Experimental Study on Performance Parameters for Refrigerants R22, R410a and R404a at Various Air Outlet Temperatures

Similar documents
International Journal of Advance Engineering and Research Development

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 12, December

Performance Evaluation of R290 as Substitution to R22 & Mixture of Them in Vapour Compression Refrigeration System

Performance of window air conditioner using alternative refrigerants with different configurations of capillary tube

A Review of Hydroflorocarbons (HFC S) Refrigerants as an Alternative to R134a Refrigerant

PERFORMANCE OF VCRS SYSTEM WITH HEAT EXCHANGER AND PHASE CHANGE MATERIAL

Performance Evaluation of R290 as Substitution to R22 & Mixture of Them in Vapour Compression Refrigeration System

Experimental investigation on the performance of air conditioner using R32 Refrigerant

Improving and Comparing the Coefficient of Performance of Domestic Refgirator by using Refrigerants R134a and R600a

NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A

Experimentation and Fabrication of Iceplant Using Ecofriendly Refrigerant

NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A

Experimental study of Hydrocarbon Refrigerant Mixture R290/R600a as an alternative to Refrigerant R134a used in a Domestic Refrigerator

ASSESSMENT OF R430A REFRIGERANT AS A POSSIBLE SUBSTITUTE TO R134A REFRIGERANT IN LARGE CAPACITY FREEZER

CHAPTER 1 INTRODUCTION

EXPERIMENTAL INVESTIGATION OF WATER COOLER SYSTEM BY USING ECO-FRIENDLY REFRIGERANT (R-134a)

Environment Protection Engineering

Subscripts 1-4 States of the given system Comp Compressor Cond Condenser E Evaporator vol Volumetric G Gas L Liquid

CHAPTER 1 INTRODUCTION

Role of Nano-technology for improving of thermal performances of vapour compression refrigeration system (VCRS): An Overview

An Experimental Study of a Simple Vapour Compression Refrigeration System with Varying Parameters

Performance Analysis of Li-Br Water Refrigeration System with Double Coil Anti-Swirl Shell and Coil Heat Exchangers

ISSN Electronic International Interdisciplinary Research Journal (EIIRJ) Bi-monthly Reviewed Journal Mar- April 2015

Use of fourth generation ecofriendly refrigerants in two and three cascade refrigeration systems for reducing global warming and ozone depletion

Design of LPG Refrigeration System

Available online at ScienceDirect. Energy Procedia 109 (2017 ) 56 63

Volume 4, Issue 1 (2016) ISSN International Journal of Advance Research and Innovation

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

Performance Evaluation of Eco- Friendly Alternate Refrigerants for VCRS

PERFORMANCE OF REFRIGERATOR USING R-600A AS REFRIGERANT

Oyelami S., Bolaji B. O.

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

EVALUATION OF REFRIGERANT R290 AS A REPLACEMENT TO R22

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 05 May p-issn:

Sarthak Thakar, 2 R.P.Prajapati 1

Enhancement of COP by Using Spiral and Microchannel Condenser instead of conventional Condenser of VCR System

Performance Assessment of Water Cooled Condenser Refrigeration System

IR-REVERSIBILITY ANALYSIS OF A SPLIT TYPE AIRCONDITIONER USING R600a AS REFRIGERANT

η second law = Second law efficiency

Effects of evaporator load on vapour compression refrigeration system using ecofriendly hydrocarbon refrigerants with sub cooling

Waghmare Tushar Ramrao, D.S.Nakate

Evaluation of COP in Refrigeration System by using Different Refrigerants

Chapter 2. Alternatives to HCFCs and their Characteristics

Experimental Investigation on R 290 and R 600a In a Vapor Compression Refrigeration

Part load performance analysis of vapour compression refrigeration system with hydrocarbon refrigerants

A Comparison Between Refrigerants Used In Air Conditioning

Australian Journal of Basic and Applied Sciences. Investigation of New Eco Friendly Refrigerant Mixture Alternative to R134a in Domestic Refrigerator

AN EXPERIMENTAL STUDY OF A REFRIGERATING PLANT WHEN REPLACING R22 WITH HFCs REFRIGERANTS

Comparative Performance Analysis of Domestic Refrigerator using R12, R134a and R600a Refrigerants

Design & Fabrication of Hybrid Cooler

Study of R-161 refrigerant as an Alternate Refrigerant to various other refrigerants

Numerical Study on Improvement of COP of Vapour Compression Refrigeration System

EXPERIMENTAL INVESTIGATIONS ON AL 2 O 3 NANO REFRIGERANT WITH DIFFUSER AT CONDENSER INLET IN A VCR SYSTEM

Volume 3, Issue 4 (2015) ISSN International Journal of Advance Research and Innovation

JJMIE Jordan Journal of Mechanical and Industrial Engineering

Numerical Simulation of Window Air Conditioner

PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION THERMOELECTRIC REFRIGERATION SYSTEM WITH NOZZLE AND DIFFUSER THROUGH INCORPORATION OF PHASE CHANGE MATERIAL

Performance and Analytical Study of Cooler Cum Air Conditioner based on Vapour Compression Refrigeration System

Main Anthropogenic Sources of Greenhouse Gases Refrigerants

U.G. Student, Department of Mechanical Engineering, J D Engineering College, Nagpur, Maharashtra, India

EXPERIMENTAL VERIFICATION OF PERFORMANCE OF CAPILLARY TUBE USING VAPOUR COMPRESSION REFRIGERATION SYSTEM

Analysis of Vapour Compression Refrigeration System with Refrigerants R134a, R143a, R152a, R290 and R32

Effect of capillary diameter on the power consumption of VCRS using different refrigerants

Performance Study on A Window Type Air Conditioner Condenser Using Alternative Refrigerant R407C

Design and Development of Water Cooled Condenser for Domestic Refrigerator

Energy Performance of Eco-friendly R152a and R600a Refrigerants as Alternative to R134a in Vapour Compression Refrigeration System

A COMPARATIVE STUDY FOR RETROFITTING OF R-12 VAPOUR COMPRESSION REFRIGERATION SYSTEM BY ECO- FRIENDLY REFRIGERANTS R-134A, R-413A, R-423A

HEFAT th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics Sun City, South Africa Paper number:pp1

Keywords: Climate change; ozone depletion; Montreal protocol; eco-friendly refrigerant; hydrocarbon refrigerant; performance analysis.

Study of R161 Refrigerant for Residential Airconditioning

Performance Analysis of Electronic Expansion Valve in 1 TR Window Air Conditioner using Various Refrigerants

Low GWP Refrigerants for Air Conditioning Applications

International Journal of Informative & Futuristic Research ISSN (Online):

Experimental performance evaluation of heat pump by using CO 2. as a refrigerant. IOP Conference Series: Materials Science and Engineering

EXERGY ANALYSIS OF DOMESTIC REFRIGERATOR WITH DIFFERENT REFRIGERANTS

EXPERIMENTAL INVESTIGATION OF COMPARISION OF AIR COOLED AND WATER COOLED CONDENSER ATTACHED WITH COOLING TOWER

Air Conditioning System with Modified Condenser Ducts and Evaporative Cooling

Chapter 10. Refrigeration and Heat Pump Systems

Evaluation of Vapour Compression Refrigeration System Using Different Refrigerants

Waste Heat Utilization of Vapor Compression Cycle for Operation of Vapor Absorption System

Comparative assessment for drop in replacement of R134a in domestic refrigerator.

Optimization of Capillary Tube Parameters in Vapour Compression System using Environmentally Friendly Refrigerant R1234yf

WORK STUDY ON LOW TEMPERATURE (CASCADE) REFRIGERATION SYSTEM

Volume 6, Issue 3(2018) ISSN International Journal of Advance Research and Innovation

A Theoretical investigation on HC Mixtures as Possible Alternatives to R134a in Vapor Compression Refrigeration

Experimental Performance Evaluation Of Vapour Compression Refrigeration System using R134a and R152a Refrigerants, A review

Experimental Evaluation of Refrigerant Mixtures as Substitutes for HFC134a

IJESRT. (I2OR), Publication Impact Factor: (ISRA), Journal Impact Factor: 2.114

International Journal of Research in Engineering and Innovation Vol-2, Issue-2 (2018),

Thermodynamic Cycle Analysis of Mobile Air Conditioning System Using HFO-1234yf as an Alternative Replacement of HFC-134a

ADVANCES in NATURAL and APPLIED SCIENCES

Reheating Refrigeration System

Performance Evaluation of Vapour Compression System with R22 and Environment-Friendly Refrigerant

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

Thermodynamic study of R134a in Vapour Compression Refrigeration System in Summer Climate

DEEPAK PALIWAL, S.P.S.RAJPUT

Experimental Analysis Of Vapour Compression Refrigeration System With Superheating By Using R-134a, R-12, R-717 Refrigerant

Enhancement of COP using Nanoadditives in Domestic Refrigerator

PERFORMANCE OF DEEP FREEZER BY USING HYDROCARBON BLENDS AS REFRIGERANTS

Optimum Length of a Condenser for Domestic Vapor Compression refrigeration System

Transcription:

Experimental Study on Performance Parameters for Refrigerants, R41a and R44a at Various Air Outlet Temperatures P. Nagaraju P. G. Student Sanketika Institute of Technology and Management Ch. Kiran Kumar Associate Professor Sanketika Institute of Technology and Management M. V. N. Srujan Manohar Assistant Professor GVP College of Engineering (A) Abstract The motivation of this project is to investigate the performance parameters of, and refrigerants at various air outlet temperatures. The performance parameters include various thermodynamic properties like maximum discharge pressure, coefficient of performance, power consumption, heat rejection and mass flow rate. Normally for all refrigerants, thermodynamic properties decrease on achieving less temperature. As is now widely used refrigerant, but on experimentation it has been observed that has reached the desired temperature in short time and having highest mass flow rate when compared with and at four different air outlet temperatures and also there is a slight comparison observed on remaining thermodynamic properties for and. Keywords Mass flow rate, Coefficient of performance, Power, Refrigerating effect, Ozone depletion potential I. INTRODUCTION A refrigerant is a substance or mixture, usually a fluid, used in a heat pump and refrigeration cycle. In most cycles it undergoes phase transitions from a liquid to gas and back again. The first known instance of refrigeration was demonstrated in 1748, by William Cullen at Glasgow University. After that, in the early 19th century compression was made on the ammonia vapour into a liquid by Michael Faraday, and then followed the invention of the first refrigerator. Since the rise of climate control technologies in the 2th century the issue of environmental impact become a major concern. The main impetus was of course the ozone depleting potential of the chlorofluorocarbons (CFCs) and hydro-chlorofluorocarbons (HCFCs) commonly used in refrigeration. The HCFCs, including R-22, were scheduled for phase-out in 21, even while bridging the development of refrigerants from early CFCs to modern hydro fluorocarbons (HFCs). The HFCs are accepted because they contain basically zero ozone depletion potential (ODP). Thus the requirement for environmentally friendly, working refrigerants necessitated the invention of refrigerant R-41A by 1991 which was introduced by Honeywell. Since then R- 41A performance has been researched in various applications. Another HFC refrigerant comparable to R-41A is R-44A. Refrigerant R-44A was developed to replace CFC R-52 and HCFC R-22. A window air conditioner is a system that cools space to a temperature lower than the surroundings. In air conditioner heat must be removed from the enclosed space and dissipated into the surroundings. However, heat tends to flow from an area of high temperature to that of a lower temperature. During the cycle, a substance called the refrigerant circulates continuously through four stages. The first stage is called Evaporation and it is here that the refrigerant cools the enclosed space by absorbing heat. Next, during the Compression stage, the pressure of the refrigerant is increased, which raises the temperature above that of the surroundings. As this hot refrigerant moves through the next stage, Condensation, the natural direction of heat flow allows the release of energy into the surrounding air. Finally, during the Expansion phase, the refrigerant temperature and pressure are lowered by adiabatic expansion process. This cold refrigerant then begins the Evaporation stage again, removing more heat from the enclosed space. A typical diagram of a window air conditioner which works according to the process explained above is shown in the figure. 348

refrigerant () in a vapour compression air-conditioning system. Performance of was very close to that of in all the operating conditions and performance characteristics considered. Performance of is slightly better than that of in terms of refrigerating effect and discharge pressure. Fig 1 Typical diagram of window air conditioner The suitability of a refrigerant for a certain application is determined by its physical, thermodynamic, chemical properties and by various practical factors. There is no one refrigerant which can be used for all types of applications. If one refrigerant has certain good advantages, it will have some disadvantages also for a particular application. Hence, a refrigerant is chosen which has greater advantages and less disadvantages. II. LITERATURE REVIEW AND APPROACH [1]M.Ashok Chakravarthy, M.L.S.Deva Kumar has done an Experimental Investigation of an Alternate Refrigerant for in Window Air Conditioning System. A window-type air conditioning system is selected for the tests conducted with three different types of refrigerants. These air conditioning units are spread widely in their applications and are circulating R-22 as a refrigerant. In this project, two zeotrope blend refrigerants were selected in the window type air conditioner system viz., R-47C (mixture of R-32/125/134a), R-47A (mixture of R-32/125/134a) to their better thermal properties and acceptable pressure and temperature ranges and suggested R47C and R47A are nearly having same performance compare to. [2]S.Venkataiah & G. Venkata Rao have done Analysis of Alternative Refrigerants to for Air-Conditioning Applications at Various Evaporating Temperatures and their paper presents the simulation results of a 1.5 ton capacity room air conditioning system with some selected refrigerants that have been assessed for their suitability as alternative refrigerants to for air conditioning applications and suggested no refrigerant is having better performance over in all parameters. [3]Computational analysis of the performance of ozone friendly R-22 alternative refrigerant in vapour compression air conditioning systems by Bukola Olalekan Bolaji, Zhongie Huan investigated the performances of two ozone friendly, hydro-fluorocarbon (HFC) refrigerant mixtures ( and R419A) theoretically using computational thermodynamic analysis and compared with the performance of baseline [4]G. Maruthi Prasad Yadav1, P. RajendraPrasad2, G.Veeresh3 has done experimental analysis of vapour compression refrigeration system with liquid line suction line heat exchanger by using R134a and and gave a conclusion that because of simplicity and low cost, capillary tubes are used as the expansion device in most small refrigeration and air conditioning systems.. [5] A Comparison of an and an Air Conditioner Operating at High Ambient Temperatures by W. Vance Payne and Piotr A. Domanski took and split air-conditioning systems and they had tested and compared as outdoor temperature ranged from 27.8 C (82. F) to 54.4 F (13 F). The system tests were extended to 68.3 C (155. F) ambient temperature with a customized compressor. Capacity and efficiency of both systems decreased linearly with increasing outdoor temperature, but the system performance degraded more than the system performance. Operation of the system was stable during all tests, including those with the customized compressor extending up to the 68.3 F (155. F) outdoor temperature and resulting in a supercritical condition at the condenser inlet. No noticeable changes in noise level or operation of the system were noted. From these studies, came to know that most of the investigations are carried by taking as a baseline refrigerant and it is widely used in air conditioners, due to its high ozone depletion potential still investigations are going on for the replacement of. There is no refrigerant which can satisfy all the performance parameters and have to select a refrigerant depending upon the requirement. Some of the investigations are carried by replacing the components of the system or by adding some more components to the system to increase the performance. As we already know that so many refrigerants are available in the market but particularly one refrigerant cannot satisfy all the human requirements in terms of performance parameters. So many investigations are made on the refrigerants in terms of performance parameters but maximum are concentrated on C.O.P. only, but beyond C.O.P, time taken to reach the desired temperature is also very important as so many industries and medical sectors need refrigerants which can achieve the desired temperature in very short time as more amount of heat can be liberated in that areas. This study investigates the performance parameters of the three selected refrigerants namely, and. These three are selected because recently most of the investigations on the refrigerants are made by taking the as a baseline refrigerant and so many studies suggested that, refrigerants can replace the. So, in this aspect want to do a experimental study on the refrigerants to suggest the best option for a particular parameter. 349

Power consumption(kw) III. EXPERIMENTAL SET UP A window air conditioner of 1 ton refrigeration capacity was selected to be as a test rig. The unit is having reciprocating compressor. The condenser and evaporator coils are made up of copper with smooth inner tube surface. Both compressor and condenser fins were made of aluminum. We have to fill 85ml of refrigerant in the test rig as it is one tone refrigerating system. Charging without the aid of any equipment requires a high level of skill and human judgment. Sometimes charging is done without the aid of any equipments, this system uses suction pressure and discharge pressure as indicative of the charge quantity. However, this needs a high level of skill and human judgment. Compressor oil also has to be changed depending upon the refrigerant selected. The window air conditioner utilizes refrigerant R-22 and mineral lubricating oil. The refrigerant may be charged in a liquid or vapour modes. This is limited by operating factors, such as the amount of refrigerant and time of charging. 1. Now, change the compressor oil in the compressor which is suitable for and charge the compressor through charging line connected to cylinder containing refrigerant by maintaining the pressure of 9.652 to 1.342 bar at suction valve and after completing the charging perform the same procedure but make sure that the room has achieved the preferred room temperature (34 C). 11. Then repeat the same process for refrigerant at same room temperature of 34 C by changing the compressor oil. V. EXPERIMENTAL RESULTS A. Air Outlet Temperature ( C) Vs Power Consumption (kw): Fig 3 shows that for all refrigerants the power consumption decreases on achieving less temperatures, in that is having highest power consumption than and. and are having nearly equal consumption of power at starting then it varies. 1.2 1.8.6.4.2 Fig 2 Experimental set up of window air conditioner 25 2 18 15 Air outlet temperature( C) IV. EXPERIMENTAL PROCEDURE 1. The taken window air conditioner is having as a working refrigerant and experiment is conducted at 34 C room temperature. 2. Keep the test rig on levelled surface. Keep the system in a closed cycle. 3. Give power supply to the system and ensure that all the Electrical connections are properly made. 4. Start the evaporator fan. 5. Start the compressor. 6. Allow the system to reach the preferred temperatures. 7. Take readings as per observation table. 8. After taking the readings switch off the air conditioner and release refrigerant through delivery valve of the compressor. 9. Then run the system ideally for five to ten minutes to remove any contents of the previous refrigerant. Fig 3 Air Outlet Temperature ( C) Vs Power Consumption (kw) B. Air Outlet Temperature ( C) Vs Time taken for Cooling (sec): Fig 4 Shows has reached the desired cooling temperatures in less time compared to and. and are taking more time to reach the desired temperature. 35

mass flow rate(kg/sec) Refrigearting effect(kj/kg) Time taken for desired cooling(sec) C.O.P. 14 6 12 5 1 4 8 6 4 3 2 2 1 25 2 18 15 25 2 18 15 Air outlet temperature( C) Air outlet temperature( C) Fig 4 Air Outlet Temperature ( C) Vs Time taken for Cooling (sec) C. Air Outlet Temperature ( C) Vs Mass flow rate (kg/sec): Fig 5 shows there is a slight decrease in the mass flow rate for all refrigerants on achieving less temperature. has highest mass flow rate while has lowest mass flow rate..3.25.2 Fig 6 Air Outlet Temperature ( C) Vs C.O.P. E. Air Outlet Temperature ( C) Vs Refrigerating effect (kj/kg): Fig 7 Shows Refrigerating effect is increasing on achieving less temperatures and it is highest for and lowest for. 3 25 2.15 15.1.5 1 5 25 2 18 15 Air outlet temperature( C) 25 2 18 15 Air outlet temperature( C) Fig5 Air Outlet Temperature ( C) Vs Mass flow rate (kg/sec) D. Air Outlet Temperature ( C) Vs C.O.P.: Fig 6 Shows C.O.P also decreases on achieving less temperatures. has more C.O.P and has less C.O.P value and there is not much variation of C.O.P. for refrigerants and. Fig 7 Air Outlet Temperature ( C) Vs Refrigerating effect (kj/kg) F. Air Outlet Temperature ( C) Vs Heat rejected in the Condenser (kj/kg): Fig 8 Shows Heat rejection rate in the condenser also increases on reaching less temperatures and it is highest for and lowest for. 351

Dischrge presure(bar) Hear Rejection in condenser(kj/kg) 35 3 25 2 15 1 Depending upon the requirements the refrigerant can be chosen for various purposes i.e. 1. For high pressure ratios refrigerant is preferable. 2. For achieving desired cooling effect in very less time, is preferable. 3. For achieving high mass flow rate, is Preferable. 4. For high heat rejection rates, is preferable. 5. Best C. O. P.Can be achieved by using both and. 6. For optimizing power consumption can be used 7. For best refrigerating effect, is best option. 5 25 2 18 15 Air outlet temperature( C) Fig 8 Air Outlet Temperature ( C) Vs Heat rejected in the Condenser (kj/kg) G. Air Outlet Temperature ( C) Vs Discharge pressure(bar): Fig 9 shows that the discharge pressure at compressor value decreases on achieving less temperature. is having high pressure values and is lower. VI. CONCLUSION AND FUTURE SCOPE This study was mainly concentrated on performance parameters of three different refrigerants and identified that, depends up on the requirement we have to choose the refrigerant but there is no refrigerant which is best in all parameters. This study also suggests that for achieving desired temperature in very short time is preferable as it is a very important aspect for so many industrial and medical sectors. For domestic purpose is preferable as it is nearly having same parameters as. In future, so many refrigerant mixtures are planned to be launch in the market. So, by taking this study as a base we can perform study on selecting some more refrigerants, so that we can find a refrigerant which can give best performance in all parameters 14 12 1 8 6 4 2 25 2 18 15 Air outlet temperature Fig 9 Air Outlet Temperature ( C) Vs Discharge pressure (bar) REFERENCES [1] M.Ashok Chakravarthy, M.L.S.Deva Kumar, Experimental Investigation of an Alternate Refrigerant for in Window Air Conditioning System, IJSRP, Volume 2, Issue 1, October 212 ISSN 225-3153) [2] S.Venkataiah* & G. Venkata Rao, Analysis of Alternative Refrigerants to for Air-Conditioning Applications at Various Evaporating Temperatures, IJERA, ISSN: 2248-9622, Vol. 4, Issue 3(Version 2), March 214, pp.39-46 [3] Bukola Olalekan Bolaji, Zhongjie Huan, Computational Analysis of the Performance of Ozone-Friendly Alternative Refrigerants in Vapour Compression Air-Conditioning Systems, Vol. 38 212 No. 4, DOI: 1.5277/EPE1244. [4] G. MaruthiPrasad Yadav, P. RajendraPrasad, G.Veeresh, Experimental analysis of vapour compression refrigeration system with liquid line suction line heat exchanger by using R134a and, IJSRMS, ISSN: 23493771 Volume 1 Issue 12, pg: 382-395. [5] W. Vance Payne and Piotr A. Domanski A Comparison of an and an Air Conditioner Operating at High Ambient Temperatures National institute of Standards and Technology, Thermal Machinery Group Gaithersburg, Maryland USA. [6] S.C. Arora & Domkundwar, Refrigeration and Air- Conditioning Dhanpatrai & Sons, 2. 352