LAB REPORT SUBMISSION COVER PAGE ETN4106 OPTOELECTRONICS AND OPTICAL COMMUNICATIONS

Similar documents
FACULTY OF ENGINEERING LAB SHEET OPTICAL COMMUNICATION SYSTEMS EOP4066 TRIMESTER 1 (2013/2014)

The Rise of Tier 2 Testing

VTI Services Technical Bulletin (TB) OTDR Measurement of Installed Optical Fibre Cabling Permanent Links and Links

Ensuring the Health of Tomorrow s Fiber LANs Part II OTDR Trace Analysis Become an Expert Troubleshooter with Advanced OTDR Trace Analysis

OPTICAL TIME DOMAIN REFELECTOMETER (OTDR): PRINCIPLES

OTDR II. Tier-2 Optical Time Domain Reflectometer for Multimode and Single-mode Fiber Cabling

Field Test Procedure for Optical Fibre Link Measurements

MicrOTDR. Optical Fault Locator. User Manual

GAMMA OTDR application consists of main window and menu. Using menu user can operate in different modes of application.

The Optical Time Domain Reflectometry and the Fusion Splicer Laboratory exercise

PC474 Lab Manual 1. Terry Sturtevanta and Hasan Shodiev 2. Winter 2012

OTDR - FHO5000-xxx. Optical Time Domain Reflectometer

SECTION TESTING OF FIBER OPTIC CABLES

Optical Return Loss Measurement by Gregory Lietaert, Product Manager

OPTICAL TIME DOMAIN REFLECTOMETRY (OTDR) Dr. BC Choudhary Professor, NITTTR, Chandigarh

OPX-BOX. Platform Highlights. Software Support. Key Features

OTDR. Optical Time Domain Reflectometer. User Guide

Noyes OFL 250B Specs Provided by

MTTplus Modular Test Platform

Basic Professional Fiber Optic Installation

Ensuring Cabling Performance in the Customer-Owned Outside Plant

Ensuring Cabling Performance in the Customer-Owned Outside Plant. Keith Foord Product Manager Greenlee Communications

OPTICAL TIME-DOMAIN REFLECTOMETER

IDEAL INDUSTRIES, INC. USER MANUAL IDEAL OTDR

M210 Multifunction Micro OTDR

Fibre Specification Standards

SECTION TESTING OF FIBER OPTIC CABLES

PC474 Lab Manual Wilfrid Laurier University 1

A Quick Start Guide to Fiber-to-the-Antenna (FTTA) Installation and Maintenance Testing. Vol. 2 Tier 2 Certification

Reflectance, The Hidden Danger That Increases Bit Error Rates in Your Fiber Networks Denver, May 22nd, 2010

M210 Multifunction Micro OTDR

Acterna MTS 5000 e Series OTDR and Loss Test modules

Accelerating NBN fiber testing. Tom Ronan Marketing Lead Fiber Optics Melbourne

STANDARD TEST PROCEDURE PRE-TEST QUALITY OF OPTIC FIBRE CABLE ON DRUMS TYPE OF CABLE :

Certified Fibre Optic Specialist - Testing

Optical Time Domain Reflectometry (OTDR)

Link loss measurement uncertainties: OTDR vs. light source power meter By EXFO s Systems Engineering and Research Team

Wilcom. Model FR2 Fiber Ranger Optical Fault Locator OPERATING INSTRUCTIONS

MT-RJ Optical Fiber System Field Testing

FastReporter 2 DATA POST-PROCESSING SOFTWARE

palmotdr Series Handheld OTDR

FTB-7400E Metro/CWDM OTDR METRO/CORE AND CWDM NETWORK FIBER CHARACTERIZATION

FLX380-30x FlexTester OTDR

A. General: Horizontal and backbone cabling shall be verified in accordance with ANSI/TIA/EIA-568-C and the addendum for fiber optic testing.

OPX-BOXe Rugged, Pocket-sized Mini OTDR

M700-Series Multifunction OTDR

A Fresnel Reflection-Based Optical Fiber Sensor System for Remote Refractive Index Measurement Using an OTDR

FLX380 and OFL280 FlexTester Series

Fiber Optics for Todays Industry Applications

FTB-730 PON FTTx/MDU OTDR OPTIMIZED FOR ACCESS FIBER DEPLOYMENTS AND TROUBLESHOOTING

A Quick Start Guide to Fiber-to-theAntenna (FTTA) Installation and Maintenance Testing. Vol. 2 Tier 2 Certification

FastReporter 2 DATA POST-PROCESSING SOFTWARE

ASSMANN ELECTRONIC GmbH ASSMANN SYSTEM GUARANTEE. DIGITUS Professional Fiber Optic Cabling System. Appendix B - Provisions for acceptance

M210 Multifunction Micro OTDR

4120 Fire Alarm Network Reference

FTBx-740C-DWC TUNABLE OTDR C-BAND DWDM METRO ETHERNET LINK CHARACTERIZATION

Fire Control Panels. Multiple Signal Fiber Optic Modems and Accessories for Panel and Remote Mounting. Features. Operation.

palmotdr Series Handheld OTDR

EXECUTING HIGHLY ACCURATE FIBER MEASUREMENTS IN A FRACTION OF THE TIME

Acceptance Requirements. Fibre Optic Systems. Revised 12/2017. December 5th, Alexander Kölbel

RLH Industries, Inc. Cleaning and Testing Fiber Optic Cable. Reference Guide MD A 0507

Fiber Optic and CAT 5, 6, 7 and 8 Installer Premise Cabling

ACCESS Master MT9085 Series. Product Introduction

ANALYSIS OF OTDR MEASUREMENT DATA WITH WAVELET TRANSFORM. Hüseyin ACAR *

M310 Enterprise OTDR. Designed for Enterprise Network Testing, Troubleshooting and Documentation. or (800) , (603)

Terahertz Technologies Inc Fiber Optic Test Equipment Catalog

High cost performance choice

T-BERD 6000 Compact Optical Test Platform

PRO Android OTDR. Android Enabled OTDR. For Use With: PRO-2, PRO-3, PRO-FBE-300

Fibre (TIA) Field Test Specification

Datasheet: OptiFiber Pro OTDR

M310 Data Center OTDR

OptiFiber Pro OTDR Built for the enterprise

Remote fiber testing to improve SLA s

FlexScan OTDR With SmartAuto and LinkMap

Datasheet: OptiFiber Pro OTDR

Benefits of Enhanced Event Analysis in. Mark Miller

VIEW500. Please read this manual before operating the device. Please keep this manual together with the device. 2017/07 Rev.0.2

AV6416 OTDR. Product Overview: Main Features:

Fibre Optic Basics FIA Summer Seminar 2014

High cost performance choice

Datasheet Palm OTDR. Product Summaries

Advanced Fiber Optic Test Equipment Terahertz Technologies Inc.

Designed for Enterprise Fiber

Kingfisher KI-3800 Light Source. Inexpensive handheld source for testing and commissioning optical fibre networks. Compact and rugged,

FTB-700 Series. OTDR for FTB-1. User Guide

Yokogawa Meters & Instruments Releases AQ1200E, AQ1205A, AQ1205E, and AQ1205F OTDR Multi Field Testers

Hands-On CAT 5/6 & Fiber Optic Installer

Building and Characterizing 14GHz InGaAs Fiber Coupled Photodiodes

Hands-On Fiber Optics ISP/OSP - Advanced Combo- Tech

OptiFiber Pro OTDR Built for the enterprise

A dvan ced Fib er Opt ic Test Eq u ip me nt Terahertz Technologies Inc.

AE2200 FTTx Multi-Function Meter

VIEW500 USER-FRIENDLY STANDARD OTDR

RC801/803/ B 16E1 Fiber-Optic Multiplexer (Rev. M) User Manual. Raisecom Technology Co., Ltd. (04/2005)

FastReporter 2 DATA POST-PROCESSING SOFTWARE

FTS500 Series. Handheld OTDR Test Set.

M310 Enterprise OTDR. Designed for Enterprise Network Testing, Troubleshooting and Documentation. or (800) , (603)

FLIM/FFS and Nanoimaging Upgrade of Olympus confocal microscopes

FHO5000 Series Triple-Proof OTDR

Transcription:

1/10 FACULTY OF ENGINEERING LAB REPORT SUBMISSION COVER PAGE ETN4106 OPTOELECTRONICS AND OPTICAL COMMUNICATIONS TRIMESTER 3, SESSION 2016/2017 Student Name: Student ID: Degree Major (please circle): EE / LE / CE / TE / ME / OPE / MCE / NT Declaration of originality: I declare that all sentences, results and data mentioned in this report are from my own work. All works derived from other authors have been listed in the references. I understand that failure to do this is considered plagiarism and will be penalized. Note that collaboration and discussions in conducting the experiments are allowed but copying and any act of cheating in the report, results and data are strictly prohibited Student signature: Experiment title: OOC1 FIBER LINK CHARACTERIZATION WITH OTDR Experiment Date: Table/PC No.: Date Submitted: Lab Instructor Name: Verified: Rubrics submission: YES/NO (Please get your lab instructor signature after they have verified your results)

2/10 FACULTY OF ENGINEERING LAB SHEET ETN4106 OPTOELECTRONICS AND OPTICAL COMMUNICATIONS TRIMESTER 3 (2016/2017) OOC1 FIBER LINK CHARACTERIZATION WITH OTDR *Note: On-the-spot evaluation is carried out during or at the end of the experiment. Students are advised to read through this lab sheet before doing experiment. Your performance, teamwork effort, and learning attitude will count towards the marks. At the end of the experiment, student must submit their individual lab report and the rubrics form to the lab technician.

3/10 OOC1 Fiber Link Characterization with an OTDR Objectives: 1. To determine the fiber's length and overall attenuation, including splices and connectors losses. 2. To demonstrate ghost and determine the real length of the fiber cable. 3. To locate faults, such as breaks, and to measure optical return loss. Equipment: 1. JDSU MTS-6000 Compact Optical Modular Platform 2. Small single mode fiber optic cable reels have the following specification: Length: 2.2 km Att.1310nm: 0.34 db/km. Att.1550nm: 0.19 db/km. 3. 9/125/250 UM single mode simplex PC/B01020036005/SP1 (Launcher cable with FC connectors) 4. FC adapters. Theory: An optical time-domain reflectometer (OTDR) is an optoelectronic instrument used to characterize an optical fiber. An OTDR injects a series of optical pulses into the fiber under test. It also extracts, from the same end of the fiber, light that is scattered and reflected back from points in the fiber where the index of refraction changes. (This is equivalent to the way that an electronic time-domain reflectometer measures reflections caused by changes in the impedance of the cable under test.) The strength of the return pulses is measured and integrated as a function of time, and is plotted as a function of fiber length. An OTDR may be used for estimating the fiber's length and overall attenuation, including splice and mated-connector losses. It may also be used to locate faults, such as breaks, and to measure optical return loss. In addition to required specialized optics and electronics, OTDRs have significant computing ability and a graphical display, so they may provide significant test automation. However, proper instrument operation and interpretation of an OTDR trace still requires special technical training and experience. OTDRs are commonly used to characterize the loss and length of fibers as they go from initial manufacture, through to cabling, warehousing while wound on a drum, installation and then splicing. The last application of installation testing is more challenging, since this can be over extremely long distances, or multiple splices spaced at short distances, or fibers with different optical characteristics joined together. OTDR test results are often carefully stored in case of later fiber failure or warranty claims. Fiber failures can be very expensive, both in terms of the direct cost of repair, and consequential loss of service. OTDRs are also commonly used for fault finding on installed systems. In this case, reference to the installation OTDR trace is very useful, to determine where changes have occurred. Use of an

4/10 OTDR for fault finding may require an experienced operator who is able to correctly judge the appropriate instrument settings to locate a problem accurately. This is particularly so in cases involving long distance, closely spaced splices or connectors. Ghosts: If you are testing short cables with highly reflective connectors, you will likely encounter "ghosts" like in Figure 1. These are caused by the reflected light from the far end connector reflecting back and forth in the fiber until it is attenuated to the noise level. Ghosts are very confusing, as they seem to be real reflective events like connectors, but will not show any loss. If you find a reflective event in the trace at a point where there is not supposed to be any connection, but the connection from the launch cable to the cable under test is highly reflective, look for ghosts at multiples of the length of the launch cable or the first cable you test. You can eliminate ghosts by reducing the reflections. Figure 1.OTDR "Ghost" On very short cables, multiple reflections can be confusing. A cable that was tested with an OTDR can be deemed bad because it was broken in the middle. In fact it was very short and the ghosted image made it look like a cable with a break in the middle. The tester had not looked at the distance scale or he would have noted the "break" was at 40 meters and the cable was only 40 meters long. The ghost at 80 meters looked like the end of the cable to him. Experimental Methodology: Use the highly integrated platform MTS-6000 with single module slot and an intuitive graphical user interface (GUI) shown on a large 8.4 inch transreflective colour display (with an optional touch screen) to improve viewing under any condition. Then, connect the equipments as it appears in Figure 2 below, and continue with the following experimental procedure.

5/10 Figure 2. Using MTS-6000 OTDR to locate faults or breaks Figure 3. MTS-6000 ports Figure 4. Controls of the interface module

6/10 Experimental Procedure: A. Determination of the fiber's length and overall attenuation, including splices and connectors losses. (Please refer to Figure 2 for the connection of this experiment.) 1. Connect the launch cable by connecting the FC connector to the plug in module. 2. Use FC adapter to connect the FC connector to reel A of fiber optic cable which has a length of 2.2km. 3. Lift the protective cover over the power supply socket on the top of the 6000 Base unit (Top left hand corner as it appears in Figure 3) and plug in the main adapter. 4. Now press the On/Off key. The On indicator lights up. 5. The JDSU logo appears on the screen briefly, then an autotest is carried out, the software is installed (this just takes a few seconds), then the screen goes dark for about three seconds. Finally, the opening screen appears. 6. Press the setup key appears in Figure 4. 7. On acquisition menu select Mode then click on Auto or in case you select one of the wavelengths (1310 nm or 1550 nm) make sure that the Pulse and Resolution are set to auto. 8. Press Start/Stop Key to start the laser. 9. The result of the measurements will appear in the result page within less than one minute and can be memorized in the table. B. Ghost Image and its effects on results. 1. In order to activate ghost detection, press Setup key again. 2. On Measurements menu select Detection, then select Ghost and click on Yes. 3. Ghost detection can be deactivated again by clicking on No. C. Locating faults or breaks 1. The OTDR allow location of the fault or breaks by clicking on Fault locator in Mode menu, after selecting acquisition menu.

7/10 Name: Student ID: Date: Lab Group: Table No. Major (please circle): EE/CE/MCE/ME/TE/OPE/NT Questions (Answer ALL questions) (Total marks: 20 marks. This marks will be converted to 4 marks for Rubrics Criteria 4) 1. In part A, connect reel B to reel A using another FC adapter. Compare the measurements between reel A and the cascaded reel A and reel B. Your answer must include results of the measurements in plots of loss (db) vs length (km). (Cognitive Analysis, Level 4) [4 marks]

8/10 2. In part A, compare the measurements (plots of loss (db) vs length (km)) when using wavelength of 1310 nm and 1550 nm. What is your conclusion? (Cognitive Analysis, Level 4). [4 marks] 3. In part B, identify the ghosts in the plots of the measurement images and evaluate the effects of ghost on the measurements. (Cognitive Evaluation, Level 6). [4 marks]

9/10 4. In part C, what is the length of the fiber and what is the total loss? Your answer must include plots of the measurement results. (Cognitive Analysis, Level 4). [2 marks] 5. Analyze how the total loss (in db) in Question 4 is obtained. You may make any necessary assumption on the losses in the OTDR link. (Cognitive Analysis, Level 4). [6 marks]

10/10 Please write a short summary of the experiment done and conclusion from this experiment. (Total marks: 20 marks. This marks will be converted to 4 marks for Rubrics Criteria 5)