INFLUENCE OF SOIL DENSITY AND MOISTURE ON SEISMIC STABILITY OF SLOPE STRUCTURES

Similar documents
COMPARISON OF SHEAR STRENGTH PARAMETERS OF BLACK COTTON SOIL WITH EFFECT OF RELATIVE COMPACTION

SOIL STABILISATION USING MARBLE DUST

CHAPTER 8 SLOPE STABILITY ANALYSIS

[Gupta* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

EXPERIMENTAL STUDY ON PULL-OUT CAPACITY OF HELICAL PILE IN CLAYEY SOIL

An Experimental Study on Variation of Shear Strength for Layered Soils

Moisture Content Effect on Sliding Shear Test Parameters in Woven Geotextile Reinforced Pilani Soil

Advanced Foundation Engineering. Introduction

Analysis of Pullout Resistance of Soil-Nailing in Lateritic Soil

Effect of Fertilizers on Soil Strength

SOIL STABILIZATION USING NATURAL FIBER COIR

DESIGN AND FABRICATION OF A PORTABLE REFRIGERATOR BASED ON PELTIER EFFECT

Analysis of Embankments with Different Fill Materials using Plaxis-2D

THE ULTIMATE SKIN RESISTANCE OF CONCRETE PILE IN PARTIALLY SATURATED COHESIVE SOIL BY MODIFIED Β METHOD

Consolidation Stress Effect On Strength Of Lime Stabilized Soil

Study on Effect of Water on Stability or Instability of the Earth Slopes

Soil Stabilization by Using Fly Ash

Effect of Placement of Footing on Stability of Slope

A DETAILED ANALYSIS OF SLOPE STABILITY USING FINITE ELEMENT METHOD (FEM)

REDISTRIBUTION OF LOAD CARRIED BY SOIL UNDERNEATH PILED RAFT FOUNDATIONS DUE TO PILE SPACING AND GROUNDWATER AS WELL AS ECCENTRICITY

Slope Stability of Soft Clay Embankment for Flood Protection

EAT 212 SOIL MECHANICS

Study of Soil Cement with Admixture Stabilization for Road Sub-Grade

AN EXPERIMENTAL STUDY OF SLOPE STABILITY WITH GROUP ACTION OF MICROPILES

EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL

Transient Groundwater Analysis with Slope Stability

Load-Carrying Capacity of Stone Column Encased with Geotextile. Anil Kumar Sahu 1 and Ishan Shankar 2

Numerical Analysis of the Bearing Capacity of Strip Footing Adjacent to Slope

Unsaturated Shear Strength Behavior under Unconsolidated Undrained Tests

JOJAPS. Soil Stabilization Using Polypropelene. eissn Jothy Rani a, Haslienda Mohd Iham a, Marlya Dahuri a *

Transition of soil strength during suction pile retrieval

Investigation on Engineering Properties of Soil-Mixtures Comprising of Expansive Soils and a Cohesive Non-Swelling Soil

DRAFT ONONDAGA LAKE CAPPING AND DREDGE AREA AND DEPTH INITIAL DESIGN SUBMITTAL H.3 STATIC SLOPE STABILITY ANALYSES

EFFECT OF RELICT JOINTS IN RAIN INDUCED SLOPE FAILURES IN RESIDUAL SOIL

Improvement of Granular Subgrade Soil by Using Geotextile and Jute Fiber

Keywords: slope stability, numerical analysis, rainfall, infiltration. Yu. Ando 1, Kentaro. Suda 2, Shinji. Konishi 3 and Hirokazu.

Loading unsaturated soil. *Mohamed Abdellatif Ali Albarqawy 1)

Identification of key parameters on Soil Water Characteristic Curve

MICRO HEAT PIPE SYSTEM FOR SPACE AVIONICS

Shear Strength Enhancement of Sandy Soil Using Hair Fibre

COHESIONLESS SOIL PROPERTIES IMPROVEMENT USING BENTONITE

Full Scale Model Test of Soil Reinforcement on Soft Soil Deposition with Inclined Timber Pile

EFFECT OF CENTRAL PILE IN INCREASING THE BEARING CAPACITY OF BORED PILE GROUPS

FINAL COVER VENEER STABILITY ANALYSES FOR SCA DESIGN

EFFECT OF RANDOM INCLUSION OF BAMBOO FIBERS ON STRENGTH BEHAVIOUR OF FLYASH TREATED BLACK COTTON SOIL

An Experimental Study of Soil Stabilization using Marble Dust

Experimental investigation and theoretical modelling of soft soils from mining deposits

TRANSMISSIVITY BEHAVIOR OF SHREDDED SCRAP TIRE DRAINAGE LAYER IN LANDFILL COVER SYSTEM *

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

STUDY ON THE NATIVE VEGETATION ON CUT SLOPES IN THE SOUTHERN HIGHWAY, SRI LANKA

Paper ID: GE-007. Shear Strength Characteristics of Fiber Reinforced Clay Soil. M. R. Islam 1*, M.A. Hossen 2, M. A.Alam 2, and M. K.

Department of Civil Engineering, Vel Tech High Tech Dr.Rangarajan Dr.Sakunthala Engineering College, Avadi, Chennai, Tamil Nadu, India.

Slope stability assessment

A Study on Soil Stabilization of Clay Soil Using Flyash

Stability of Inclined Strip Anchors in Purely Cohesive Soil

Stress-Strain and Strength Behavior of Undrained Organic Soil in Kupondol, Kathmandu

THE ROLE OF SUCTION IN THE PERFORMANCE OF CLAY FILL RONALD F. REED, P.E. 1 KUNDAN K. PANDEY, P.E. 2

Piles subject to excavation-induced soil movement in clay

Development of a Slope Stability Program for Transmission Towers

ScienceDirect. The Undrained Shear Strength of Overconsolidated Clays

Soil-Structure Interaction of a Piled Raft Foundation in Clay a 3D Numerical Study

Effect of characteristics of unsaturated soils on the stability of slopes subject to rainfall

Improvement in CBR of Expansive Soil with Jute Fiber Reinforcement

Centrifuge modelling and dynamic testing of Municipal Solid Waste (MSW) landfills

PILE FOUNDATIONS CONTENTS: 1.0 Introduction. 1.1 Choice of pile type Driven (displacement) piles Bored (replacement) piles. 2.

Experimental tests for geosynthetics anchorage trenches

Swelling Treatment By Using Sand for Tamia Swelling Soil

Finite Element Methods against Limit Equilibrium Approaches for Slope Stability Analysis

Performance of Geosynthetics in the Filtration of High Water Content Waste Material

EFFECT OF BOLT CONNECTION OF SQUARE-SHAPED GEOCELL MODEL ON PULLOUT TEST RESULTS

A Study on Stabilization of Subgrade Soil Using Natural Fibers (Coir and Jute)

PULLOUT CAPACITY OF HORIZONTAL AND INCLINED PLATE ANCHORS IN CLAYEY SOILS

GUIDE FOR SELECTING AN APPROPRIATE METHOD TO ANALYZE THE STABILITY OF SLOPES ON RECLAIMED SURFACE MINES 1

CHOOSING THE OPTIMUM REGIME FOR DRYING RAW COTTON IN DRUM DRIER

Slope Stability Analysis

PART I - MODELING DRYING OF THREE-DIMENSIONAL PULP MOLDED STRUCTURES - EXPERIMENTAL PROGRAM

Global Journal of Engineering Science and Research Management

Advanced Foundation Engineering. Soil Exploration

Design and Fabrication of a Geo Probe for Determining the q u /s u of Soft Soil

1. Introduction. Abstract. Keywords: Liquid limit, plastic limit, fall cone, undrained shear strength, water content.

Shear Characteristics of Fly Ash-Granular Soil Mixtures Subjected to Modified Compaction

EFFECT OF INLET TEMPERATURE ON REYNOLDS NUMBER AND NUSSELT NUMBER WITH MIXED REFRIGERANTS FOR INDUSTRIAL APPLICATIONS

A Method for Predicting the Matric Suction of Unsaturated Soils with Soil Color Recognition

EXPERIMENTAL AND THEORTICAL STUDY OF THE THERMAL PERFORMANCE OF HEAT PIPE HEAT EXCHANGER

Influence of the Cotton-Raw Drying Regime in Drum Dryer on the Density Part of the Defects and Litter Impurities in Fiber

A Study on Suction-rainfall Response of a Cut Slope in Unsaturated Residual Soil Using a Field Rain Simulator

Effect of Slope Stability on Stabilized Soil due to Earthquake Loads using GeoStudio

Ground Improvement of Problematic Soft Soils Using Shredded Waste Tyre

Black Cotton Soil Stabilization Using Eggshell Powder and Lime

Behaviour of a Strip Footing on Compacted Pond Ash Reinforced with Coir Geotextiles

The Effect of Potassium Humate, Chicken Feathers and Vermicompost on the Water Retention Curve

PERFORMANCE OF GEOSYNTHETICS IN THE FILTRATION OF HIGH WATER CONTENT WASTE MATERIAL

Effect of pile sleeve opening and length below seabed on the bearing capacity of offshore jacket mudmats

IOT BASED SMART GARBAGE COLLECTOR FOR SMART CITIES

Numerical Analysis of Leakage through Geomembrane Lining Systems for Dams

Mechanical Behavior of Soil Geotextile Composites: Effect of Soil Type

THREE DIMENSIONAL SLOPE STABILITY

Stability analysis of slopes with surcharge by LEM and FEM

Field tests on the lateral capacity of poles embedded in Auckland residual clay

Effect of Admixtures on Strength and Compressibility Characteristics of Different Types of Soils

Transcription:

International Journal of Civil Engineering and Technology (IJCIET) Volume 10, Issue 03, March 2019, pp. 788 794, Article ID: IJCIET_10_03_076 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijciet&vtype=10&itype=3 ISSN Print: 0976-6308 and ISSN Online: 0976-6316 IAEME Publication Scopus Indexed INFLUENCE OF SOIL DENSITY AND MOISTURE ON SEISMIC STABILITY OF SLOPE STRUCTURES D. Zh. Artykbaev Department of Industrial, Civil and Road Construction, South Kazakhstan State University named after Auezov M., 160012, Shymkent, Kazakhstan H. Z. Rasulov Department of Hydraulic Structures, Grounds and Foundations, Tashkent Institute of Architecture and Civil Engineering, 100011, Tashkent, Uzbekistan K. S. Baybolov Department of Industrial, Civil and Road Construction, South Kazakhstan State University named after Auezov M., 160012, Shymkent, Kazakhstan ABSTRACT This article discusses the results of the dynamic study conducted in the laboratory conditions to explore the effect of density and moisture of moistened loess soils on the dynamic stability of slope steepness. It is noted that the seismic stability of slope structures is determined by both internal factors, such as adhesion and friction forces, vertical stress components, soil density, base thickness, and external factors, such as the acceleration of oscillation and its components: amplitude, frequency, period. For static processing of the experimental results, a simplified method proposed for identifying the averaged value of soil indicators was used. The essence of this method is to plot a graph of the average values of a particular accumulated indicator, for example, the resistance of soil to shear under various dynamic loads. At the same time, the average indicator values are determined first from the data of two experiments, then three, four, etc. The experiments conducted on loess and sand slopes with different dynamic effects showed a direct dependence of slope steepness on soil density. There is a decrease in slope steepness with increasing clay particles in the soil composition, which indicates a greater dynamic stability of soils containing clay particles. Similar results were also shown by the experiments with fine dust particles (0.01-0.005 mm). The experimental studies on the influence of moisture on the stability of slope steepness showed that an increase in moisture always contributes to a change in soil strength. It is established that there is a significant change in this case in plastic soil cohesion, which makes it possible to conclude that soil strength in the slope composition is mainly determined by the amount of plastic cohesion depending on soil moisture. It is also established that any increase in soil moisture contributes to a decrease in plastic soil cohesion, which in turn increases the soil http://www.iaeme.com/ijciet/index.asp 788 editor@iaeme.com

Influence of Soil Density and Moisture on Seismic Stability of Slope Structures deformation capacity. Increasing the moisture content of loamy soil by 10-15% reduces plastic cohesion by almost two times within 1.5-2 hours. After 10-12 hours, there is a gradual increase in the value of cohesion, which apparently is due to the restoration of the destroyed soil cohesion with the course of time. Key words: Density, Moisture, Soil, Seismic Loads, Slope Steepness, Oscillation, Stress, Base Thickness, Amplitude, Frequency, Periods. Cite this Article: D. Zh. Artykbaev, H. Z. Rasulov, K. S. Baybolov, Influence of Soil Density and Moisture on Seismic Stability of Slope Structures, International Journal of Civil Engineering and Technology 10(3), 2019, pp. 788 794. http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=10&itype=3 1. INTRODUCTION The article deals with the results of the author s studies on the effect of soil density and moisture on slope steepness under conditions of various oscillations. Refer to the formula for determining the seismic stability of slope structures [1]: = ( ) In accordance with this formula, the seismic stability of the slope is determined by both internal factors, such as adhesion and friction, vertical stress components ( ), soil density (, base thickness (Н), and external factors, such as the acceleration of oscillation ( ) and its components: amplitudes (А), frequency (f), period (Т). When processing the research results and determining the averaged indicator values, the question arises about the required number of prototypes. For this purpose, there are numerous theoretical, more rigorous static methods for establishing the average indicator values. Among them, the most suitable for soils is the simplified method (method of mathematical statistics and establishment of the average value of resistance to shear of clay rocks) proposed by Z.V. Pilgunova [2], which was used in our study for processing the experimental results. 3. Results and Discussion The essence of the method is as follows. With the accumulation of experimental data, in a normal or semi-logarithmic scale a graph is plotted for the average values of one or another indicator, for example, the resistance of soil to shear under a load of р=3 kg/cm 2, i.e.. At the same time, the average indicator values are determined first from the data of two experiments, then three, four, etc. Figure 1. Graph of the average values for determining the required number of test samples http://www.iaeme.com/ijciet/index.asp 789 editor@iaeme.com

D. Zh. Artykbaev, H. Z. Rasulov, K. S. Baybolov As can be seen from Figure 1, at the beginning with a small number of experiments, the spread of the average values of decreases sharply with increasing the number of experiments, and with 25 experiments and more, the change of the average values does not go beyond the limits of practical requirements. Obviously, in this case, we had every reason to limit ourselves to the testing of 25 samples during the experiments. Soil density. The experiments conducted on loess and sand slopes with different dynamic effects showed a direct dependence of slope steepness on soil density. Figure 2, which is based on the data from Table 1, shows the dependences of tg a = f (n) for the soils numbered 1, 3 and 6, on which the porosity characterizes the density state of a particular soil. It should be noted that the data in Figure 2 could not be applied to other similar soils, because the porosity in this case refers only to the soil in question. Figure 2. Dependence of stable slope steepness on soil porosity Table 1 Generalized data on the dependence of stable slope steepness on soil density Soil Soil porosity, % 42 44 46 48 50 52 54 No. 1-0,56 0,44 0,32 0,20 0,13 0,08 No. 3 0,48 0,44 0,38 0,34 0,33 0,22 0,21 No. 6-0,52 0,40 0,32 0,25 0,20 0,17 In this respect, the data presented in Figure 3, where soil density is expressed in relative terms, are the more general, which makes it possible to apply them to other similar soils. Figure 3. Dependence of stable slope steepness on the relative density of loess soils http://www.iaeme.com/ijciet/index.asp 790 editor@iaeme.com

Influence of Soil Density and Moisture on Seismic Stability of Slope Structures The relationship between soil density and its strength characteristics is widely discussed [3-5,7]. A significant effect of soil strength characteristics (the angle of internal friction φ and adhesion c) on the stability of slope steepness was also established in our studies (Figure 4). Figure 4. Dependence of stable slope steepness on the angle of internal soil friction These experiments were carried out by shaking different soils. The soil density achieved with one cycle of the experiment served as the initial density for the subsequent cycle. It goes without saying that for the destruction of a slope consisting of soils with a density of the second cycle, a dynamic load should be higher than in the previous cycle. The cycles continued until the acceleration was 2,800-3,200 mm/s 2 (8 points). Each time before the next cycle, a sample was taken with a ring to determine the soil strength parameters. When the question concerns the dependence of tg a = f (n), one should pay attention to the following. In the experiments on loess with various genetic origins (aeolian, deluvial, proluvium), the value of tga was different despite the close initial soil density with the same shaking. At the same time, the value of tga decreased with increasing clay particles in the soil composition, which indicates a greater dynamic stability of soils containing clay particles. Obviously, this is due to the increase of soil cohesion with increasing clay particles and hence the increase in soil strength characteristics. A similar situation can be observed with small dusty particles (0.01-0.005 mm) (Figure 5). Figure 5. Dependence of stable slope steepness on clay content in soil Soil moisture. The experimental results showed the dependence of slope steepness on soil moisture (Table 2). http://www.iaeme.com/ijciet/index.asp 791 editor@iaeme.com

D. Zh. Artykbaev, H. Z. Rasulov, K. S. Baybolov Table 2 The change in slope steepness depending on soil moisture at а с =2880 mm/s 2 Soil Soil moisture, % 5 10 15 20 25 30 35 No. 2 0,63 0,41 0,25 0,17 0,13 0,12 0,72 No. 8 0,54 0,49 0,35 0,34 0,37 0,34 - The difference in the dynamic soil strength depending on its moisture was discussed by A.Kh. Sadykov and A. Zh. Zhusupbekov [6, 8]. In cohesive soils, any additional moistening reduces the plastic soil cohesion, and this in turn affects the slope steepness (Figure 6). Figure 6. Dependence of the form Cw=f(w) for the studied soils The experimental studies conducted to explore the influence of moisture on the stability of slope steepness showed that an increase in moisture always contributes to a change in soil strength. Plastic cohesion in this case undergoes a significant change, which makes it possible to conclude that soil strength in the slope composition is mainly determined by the amount of plastic cohesion, depending on soil moisture. The generalized dependence of the stable slope steepness on different moistures of loess soils is given in Table 3, which shows a significant effect of soil moisture on slope steepness. In general, the stability of slope steepness also depends on other factors, besides soil density and moisture. Among them, an important role belongs to soil cohesion. Soil Table 3 The effect of moisture on slope steepness External load, MPa Oscillation acceleration, mm/s 2 Soil moisture, % Stable slope angle, tga 2 0.03 3000 11,5 0,38 2 0.03 -«- 16.0 0,26 2 0.03 - - 24.2 0,18 8 0.03 3400 14.9 0,42 8 0.03 - - 20.0 0,37 8 0.03 - - 28.5 0,23 http://www.iaeme.com/ijciet/index.asp 792 editor@iaeme.com

Influence of Soil Density and Moisture on Seismic Stability of Slope Structures Numerous experiments conducted by N.N. Maslov, N.A. Tsitovich and Kh.Z. Rasulov [5] and others showed that plastic cohesion in loess may vary depending on soil moisture, which is shown in Figure 7 as a dependency. As seen from the graph, any increase in soil moisture contributes to a decrease in, which in turn increases the soil deformation capacity. Figure 7. Dependence of the form =(w) for loess soil No. 4 It is known that an increase in moisture is always associated with the transition of soil from one state to another (for example, from plastic to fluid) [8]. This, in turn, contributes to the weakening of soil cohesion up to a certain point, and then there is a gradual growth due to an increase in soil density (Figure 8). Figure 8. The nature of changes in soil cohesion in time during the oscillation process with the acceleration =2000mm/s 2 In accordance with Figure 8, as the moisture content of the loamy soil increases by 10 15%, there is an almost two-fold decrease in plastic cohesion during 1.5 2 hours. After 10-12 hours, a gradual increase in is observed. This circumstance, apparently, is connected with the restoration of the destroyed soil cohesion with the course of time. http://www.iaeme.com/ijciet/index.asp 793 editor@iaeme.com

D. Zh. Artykbaev, H. Z. Rasulov, K. S. Baybolov 3. CONCLUSIONS The experiments have shown a decrease in slope steepness with decreasing soil density and increasing soil moisture. At the same time, any decrease in slope steepness is associated with an increase in the volume of construction work. REFERENCES [1] Artykbaev D.J., Baibolov K.S. Earthquake resistance of slopes. Bulletin of Kazakh Academy of Transport and Communications named after M. Tynyshbaev, 106 (3), 2018, pp. 17-21. [2] Pilgunova, Z.V. Method of mathematical statistics and establishment of the average value of resistance to shear of clay rocks. Proceedings of the Laboratory of Hydrogeological Problems of the Academy of Sciences, 14, 1958 [3] Proceeding of the 3 rd Central Asian International Geotechnical Symposium Geotechnical Problems of Construction on Collapsible Soils in Seismic Areas, Dushanbe, 1, 2005, pp. 237. [4] Rasulov, Kh.Z. The applied method of seismic resistant base. Proceedings of the Conference "Scientific and Applied Foundations for Solving the Actual Problems of Seismology". Tashkent, 2006, pp. 202-204. [5] Rasulov, Kh.Z., Tashkhodzhaev, A.U. Conditions for the formation of landslide processes during earthquakes. Proceedings of the International Conference "Problems of Assessing Seismic hazards and Reducing the Effects of Earthquakes." Tashkent, 2008, 5, pp. 240-242. [6] Sadykov, A.Kh. Experimental studies on factors affecting the critical acceleration of slope loess soils. Problems of Architecture and Construction, 1, 2010, pp. 37-39. [7] Zekhniev, F.F., Akhmedov, D.D. Geotechnical construction problems in complex engineering and geological conditions of Tajikistan and their solutions. Proceedings of the 3 rd Central Asian International Geotechnical Symposium. Dushanbe, 2005, pp. 174-179. [8] Zhusupbekov, A.Zh. Influence of pore pressure on the stability of alluvial dam slopes. Proceedings of the 1 st Central Asian Geotechnical Symposium. Astana, 2000, 1, рр. 176-187. [9] Zholtayev, G.Zh. Tectonics and sedimentation conditions in the east of the Pre-Caspian syneclise in the early Permian era. Geology and Exploration of Kazakhstan s Resources, 1998, pp. 15-20. [10] Zholtayev, G.Zh. and Kuandykov, B.M. Geodynamic structural model of the south of Eurasia. Oil and Gas, 2, 1999, рр. 62-74. http://www.iaeme.com/ijciet/index.asp 794 editor@iaeme.com