical Safety Report. 10th Edition

NFPA 70E Electrical Safety & Arc Flash Training

Arc Flash Mitigation Solutions: A Proactive Approach To Arc Flash Risk

SEL Arc-Flash Solutions

Implementing an Energized Electrical Work Program. SESHA Hill Country Chapter. Brett Jay Davis, PE Zephyr Environmental Corporation

Electrical Preventive Maintenance (EPM) Program

SEL Arc-Flash Solutions

Hunting the Mighty Milliwatt- The next Technology Step

The evolution of level switches and detectors

CONTINUOUS MONITORING IS ON THE RISE:

Electrical Management

RESNET Infrared Inspection Standard and Certification

ABB Ability System 800xA Alarm Management

Arc Flash Codes & Compliance: What You Need to Know to Deliver Both Protection and Performance

6/23/ National Electrical Contractors Association and Intec, Inc.

NECA S System Approach to Electrical Safety for NFPA 70E

NFPA 70E. Electrical Safety in the Workplace. KTR Associates. Joseph Deane, PE. Engineering Solutions

rev3 INSTALLATION & OPERATION MANUAL OIL CIRCULATING HEATING SYSTEM MODEL OSM

Smart Monitoring Systems. for Property Management SMART SOLUTIONS. Property Management DOORS & WINDOWS TEMPERATURES LIGHTS CARBON MONOXIDE

PROTECTING AGAINST ARC FLASH HAZARDS

Thermography Report. For: (Client) at: (location)

Your Global Automation Partner. Minimizing Arc Flash Exposure in Industrial Applications. White Paper - W1000

Open Source Home Security System

Your Turnkey Solution for Mitigating the Hazards of Arc Flash Incidents in the Workplace

Data Bulletin. Determining the Cause of AFCI Tripping Class 760

A WORLD WITHOUT DOWNTIME

IoT use cases for smart building. IoT is changing the way facility management, security and construction companies are operating.

Understanding 2015 Changes to NFPA 70E Safety-related work practices and maintenance requirements mandate more robust electrical safety programs for

GE Industrial Solutions. Residential Electronic Circuit Interrupters

Energy Conservation and Equipment Reliability With Ultrasound

Packaged Heat Pumps. Owner s Guide to Operating and Maintaining Your Heat Pump

ICC CODE CORNER 2012 IFC Code & Commentary

Electrical Safety for Facility Managers and Building Owners

Approved by Principal Investigator: Date: Approved by Laser Safety Officer: Date:

Moving to the Cloud: The Potential of Hosted Central Station Services

The Basics Arc Flash Protection

INITIAL ELECTRICAL ASSESSMENT REPORT (EAR)

Hunting the Mighty Milliwatt The next Technology Step

Structural Firefighting Policy

Fire Protection Guidelines for Handling and Storing PRB Coal

INITIAL ELECTRICAL ASSESSMENT REPORT (EAR)

Liebert Fin/Tube Condenser Warranty Inspection Check Sheet

Fig. 1 - Unit PHD4 and WPH4

NFPA 70E Arc Flash Considerations for MV Equipment. By: Dominik Pieniazek, P.E. HV Engineering, LLC

How to reduce exposure to arc flash hazards

Brown University Revised June 29, 2012 Facilities Design & Construction Standards SECTION ELECTRICAL DESIGN CRITERIA

Assessing HVAC Leak Damage with Infrared

A GUIDE TO FIRE DETECTION AND ALARM SYSTEMS

Level Alarm Control. Blender Accessories U S E R G U I D E UGB

NFPA 70E Electrical Safety in the Workplace

ER 52 Electrician Regulations Answer Schedule. Question 1 Marks Reference Marking notes. (1 mark) EA 147M(c)(i) (1 mark) EA 147M(c)(ii)

SECTION DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

Transcription:

Reducing Arc Flash Risks with Electrical Maintenance Safety Devices - Part 2 By: Martin Robinson, CEO of IRISS Group and Level III Thermographer Abstract Every year thousands electrical workers are injured or even killed while at work. To address this issue, safety and trade organizations around the world are enforcing regulations and standards that ensure workers do not open electrical switchgear for maintenance activities unless it is put into a safe work condition, the proper engineering controls and personal protective equipment (PPE) are used and the appropriate level of safety and equipment training is given to everyone involved in the maintenance operation. In the USA and Canada the National Fire Prevention Association (NFPA) and Canadian Standards Association (CSA) are at the vanguard of driving a cultural change within the electrical maintenance industry. The NFPA 70E /70B and CSAZ 462/463 standards and guidelines provide references for facilities to meet the requirements of workplace electrical safety and outline the best practices for setting up and maintaining a safe and efficient Electrical Preventative Maintenance (EPM) program. 18-1030-0005-special2_Rev. A

When deciding on an electrical maintenance strategy we first need an understanding on how equipment fails. A valuable resource can be found by reviewing the failure patterns detailed in the Reliability Centered Maintenance (RCM) engineering framework (see Fig 1). These patterns seem to go against common perceptions that age related failures account for most of the failures that we see in the field; in fact, it is quite the opposite. This type of failure only accounts for 11% of all the failures that we see. Fig 1: Failure Patterns Fig 2: Electrical Inspection PF Curve

When we look at the curves in Fig 1 we can see how important it is to try to identify failures as early as possible. To allow us to do this we need to understand how failures occur and how these failures affect the function of the equipment. To help with this we use a P-F Curve which is a curve that represents how equipment fails and how early detection can assist in allowing an organization to plan repairs and avoid business disruption. Fig 2 shows an Electrical Inspection P-F Curve. Point P on the curve is where a Physical failure starts to occur which is an identifiable physical condition that indicates a functional failure is imminent. Point F on the curve is where the point of failure or Functional failure occurs which is the inability of the equipment, or the assembly containing it, to meet a specified performance standard. An electrical system failing to supply power would be considered a functional failure. We use Condition Based Maintenance (CBM) equipment to identify the presence of a failure mode, this then allows us to plan and schedule the work early enough before a total functional failure occurs. Fig 2 shows three stages of early detection at which point the CBM equipment test results would be different and the equipment readings would change depending on the severity of the faults being monitored. It is recommended that a thorough assessment of the equipment and systems that you wish to inspect is conducted before starting a CBM program. RCM practices give an operator several steps that should be considered while conditioning the equipment /system assessment, these are: Functions: Clearly describe Main and Support Functions as well as performance standards we need to maintain. Functional Failures: Describe the inability to maintain specified performance standards. Failure Modes: The specific manor or sequence of events that result in functional failure (What caused the component to fail). Failure Effects: What happens when each failure mode occurs? Events that lead to failure First sign of evidence Secondary damage Action required to return to normal operating condition. Failure Consequences: How does the failure impact your business? (Hidden, EHS, Operational, Non-operational) Develop Maintenance Task: What tasks are best suited to mitigate the failure mode? Reduce Consequences: What can be done to reduce the consequences of failures where there is no scheduled maintenance task? (Consequence Reduction Tasks)

Conducting a RCM analysis will enable you to predetermine the types of inspection that need to be completed as well as the inspection alarm criteria and the actions that will need to be taken should these be breached. This will save a lot of time, stress and effort if the equipment starts to fail because you would have already decided on the course of action that will be taken which allows for much greater efficiencies in the maintenance and repair process. Unfortunately it is recommended that all CBM tasks be completed while the equipment is energized, in normal operating mode and under load (this is what NFPA 70B and CSA Z463 recommend). As the essential element for electrical safety is to ensure that the equipment is in an electrically safe condition before any work is commenced, keeping personnel away from energized electrical equipment is paramount. At the core of all safety initiatives is the hierarchy of control. Put simply, this concept attempts to control or mitigate risk wherever possible. In order of preference, the hierarchy of control seeks to mitigate risks by: 1. Risk elimination 2. Substitution (with lower risk) 3. Engineering controls (such as arc resistant switchgear) 4. Safe work practices 5. PPE Before conducting any maintenance task you must ensure that, if possible, you eliminate any risks to the maintenance engineers or operators; PPE should always be the last line of defense. This is why many companies are increasingly adopting the use of several types of Electrical Maintenance Safety Devices (EMSD s) to include thermal imaging equipment, infrared (IR) windows; ultrasound guns, ultrasound ports, on-line monitoring systems, etc. EMSD s allow CBM inspections to be completed while the switchgear remains closed and in a safe and guarded condition ensuring inspectors are never exposed to the dangers of arc flash or electrocution during the inspection process. The benefit of using EMSD s is that they standardize the inspection routes by becoming data collection points for the CBM test equipment, they also ensure all inspection parameters are fixed and that all data collection practices are standardized, ensuring that trend analysis data is accurate and repeatable. Other benefits are: Switchgear is maintained in an closed and guarded condition Remove risk of electrocution and possible triggers of an arc flash incident Removal of high risk behaviors Conduct fully-loaded, on-line inspections (when they are the most valuable) Access inaccessible equipment Because there is no panel removal required: Inspections require less manpower Inspections require lower PPE levels Inspections are faster and more efficient More inspections are completed due to ease of operation

Types of EMSD Infrared (IR) Inspection Windows One of the tasks that need to be completed on electrical equipment while it is energized and under load is infrared (IR) scanning. IR cameras can only measure what they can see (direct line-of-sight) and cannot see through glass or plastic viewing windows commonly fitted in switchgear. To allow the inspections to be completed under load we use an IR window which is a EMSD that allows an IR camera to see the energized loaded connections through a special lens material in the IR windows while the switchgear remains closed and in a safe and guarded condition. Airborne Ultrasound Ports Ultrasound equipment can be used to detect arcing, tracking and corona in electrical equipment. To allow these inspections to be made the ultrasound equipment requires access to the energized electrical equipment. This type of equipment can utilize ventilation grills and door seams to access the majority of equipment but requires ultrasound ports to be fitted to environmentally sealed units (NEMA 4/IP65 and above) to allow access to the energized equipment. Ultrasound inspection ports should be no larger than ½ inch (IP2X compliant) and contain an internal grill for additional security. We see ultrasound ports being used more and more in all types of electrical switchgear as a standard collection point for ultrasound data. External Voltage and Current Measurement Ports Voltage and current measurement of electrical equipment is essential as it gives us an indication of the systems overall efficiencies and very small variations in these measurements can show the onset of significant faults. We use external voltage and data ports to allow operators to get the data they require without having to open the energized panels and touch conductors with test equipment such as power quality meters, MCA testers, voltmeters, etc.

Early Signal 1: Possible defect, continue to monitor Test of Type Complete Results IR Thermography No significant heating seen around electrical connections Ultrasound Possible detection of corona depending on equipment voltage Voltage, Current & MCA Possible increase in resistance and MCA test results EMSD used IR Windows Ultrasound Ports Voltage Ports/MTAP This is the point immediately after failure starts to occur. The signs at this stage are quite subtle but should show a marked change from the benchmark data from previous inspections especially on the voltage/current, infrared and ultrasound measurements. Usually results in increased inspections of the suspect equipment to track changes.

Early Signal 2: Defect identified, Repair as soon as possible Test of Type Complete Results IR Thermography Failing electrical connections start to heat up Ultrasound Possible detection of tracking may be found at this time Voltage, Current & MCA Resistance and MCA test results start to increase EMSD used IR Windows Ultrasound Ports Voltage Ports/MTAP This stage shows an increase in the previous voltage/current and ultrasound measurements taken at stage 1 and the IR inspections would start to show significant heating at the faulty joint/components. This is normally where the shutdown and repair work would be booked and scheduled as well as any faulty replacement components ordered. Inspections would continue to be conducted to ensure the faulty joint / component does not degrade where it could affect safety/operational requirements.

Early Signal 3: Defect now critical immediate shutdown required Test of Type Complete Results IR Thermography Thermal patterns reach critical limits requiring an immediate shutdown Ultrasound Possible detection of arcing found and increased levels of tracking Voltage, Current & MCA MCA, resistance and voltage measurements reach critical limits EMSD used IR Windows Ultrasound Ports Voltage Ports/MTAP This stage is where all CBM readings have reached critical limits where an immediate shutdown would be required or extreme operational changes implemented to allow for the repair to be scheduled such as load reduction on equipment, partial shutdowns, etc.

Final Stages of Electrical Failure Final stages of failure are evident even without using CBM test equipment. At this stage operators will be reporting the physical signs of failure such as noise, smell of burning, hot to touch, etc. These signs normally precede the point where a functional failure occurs and at this stage the cost of repair is usually much higher than it would have been if the repairs were completed at the first signs of failure.

Additional EMSD strategies As discussed we can see that the majority of industries currently use CBM equipment to inspect their electrical distribution systems. While these inspections can be valuable in helping to prevent unexpected failures, like all CBM technologies they only provide a single snapshot in time leaving the subject systems unmonitored for the balance of the year. Even the best inspection programs only look at their equipment for 0.003% of its actual running time. Additional EMSD strategies include the use of online monitoring systems that transmit data back directly to the client utilizing either wired or wireless sensor systems. These systems include: Temperature measurement (contact and non-contact systems) Vibration analysis (rotating UPS and generator systems) Power quality (online and fixed data collection systems) Partial discharge (online and fixed data collection systems) Online monitoring of critical assets bridges the gap between annual CBM inspections by monitoring and reporting critical parameters such as the temperatures within your electrical enclosures on a daily basis. If a critical issue arises, immediate notification allows for an appropriate corrective action, before costly damage occurs. The system alarms allow for maintenance technicians to be warned of potential issues causing the elevated internal ambient temperatures. This information and trend data gives maintenance personnel an enormous safety advantage compared to any type of routine maintenance or troubleshooting of possible electrical anomalies within the electrical enclosures. Advances in wireless technology have resulted in sensors that, when permanently installed on electrical enclosures can provide year-round monitoring of critical electrical system components and can immediately alert personnel when problems arise. These systems enhance the safety and effectiveness of any electrical maintenance program and offer energy savings by allowing for the timely repair of loose connections that create increased resistance, thus resulting in higher energy costs.

Another issue is that engineers conducting infrared inspections are sometimes unsure of is what temperatures actually constitute an alarm. To help engineers, NETA (International Electrical Testing Association) has a table (Table 1) that gives recommended actions depending on the temperature difference (delta) between like-for-like components within a panel or the delta between the measured component temperature and ambient temperature. Online monitoring systems can be configured to collect data at specific time intervals on a daily basis. The data is wirelessly transmitted for analysis and trending and warns the operator of temperature rise within their electrical enclosures well before more serious problems arise. Although online systems notify operators that there is an elevated reading within a critical system that needs immediate attention, you still have the problems that arise with accessing the equipment to check what is causing the alarm. In the case of thermography you do not want to shut down the equipment and open the covers to allow an inspection to be completed as you need the equipment loaded and online to see exactly what is causing the issue. This is why you should include other EMSD s such as IR windows, ultrasound ports, etc.

A complete closed-loop inspection system allows for safe inspection of electrical systems while maintaining an enclosed and guarded condition and removing the chances of your personnel being exposed to the risks of arc flash or electrocution. In this type of system design, an operator will receive an alarm as well as a location from the monitoring system when the temperature differences are above a predetermined level or significantly different from other electrical enclosures within the system. The operators can then go to the identified enclosure and inspect the internal energized and loaded components inside the electrical enclosure through an infrared window in complete safety. The infrared scan will allow the operator to ascertain the exact temperature and condition of the fault causing the temperature rise and, if required, conduct the repair once the system is made safe. Once the repair is completed the system can be reenergized and a follow up inspection completed to ensure that everything is correct and then the electrical enclosure can be benchmarked and system reset with new baseline temperature delta. Summary The implementation of online monitoring and closed loop EMSD solutions for electrical distribution systems give engineers a solid foundation to build a safe and effective electrical preventative maintenance program and show reductions in equipment failure and maintenance costs due to early fault diagnosis. This methodology ensures that if conditions are ever met where equipment will possibly fail the equipment shut down and repair can be planned well in advance, replacement parts are ordered and labor resources allocated ensuring that there is minimum disruption caused to the operation. Equipment maintenance is dictated by actual, real time reports of equipment degradation rather than by equipment legacy reports. Equipment maintenance practices change from a mainly reactionary / part preventative activity to a mainly preventative / part reactionary activity that enables maintenance engineers to focus their time and resources where they are most needed.