Starch Paper-Based Triboelectric Nanogenerator for Human Perspiration Sensing

Similar documents
Sustainable Biomechanical Energy Scavenger towards Self-Reliant Kids Interactive Battery Free Smart Puzzle

Proceedings Soft Triboelectric Band for Sensing of and Energy Scavenging From Body Motion

Supporting Information

MATEC (2018) 148. ISSN X,

An Ultrathin Flexible Single-Electrode Triboelectric- Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing

Harsh-Environmental-Resistant Triboelectric Nanogenerator and Its Applications in Autodrive Safety Warning

Wearable Triboelectric Generator for Powering the Portable Electronic Devices

B.Eng. in Materials Science and Engineering, Tsinghua University (Beijing, China) July 2009

The Mode of Urban Renewal Base on the Smart City Theory under the Background of New Urbanization

Induction heating with the ring effect for injection molding plates

A Packaged Self-Powered System with Universal Connectors Based on Hybridized Nanogenerators

Experimental Study on the Effects of Compression Parameters on Molding Quality of Dried Fish Floss

Cite This: ACS Nano 2017, 11,

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Experimental Study of Initial Process of Frost on Heat Exchanger Surface of Refrigerated Transport Vehicle

which allows for precise measurements of the fiber dimensions. Supplementary

Experimental Research of Air Source Heat Pump Frosting and Defrosting in a. Double Stage-Coupling Heat Pump

Experimental study of hybrid loop heat pipe using pump assistance for high heat flux system

ScienceDirect. Development progress of critical equipment in the CSNS cryogenic hydrogen system

ENHANCED VISION - INFRARED 1

Open Access Operation Modes and Energy Analysis of a New Ice-Storage Air- Conditioning System

A Fresnel Reflection-Based Optical Fiber Sensor System for Remote Refractive Index Measurement Using an OTDR

Design of Gear Defect Detection System Based on Machine Vision

Chapter 1 Triboelectrification

Proceedings Design, Fabrication and Optimization of a Silicon MEMS Natural Gas Sensor

Design of Unmanned Monitoring and Automatic Monitoring System

All-Plastic-Materials Based Self-Charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors

Ying-Chih Lai, Jianan Deng, Steven L. Zhang, Simiao Niu, Hengyu Guo, and Zhong Lin Wang*

Study of R-161 refrigerant as an Alternate Refrigerant to various other refrigerants

The design of clothing washable labels based on NFC

Proceedings Cu Thin Film Polyimide Heater for Nerve-Net Tactile Sensor

Design of the Fiber-optic Fence Warning System with Distributed Video Real-Time Display Function Qiang-yi YI and Zheng-hong YU *

Health Monitoring System Using FBG-Based Sensors for a 12-Story Building with Column Dampers.

Study on an environmental simulation system of low/high temperature. for great space

Available online at ScienceDirect. Energy Procedia 91 (2016 ) 35 41

ZnS Nano-architectures: Photocatalysis, Deactivation and Regeneration

LARGE-SCALE SYNTHESIS AND PHOTOLUMINESCENCE OF ZnS HIERARCHICAL NANOSTRUCTURES ON SILICA GLASS SUBSTRATE

A design of automatic boiler intelligent alert system based on the wireless AD hoc network

MODEL-BASED OPTIMIZATION OF AN INFRARED GAS SENSOR

A Novel Online Cleaning System for Shell and Tube Oil Heat Exchanger

Journal Articles by Wang s Group on Triboelectric Nanogenerators ( )

Procedia - Social and Behavioral Sciences 195 ( 2015 ) World Conference on Technology, Innovation and Entrepreneurship

INFLUENCE OF DIFFERENT TEMPERING PERIOD AND VACUUM CONDITIONS ON THE RICE GRAIN BREAKAGE IN A THIN LAYER DRYER

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Available online at ScienceDirect. Procedia Engineering 121 (2015 )

Review of progress in soil inorganic carbon research

4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015)

Design of Humidity Monitoring System Based on Virtual Instrument

Feasibility study on an energy-saving desiccant wheel system with CO 2 heat pump

1st City Issues Tongji International Symposium City & Real Estate Risk Management 2010

FABRICATION SOLAR REFRIGERATION SYSTEM BY PELTIER EFFECT

Long-Range Displacement Sensor Based on SMS Fiber Structure and OTDR

Back To Bemberg Chiffon

The Effect of Quantity of Salt on the Drying Characteristics of Fresh Noodles

Harmful Intrusion Detection Algorithm of Optical Fiber Pre-Warning System Based on Correlation of Orthogonal Polarization Signals

Research Article The Effect of Freeze-drying Conditions on Drying Rate and Rehydration Ratio of Dumplings

The study of sewage sludge thermo-drying efficiency

Performance Analysis of Water-Water Heat Pump System of 100 kw Scale for Cooling Agricultural Facilities

Experimental Investigation of a Brazed Chevron Type Plate Heat Exchanger

Experimental Study on Match for Indoor and Outdoor Heat Exchanger of Residential Airconditioner

DESIGN AND ANLYSIS OF MODIFIED HYBRID SOLAR SYSTEM USING NANO FLUIDS

Experimental study of fan coil assisting radiant floor heating system

REVIEW ON HOT GAS DEFROSTING SYSTEM FOR VAPOR COMPRESSION REFRIGERATION SYSTEM

Modeling and Simulation on Temperature Control System of Farm Products Baking Equipment. Liu Jun, Jia Zhenwei, Guo Rongxing

Cassava Chip Drying by Using a Small-Scale Hot-Air Microwave Oven

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

The design of the human body infrared thermometer

The effect of write current on thermal flying height control sliders with dual heater/insulator elements

March 4-7, 2018 Hilton Phoenix / Mesa Hotel Mesa, Arizona Archive

The empirical research on the consumers' willingness to participate in E-waste recycling with a points reward system

EFFECT OF WATER RADIATOR ON AIR HEATING SOLAR COLLECTOR EFFICIENCY

A Review on Analysis of Vapour Compression Refrigeration System Using Matrix Heat Exchanger

Separation of the Pyro- and Piezoelectric Response of Electroactive Polymers for Sensor Applications

The Energy Consumption Investigation of the Hotel Central. Air-conditioning System and the Research of Energy Saving Measures

Portable Solar Water Purifier with Heating and Cooling Effect

Dynamic performance of a novel dew point air conditioning for the UK buildings

The relocation of undisturbed soil in long-term experiment impacts organo-mineral complex degree and combined humus of black soil

Purdue e-pubs. Purdue University

Proceedings Enhanced Characteristics of Nondispersive Infrared CO2 Gas Sensor by Deposition of Hydrophobic Thin Film

A Method for Predicting the Matric Suction of Unsaturated Soils with Soil Color Recognition

Architecture, Tianjin University Lecturer of Landscape Architecture, School of Architecture, Tianjin University

LAMINATION AND CHARACTERIZATION OF A POLYETHYLENETEREPHTHALATE FLEXIBLE MICRO HEAT PIPE

Analysis of Surface resistivity behavior of Conductive Woven fabrics made from Copper Jari & S.S./Polyester yarns for ESD control

SIMULATION ANALYSIS ON THE FRESH AIR HANDLING UNIT WITH LIQUID DESICCANT TOTAL HEAT RECOVERY

Influence of Dielectric Barrier Discharge treatment on the triboelectric charging and the electrostatic separation of plastic particles

Design of Intelligent Humidity Sensing Watering System Based on MCU

Chofu campus of the Toho Gakuen School of Music

Experimental Investigate on the Performance of High Temperature Heat Pump Using Scroll Compressor

EXPERIMENTAL PERFORMANCE INVESTIGATION OF SWIRLING FLOW ENHANCEMENT ON FLUIDIZED BED DRYER

1066. A self-adaptive alarm method for tool condition monitoring based on Parzen window estimation

Performance Investigation of Refrigerant Vapor- Injection Technique for Residential Heat Pump Systems

Experimental Investigation of a Hybrid Evacuated Tube Solar Collector

Performance Analysis of Electronic Expansion Valve in 1 TR Window Air Conditioner using Various Refrigerants

Development and Application of Micro Channel Heat Exchanger for Heat Pump

EFFECTS OF AIR VELOCITY AND CLOTHING COMBINATION ON HEATING EFFICIENCY OF AN ELECTRICALLY HEATED VEST (EHV): A PILOT STUDY

Research on the Monitor and Control System of Granary Temperature and Humidity Based on ARM

Experimental Study of Fouling Performance of Air Conditioning System with Microchannel Heat Exchanger

1 Introduction. Yaqin Xia 1,a, Changchun Yang 1 and Xiang Wu 1. MATEC Web of Conferences 237, (2018)

Denitrification and N 2 O production in subsoil in wheat-maize rotation field in North China Plain

Australian Journal of Basic and Applied Sciences. Homogenous Fish Cracker Dryer Using Hybrid Control System

Transcription:

Zhu et al. Nanoscale Research Letters (2018) 13:365 https://doi.org/10.1186/s11671-018-2786-9 NANO EXPRESS Starch Paper-Based Triboelectric Nanogenerator for Human Perspiration Sensing Zhiyuan Zhu 1, Kequan Xia 1, Zhiwei Xu 1*, Haijun Lou 2* and Hongze Zhang 3* Open Access Abstract A disposable and ecofriendly starch paper was used to fabricate a triboelectric nanogenerator (TENG) for the sensing of human perspiration. Using cost-effective and commercially accessible materials, the starch paper-based TENG (S-TENG) can be achieved through a rapid and simple fabrication method. The output performance varies with the absorbed water content, which can be utilized for human perspiration sensing. The starch structure can be broken down in water within 4 min. The proposed S-TENGs have a considerable potential in the field of green wearable electronics. Keywords: Triboelectric nanogenerator (TENG), Self-powered, Starch, Sensor Introduction The attractive attributes of flexible electronics, for example, their stretchable/bendable mechanical flexibility, small volume, and biodegradability, are expected to play a key role in disposable usage associated with electronic safety, bio-sensors, smart packing, and business cards [1 3]. In fact, flexible electronics using disposable substrates have attracted considerable attention, owing to their biocompatibility, chemical dissolvability, and environmental friendliness. Various flexible and disposable devices have therefore been used for fabricating wearable electronics [4 6], including self-power dynamic devices and intelligent sensors. In general, an additional power source is required for operating these types of wearable electronics. Nonetheless, traditional (i.e., non-portable, non-biocompatible, and non-sustainable) battery series need a constant supply of chemical power. The development of a suitable power supply is therefore essential for overcoming the challenges associated with wearable electronic gadgets. * Correspondence: xuzw@zju.edu.cn; louhj04@zju.edu.cn; zhanghongze007@pku.edu.cn 1 Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, People s Republic of China 2 Institute of Advanced Technology, Zhejiang University, Hangzhou, Zhejiang 310027, People s Republic of China 3 Nanjing Electronic Devices Institute, Nanjing, Jiangsu 210016, People s Republic of China The triboelectric nanogenerator (TENG) has been extensively investigated in the field of energy harvesting [7 12]. A TENG can convert mechanical energy derived from the environment into electrical energy and represents a novel power source, based on the processes of contact electrification and the induction of an electrostatic field [13 17]. Appropriate patterns of these devices have been extensively employed for supplying power to wearable electronic gadgets [18 21]. Furthermore, by combining TENGs with different types of triboelectric supplies, a self-powered sensor for various applications could be obtained [22 25]. However, most of the traditional TENGs are based on eco-unfriendly materials, for example, polymers that are difficult to decompose. Therefore, these TENGs may only be used on a limited basis in future applications. Starch is a promising feedstock for developing decomposable substrates, as it is less expensive than the other alternatives, found in abundance, and renewable. Here, we have illustrated disposable TENG devices based on ecofriendly biodegradable starch papers. The materials employed are all cost-effective and commercially available. The starch paper-based TENG (S-TENG) can be constructed through a simple process where the starch paper is assembled with a metal wire. The constructed TENG can be employed as a self-powered human perspiration sensor. Furthermore, the proposed TENG holds potential for application in the area of wearable electronics. The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Zhu et al. Nanoscale Research Letters (2018) 13:365 Page 2 of 6 Fig. 1 Schematic of the S-TENG assembly process Method Assembly of the S-TENG The starch paper (thickness: ~ 1 mm) was obtained from GILRO Corp. (Israel). One side of the paper is connected to a metallic wire and then sprayed with water vapors, resulting in the S-TENG. The fabrication mechanism, which is schematically demonstrated in Fig. 1, can be classified as simple and cost-effective. Measurements and Human Demonstration The electronic performance was measured with a digital oscilloscope (DSOX6004A Digital Storage Oscilloscope). The fabricated S-TENG (4.4 4.4 cm 2 ) was connected to a human elbow (metal wire facing human). In addition, the output signal of the S-TENG was measured for various durations of human biomechanical movement. Results and Discussion The working mechanism of the S-TENG is schematically shown in Fig. 2c. The proposed device is based on the coupling effect between the human hand and starch paper. When there is physical contact between the hand and the paper, the paper acquires negative charges on its surface, whereas the hand acquires positive charges. Moreover, once the hand is liberated, the overlapping area between the hand and the charged paper decreases and the charges on the paper are no longer fully balanced by those on the hand. The unstable negative charges on the starch surface force an electron flow to the ground from the back electrode of the paper. Nonetheless, when the hand approaches the paper again, the induced positive charges on the back electrode will become unstable and force the electron flow to the ground. The results indicate that the working state of the S-TENG can be separated into two working patterns, based on the quantity of water vapor absorbed by the starch paper. The concept of charge transfer is illustrated, using the state shown in Fig. 2cII as an Fig. 2 a A water film starts to form around the electrode side of the starch paper, b a water network is formed, c the working mechanism of the S-TENG

Zhu et al. Nanoscale Research Letters (2018) 13:365 Page 3 of 6 Fig. 3 a Photograph and b electronic output of the fabricated S-TENG example. As shown in Fig. 2a, in working pattern 1, a water film is initially formed around the electrode side of the paper. Nevertheless, the charges are still partly trapped in the irregular water film, forming a potential barrier that hampers the movement of carriers. However, in working pattern 2, a water network is created (Fig. 2b), and the electronic resistance of the electrode side comprising the starch paper is greatly reduced. A photograph of the fabricated S-TENG is shown in Fig. 3a. An adaptable resistor was employed as an exterior load and, for different spraying times of the water vapor, an oscilloscope was used to measure the electronic signals of the resistor. Figure 3b showsthe electronic performance of the S-TENG after the first spraying. As shown in the figure, the increase in the load resistance (from 100 to 100 MΩ) yields a constant increase in the collected output voltage. However, the maximum output power is reached at a loading resistance of 15 MΩ, and hence, the internal resistance of the fabricated TENG is ~ 15 MΩ. The output voltage (i.e., 11.2 V) under a loading resistance of 100 MΩ is approximated as the open-circuit voltage, as the loading resistance is considerably greater than the approximate value of the internal resistance. The operation stability of the fabricated paper TENG was then determined. As Fig. 4 shows, the output voltage (loading resistance: 100 MΩ) of the fabricated device decreases only slightly during a vertical force test. The starch paper exhibited sheet resistances of 19 MΩ, 6.1 MΩ, 1.5 MΩ, 140 KΩ, and 130 KΩ prior to water spraying and subsequent to the 1st, 3rd, 5th, and 7th spraying, respectively. The corresponding electronic activities of the S-TENG are compared, as shown in Fig. 5. The output voltage (subjected to a conforming load of 100 MΩ) increases with increased spraying times 0 3 (working pattern 1) and becomes saturated at spray times above the 3rd spraying (working pattern 2). The sensing of water-based liquids, for example, human perspiration is ensured, owing to the correlation Fig. 4 Vertical force test of fabricated S-TENG. The output voltage decreases only slightly under a loading resistance of 100 MΩ

Zhu et al. Nanoscale Research Letters (2018) 13:365 Page 4 of 6 Fig. 5 Dependence of the output voltage on the number of water spray steps between electronic voltage and the quantity of water vapor. This correlation can be characterized via changes in the internal resistance of the S-TENG. The reduction in the internal resistance of the S-TENG is promoted by the use of water vapor, since the introduction of water reduces the electronic resisting capacity of the starch paper. This decrease results from the formation of water conductive pathways on the surface and within the paper. Furthermore, this impact becomes particularly apparent when a film of water starts to form around the electrode side of the paper (working pattern 1). In addition, the electronic output occurring before water spraying stems mainly from the bound water of grain cells (resulting in weak electronic conduction for carriers). The proposed S-TENG has been used for the sensing of human perspiration. As shown in Fig. 6a, the S-TENG is connected to the human elbow after different durations of body motion. Afterward, the exposed layer of the human skin is cleaned with a dry towel and elbow motion ensues (Fig. 6; thecollected electronic output is shown in Fig. 6c). The trend observed is similar to that shown in Fig. 5, i.e., from the viewpoint of the correlation between electronic output (conforming load: 100 MΩ) and the duration of human motion. The results indicate that the proposed S-TENG can be employed for sensing human perspiration and monitoring human motion time. The disposability attributes of the starch paper were determined by evaluating the dissolution activity, as shown in Fig. 7. During this determination, the paper was immersed in tap water under gentle vibration by human hand, as depicted in Fig. 7a, for various durations (see Fig. 7b e). The starch paper broke down completely within 4 min, indicating that the proposed S-TENG may be fully degradable. Fig. 6 The a, b working pattern for harvesting human elbow motion energy, c electronic output (subject to a corresponding load of 100 MΩ) versus human motion time

Zhu et al. Nanoscale Research Letters (2018) 13:365 Page 5 of 6 Fig. 7 a Degradability tests performed by dipping starch paper in water, b immediately, and after b 1, c 2, d 3, and e 4 min Conclusion In this work, a new and simple methodology for fabricating disposable TENG devices employing ecofriendly biodegradable starch papers is introduced. The rapid and simple process for constructing the S-TENG utilizes cost-effective and commercially accessible materials. The starch structure can be broken down into powder in water within 4 min. The proposed TENG has considerable potential in the field of wearable electronics. Abbreviation TENG: Triboelectric nanogenerator Acknowledgements The authors would like to thank Prof. Yufeng Jin and Prof. Min Yu from Peking University for their help in previous work. The authors would also like to thank the anonymous reviewer for the valuable judgment of this paper. Funding This work receives no funding. Availability of data and materials The datasets used are included in the manuscript. Authors contributions ZZ designed and conducted the experiment, and wrote the paper. KX and HL contributed to the idea. ZX and HZ designed the experiment. All authors read and approved the final manuscript. Competing interests The authors declare that they have no competing interests. Publisher s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Received: 3 October 2018 Accepted: 6 November 2018 References 1. Wang G et al (2017) Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport. Proc Natl Acad Sci U S A 114:E10066 E10073 2. Ge X et al (2017) Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision. J Mater Chem A 5:8209 8229 3. Lin C et al (2017) Enhancing the stiffness of vertical graphene sheets through ion beam irradiation and fluorination. Nanotechnology 28:295701 4. Guo H et al (2016) All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 10:10580 5. Zhang XS et al (2018) All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy 4:410 426 6. Wang XF et al (2017) Simultaneously enhancing light emission and suppressing efficiency droop in GaN microwire-based UV LED by the piezophototronic effect. Nano Lett 17(6):3718 3724 7. Tang W et al (2015) Self-powered water splitting using flowing kinetic energy. Adv Mater 27:272 276 8. Wu CS et al (2016) Paper-based triboelectric nanogenerators made of stretchable interlocking Kirigami patterns. ACS Nano 10(4):4652 9. Li ZL et al (2016) High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy 22:548 557 10. Li XH et al (2014) 3D Fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 8:10674 10681 11. Wang XF et al (2016) Piezotronic effect modulated heterojunction electron gas in AlGaN/AlN/GaN heterostructure microwire. Adv Mater 28(33):7234 7242

Zhu et al. Nanoscale Research Letters (2018) 13:365 Page 6 of 6 12. Tang W, Zhang C, Han CB, Wang ZL (2014) Enhancing output power of cylindrical triboelectric nanogenerators by segmentation design and multilayer integration. Adv Funct Mater 24(42):6684 6690 13. Zhang XS et al (2013) Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett 13:1168 1172 14. Li ZL et al (2016) Triboelectrification enabled self-powered detection and removal of heavy metal ions in wastewater. Adv Mater 28:2983 2991 15. Wu CS et al (2018) Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array. Mater Today 21(3): 216 222 16. Ting Q, Wu YC, Yang Y (2015) Hybrid electromagnetic triboelectric nanogenerator for harvesting vibration energy. Nano Res 8(10):3272 3280 17. Li ZL et al (2015) β-cyclodextrin enhanced triboelectrification for selfpowered phenol detection and electrochemical degradation. Energy Environ Sci 8:887 896 18. Tang W et al (2014) Cover-sheet-based nanogenerator for charging mobile electronics using low-frequency body motion/vibration. Nano Energy 9:121 127 19. Zhang KW, Yang Y (2016) Linear-grating hybridized electromagnetictriboelectric nanogenerator for sustainably powering portable electronics. Nano Res 9(4):974 984 20. Quan T, Yang Y (2016) Fully enclosed hybrid electromagnetic triboelectric nanogenerator to scavenge vibrational energy. Nano Res 9(8):2226 2233 21. Lun P et al (2018) Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res 11(8):4062 4073 22. Zhang XS et al (2016) A silk-fibroin-based transparent triboelectric generator suitable for autonomous sensor network. Nano Energy 20:37 47 23. Li XH et al (2015) Self-powered triboelectric nanosensor for microfluidics and cavity-confined solution chemistry. ACS Nano 9:11056 11063 24. Wei G, Bi Y, Li X, Xu D, Xu W, Yang L, Qin Y, Guo H, Zhao X, Chen X, Jia L (2018) Self-powered hybrid flexible nanogenerator and its application in bionic micro aerial vehicles. Nano Energy 54:10 16 25. Zhao X, Wei G, Li X, Qin Y, Xu D, Tang W, Yin H, Wei X, Jia L (2017) Selfpowered triboelectric nano vibration accelerometer based wireless sensor system for railway state health monitoring. Nano Energy 34:549 555