Experimental Implementation of Spectrum Sensing Using Cognitive Radio

Similar documents
CRUSH: Cognitive Radio Universal Software Hardware

Available online at ScienceDirect. Procedia Computer Science 34 (2014 )

UWB Stepped-FM Sensor for Home Security

Building and Characterizing 14GHz InGaAs Fiber Coupled Photodiodes

status AW1 Plus WiFi Alarm System User Manual

Construction of Wireless Fire Alarm System Based on ZigBee Technology

Finite Element Analysis, Harmonic Analysis and Modal Analysis of the Car Floor by Using With and Without Stiffener

Real Time Pipeline Leak Detection on Shell s North Western Ethylene Pipeline

A Study on Improvement of Fire Protection Systems based on Failure Characteristics accodrding to Yearly Variation in Old Commercial Buildings

Optical Time Domain Reflectometry for the OMEGA EP Laser

SYNERGY IN LEAK DETECTION: COMBINING LEAK DETECTION TECHNOLOGIES THAT USE DIFFERENT PHYSICAL PRINCIPLES

Force Protection Joint Experiment (FPJE) Battlefield Anti-Intrusion System (BAIS) Sensors Data Analysis and Filtering Metrics

Optimum Access Analysis of Collaborative Spectrum Sensing in Cognitive Radio Network using MRC

CFD Analysis of a 24 Hour Operating Solar Refrigeration Absorption Technology

EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL

AN ANALYSIS OF THE PERFORMANCE OF RESIDENTIAL SMOKE DETECTION TECHNOLOGIES UTILIZING THE CONCEPT OF RELATIVE TIME

Frequently asked questions: Intelligent Transmitter Series

ALC-PACK3. WiFi Alarm System with HD WiFi Camera. User Manual. Your Watchguard Wireless Security professional:

Pressure drop analysis of evaporator using refrigerants R-22, R-404A and R-407C

Subscripts 1-4 States of the given system Comp Compressor Cond Condenser E Evaporator vol Volumetric G Gas L Liquid

Application Note. Technique description CPB measurements give early fault detection with minimal risk of false alarms

SAVE: Self-organizing Air VEnt System

Optimizing Chemistry and Coater Settings for Faster Drying

Detection system for optic characteristics of automobile glasses

False Alarm Analysis of the CATM-CFAR in Presence of Clutter Edge

CARRIER edesign SUITE NEWS. Interpreting High (Low) Peak Design Airflow Sizing Results for HVAC. Equipment Selection.

RailAcoustic Ò Broken Rail Sensing System

Experimental Study on Utilization of E -Waste in Cement Concrete

INSTRUMENTATION AND EVALUATION OF COMMERCIAL AND HOMEMADE PASSIVE SOLAR PANELS

Who Needs a Better Mousetrap?

Design of Multi-Sensors Cooperation Control System for Intelligent Building

Implementation of Auto Car Washing System Using Two Robotic Arms

Wearable Carbon Monoxide Warning System Using Wireless Sensors

Smart Combiners Installation Guide. For Obvius A89DC-08 sensor modules

Connected smoke detectors can improve the way security companies secure buildings

Totally Wireless Video Security

Band Selection & Algorithm Development for Remote Sensing of Wildland Fires

status AW1 WiFi Alarm System Printed in China PA : AW1-UM-EN-V1.0 User Manual 2016 Chuango. All Rights Reserved.

Smoke Alarm Response Time:

F.W. Olin Physical Science Laboratory

Energy Savings Potential of Passive Chilled Beam System as a Retrofit Option for Commercial Buildings in Different Climates

Evaluation on Residential Energy Efficiency Programs Using the City-Scale End-Use Simulation Model

Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland. Experimental study of a novel dew point indirect evaporative cooler

International Journal of Informative & Futuristic Research ISSN (Online):

Wireless Interconnections in Fire Detection and Fire Alarm Systems: Points of Attention for the Installer and the Belgian Application Standard

Design of Humidity Monitoring System Based on Virtual Instrument

Effect of Vacuum Cooling Operation Parameters on Cooling Time and Weight Loss of Chinese Cabbage

Heat Transfer Enhancement using Herringbone wavy & Smooth Wavy fin Heat Exchanger for Hydraulic Oil Cooling

Key Words: Microalgae; Solar Dryer; Exergy Analysis; Energy Analysis;

S TAR-ORION S OUTH D IAMOND P ROJECT E NVIRONMENTAL I MPACT S TATEMENT APPENDIX A FUNDAMENTALS OF ACOUSTICS

Research on Decision Tree Application in Data of Fire Alarm Receipt and Disposal

Arduino Temperature-Monitoring Systems for the Hampden-Sydney College Energy Research Lab

II. METHODS AND MATERIALS

Exercise 8: Soil Compaction. CE337, Section 006, Team 3. Experimental data acquired on April 16, 2015 by:

A Method for Predicting the Matric Suction of Unsaturated Soils with Soil Color Recognition

Development Of A Low-Cost Heat Pump Water Heater For Residential Applications

/,6 REMOTE MONITORING DESIGN CONCEPTS FOR SPENT FUEL STORAGE FACILITIES

Transition of soil strength during suction pile retrieval

Modeling and Simulation of Axial Fan Using CFD Hemant Kumawat

Experimental Research on Monomial Cooling Measure of Greenhouse in Summer

Oracle Real Application Clusters (RAC) 12c Release 2 What s Next?

Tier 2 Advanced PowerStrip Testing Executive Summary January 23, 2014

Numerical Studies On The Performance Of Methanol Based Air To Air Heat Pipe Heat Exchanger

Title: Project Lead: Abstract: Promoting Landscape Stewardship Through Interactive Interpretation.

Water Hero P-100. P-100 Components:

T.E.R.E.S.A. (T.E.R.E.S.A. Tyrannous Effeminate Rambling Esoteric Sybaritic Arthopod) the Six-Legged Robopuppy SENSOR REPORT. Blake C.

Analysis of Constant Pressure and Constant Area Mixing Ejector Expansion Refrigeration System using R-1270 as Refrigerant

A REVIEW ON GREEN TECHNOLOGY IN HVAC

DESIGN AND FABRICATION OF A PORTABLE REFRIGERATOR BASED ON PELTIER EFFECT

External Wireless Sounder

Alarm System SECURE AS 302

Comparison of Heating Efficiency of a Heat Pump to Electric Heating Panels

Construction Set: Smart Home

International Journal of Advance Engineering and Research Development

[Patil* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

ABSTRACT. KEYWORDS: New Combination, New Product Development, Open Innovation, IoT (Internet of Things), Auto Alert System

User Guide English. Manual Version 1.0

Diagnostics with fieldbus

Soil Stabilization by Using Fly Ash

Common Customer Challenges

Experimental & Analytical Investigation on Modified Solar Dryer with Recirculation of Air

External Wireless Sounder

A BUSINESS PLAN FOR LAHANOKIPOI AREA OF THESSALONIKI. Vasiliki BASDEKIDOU * Dept. of Economic - Aristotle University of Thessaloniki

Evaluation of Technology Transfer to Rural Communities for Drying Using Lpg and Solar Energy Cabinet Dryer

Sentinel: Occupancy Based HVAC Actuation using Existing WiFi Infrastructure within Commercial Buildings

[Eswaran, 3(3): March, 2014] ISSN: Impact Factor: 1.852

Aalborg Universitet. CLIMA proceedings of the 12th REHVA World Congress volume 3 Heiselberg, Per Kvols. Publication date: 2016

An Alarm Correlation Algorithm for Network Management Based on Root Cause Analysis

Optical Time-Domain Reflectometry for the Transport Spatial Filter on the OMEGA Extended Performance Laser

AND WORRY-FREE PERFORMANCE

Ultra Low Cost Solar Water Heater. Concept Generation and Selection Document

Prototype of Gas Leak Detector System Using Microcontroller and SMS Gateway

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 05 May p-issn:

Alarm Correlation Research and Implementation Based on Similar Data Sources

Development of Motor Fan Noise Prediction Method in Consideration of Operating Temperature during Engine Idling

Part of the Crop Monitoring and Automatic control range. The most advanced automatic fan control and crop monitoring system available

Battery Performance Alert: A TOOL FOR IMPROVED PATIENT MANAGEMENT FOR DEVICES UNDER BATTERY ADVISORY

Digitization For Long-Distance Oil Pipeline Leakage Detection. Liang Wei China University of Petroleum, Beijing

AUTOMATIC STREET LIGHT CONTROL SYSTEM USING MICROCONTROLLER

IOT Based Intelligent Bin for Smart Cities

Transcription:

1 Experimental Implementation of Spectrum Sensing Using Cognitive Radio Prepared by: Kendall Schmalz Faculty Advisors: Dr. Yanxiao Zhao Assistant Professor, Electrical and Computer Engineering Dr. Thomas Montoya Associate Professor, Electrical and Computer Engineering Dr. Alfred Boysen Professor, Department of Humanities Program Information: National Science Foundation Grant # 1359476 Research Experience for Undergraduates Summer 2014 South Dakota School of Mines and Technology 501 E Saint Joseph Street Rapid City, South Dakota

2 Table of Contents Abstract......3 Introduction... 4 Broader Impact...8 Procedure....9 Results...13 Discussion......15 Conclusion......16 Acknowledgments...18

3 Abstract Cognitive radio (CR) is designed to detect available frequency bands/channels. Spectrum sensing plays a critical role in CR with energy detection being the most common method. In our paper, we implement energy detection using GNU Radio and USRP boards as a test-bed. Specifically, energy detection is performed by using blocks in GNU Radio Companion (GRC) to calculate the energy of a present signal and compare it against a threshold to determine whether or not the channel is occupied by a signal. Extensive experiments are conducted and sensing performance including false alarm and misdetection is analyzed as well.

4 1. Introduction As the frequency spectrum continues to become more and more crowded, especially under 3 GHz, it is becoming more challenging to allocate available frequency bands to future applications. On the other hand, there are still a lot of licensed areas of the spectrum which are underutilized. Cognitive Radio Network (CRN) is one promising way of utilizing the spectrum to the utmost efficiency. CR gives us this opportunity because it is able to detect unused portions of the frequency spectrum and share with unlicensed users without causing harmful interference to licensed users. There are three fundamental steps to successfully implement a CRN: spectrum sensing, spectrum sharing, and spectrum management. These three steps will be briefly introduced as follows. 1.1. Spectrum Sensing Spectrum sensing is the process in which secondary users (SU) (unlicensed users of the spectrum) obtain information about the spectrum usage so that interference will not occur with primary users (PU) (licensed users) [3]. Experimental implementation of spectrum sensing will be discussed in this paper. There are some common approaches of spectrum sensing. Energy detection (ED) is one such sensing method, which will be used due to simplicity of implementation and most importantly, no need for prior knowledge of the signal is required. ED is designed to sense the level of energy of a potential signal and compare it against a threshold. Figure 1 shows the block implementation of ED. A signal is first sent through a band pass filter and then integrated over the square of the signal. This value is compared against a pre-define

5 threshold and then a decision is made to determine whether or not it reaches the energy level is high enough to be considered a signal. Figure 1: Energy detection blocks *H 1 indicates that a signal is present, while H 0 indicates absence of signal Matched filter detection is another common method of spectrum sensing, which is designed to maximize signal-to-noise ratio when a user has prior knowledge. The matched filter is expressed as [4]: Y[n] = k= h[n k]x[k] ----------------------------------------------------------------------Eq. 1 X is the unknown signal and h is the impulse response. The block diagram of matched filter detection is also passed through a band pass filter which is then sent through a matched filter which is shown by Equation 1 and then a decision is made to determine whether or not a signal is present. Besides energy detection and matched filter detection, Cyclostationary detection is also received a wide attention in the research community. It heavily relies on the periodicity of a signal to identify whether or not a primary user is present. Cyclostationary feature detection performs much better under low SNR, and does not require silence of CR users. Cyclostationary feature detection, however, requires prior knowledge and has very high computation complexity [4].

6 1.2. Spectrum Sharing and Spectrum Management With sensing results from the spectrum sensing process, spectrum sharing is the simultaneous usage of specific radio frequencies in a certain geographical region [5]. Transmit power has to be minimized to eliminate interference to nearby signals. Spectrum management is the process of capturing the best available spectrum and limiting the interference between users. Note that spectrum sharing and spectrum management are left for future research. The main focus of this paper is on spectrum sensing. 1.3. Experimental Implementation of Energy Detection In this paper, we perform experimental implementation of spectrum sensing, in which Energy Detection (ED) is employed. The test-bed consists of universal software radio peripheral (USRP) N200 (figure 2) with daughterboard (XCVR2450) (shown on the left) and GNU Radio Companion (GRC), run on Ubuntu 14.04 (Linux-based operating system), for creating energy detection blocks. Using this test-bed, we expect that we are able to implement ED successfully, i.e., detecting spectrum status correctly..

7 Figure 2: USRP N200 After conducting experiments, the sensing performance including both false alarm and misdetection is analyzed. The evaluation of false alarm and misdetection heavily relies on a predefined threshold. Misdetection probability refers to the probability that a signal is in fact present, but the signal amplitude does not meet the requirements as defined by the threshold. In other words, the signal is not detected correctly and hence the channel is perceived idle. Setting of a threshold too high causes misdetection to sharply rise. False alarm on the other hand refers to something that is not a signal (such as noise), but it will meet the energy requirements as set by the threshold. Setting of a threshold too low can be a major concern. Setting of a threshold is therefore important as far as quality is concerned.

8 Setting a threshold in ED can be somewhat difficult if a low signal-to-noise ratio is present. As will be seen in the results portion of the paper, a threshold was set to -60dB, which results in a very high percentage of both misdetection and false alarm. Eliminating both misdetection and false alarm probability must be overcome before implementation can take place. 2. Broader Impact Figure 3: Frequency allocations [6]

9 As we continue to add more wireless devices (smartphones, tablets, computers, etc.), we are making our lives easier and more enjoyable, but problems arise with an increasing demand for these products. It is becoming increasingly difficult to find the optimum frequency band. Cognitive radio is envisioned promising to solve this problem by dynamically allocating the area of the spectrum, which are getting increasingly compact and also makes use of the areas which lay mostly vacant. The frequency spectrum is much like land in that one cannot simply make more land, but instead making the most of what is given can go a long way. Figure 3 shows the allocation of different parts of the radio spectrum, which is becoming increasingly cluttered, making adding more advances in wireless communication more difficult. Being able to use the frequencies whenever they become available by the use of CR is becoming more relevant. 3. Procedure In this paper, we set up a test-bed using the USRP N200 and daughterboard (XCVR2450) as shown in Figure 2. After connecting this to a computer and installing GNU Radio Companion (GRC) on Ubuntu 14.04, we could proceed to carry out the experiment. After successfully writing a few lines of code, we are able to visually see what sort of signal is being received, but also what effect noise can have on a signal as well. Figure 4 shows what sort of noise is present at a given time in our experiment. Without a signal being received, the amount of noise appears to be very even and with a very low energy (in db).

10 Here is another graph (Figure 5), but this time a signal is being received at 2.4499 GHz with a considerable amount of microwave noise. This microwave noise is generated from a microwave which is situated between the receiver and the transmitter. The SNR is relatively low in this picture which will undoubtedly cause a higher than acceptable misdetection and false alarm probability. Figure 4: Noise Only

Figure 5: Signal received at 2.4499 GHz with low SNR 11

12 To effectively create a threshold, many experiments must be done using the same set parameters, such as noise level (in our case we used a microwave oven), frequency, and distance. Experiments could also be done at longer distances while varying levels of noise. After doing the experiment ten times, we could finally move on to setting various thresholds from -20db to - 90db to analyze sensing performance. Two metrics, i.e., probabilities of false alarm and misdetection, are measured. The blue line in figure 6 shows an example of what a potential threshold could be, so that misdetection and false alarm probability are minimalized. This Figure 6: Example threshold at -50 db threshold (-50dB), though, would not be equal on all graphs because both the power and the noise will very in all graphs. Once thresholds are created, it must be determined at which point gives us the lowest combined misdetection and false alarm probability

13 4. Results Threshold (db) Probability of Misdetection Probability of False Alarm -20 1 0-25 1 0-30 1 0-35 0.8 0-40 0.7 0-45 0.5 0-50 0.5 0-55 0.4 0.1-60 0.2 0.2-65 0 0.5-70 0 0.6-75 0 0.7-80 0 0.9-85 0 1 Table 1: Samples of probabilities of false alarm and misdetection vs threshold

Percent of misdetection and false alarm probability 14 After running the ten samples, and determining different intervals (5dB apart), the following excel sheet is created which gives the threshold level followed by the percent of false alarm and misdetection at said threshold. From this (table 1), Figure 7 is plotted to give a visual understanding of the trends of false alarm and misdetection. False Alarm and Misdetection vs. Threshold 1 0.8 Misdetection False Alarm 0.6 0.4 0.2 0-100 -80-60 -40-20 0 Figure 7: False alarm and misdetection probabilities vs. thresholds (in db)

15 It appears that -60db is the optimum level for misdetection and false alarm probability, but at the intersecting point, this number is 20%, which is much higher than expected. The sensing results are affected by several factors. For instance, currently, only 10 samples are collected and the result is expected better with more samples. Different environments with varying levels of noise will without a doubt have impact on the probability of false alarm and misdetection. Also the distance of the receivers will have an effect on the SNR. 5. Discussion We have conducted extensive energy detection (ED) experiments using USRP and GNU radio. Some promising preliminary results are obtained followed by sensing performance analysis. However, many problems still exist with ED. As shown in Section 4, with microwave noise (Wi-Fi and other interferences are included); -60db appeared to be the optimum threshold with an exuberant amount of probability of misdetection and false alarm. There have been many proposals to lowering this percentage of misdetection and false alarm probability. One method, proposed in [2] was to implement two thresholds which instead of simply choosing one threshold and accounting only for energy levels above that point. The double threshold method would account only for values in between the two thresholds and make a decision from that point. One method that we are strongly considering though, is a method which accounts for both bandwidth and energy detection. In this method, the bandwidth of a signal would have to be within a certain range and anything outside of that would not be considered a signal (noise by definition has unlimited bandwidth, so this would eliminate most noise) which in theory leads to a lower false alarm and misdetection probability. Future work will be done on proving whether or not this method works as well in practice as it does theoretically.

16 6. Conclusion Energy detection is a common approach of spectrum sensing. In this paper, we have implemented energy detection by setting up a test-bed using USRP and GNU radio. Sensing results show that currently we obtain 20% misdetection and false alarm probability, which is by no means perfect. More efforts should be put forth to improve the sensing performance. In future, we will propose new approach based on energy detection and conduct more experiments.

17 References 1. Bodepudi Mounika, Kolli Ravi Chandra, Rayala Ravi Kumar. "Spectrum Sensing Techniques and Issues in Cognitive Radio". International Journal of Engineering Trends and Technology (IJETT). V4(4):695-699 Apr 2013. ISSN: 2231-5381. www.ijettjournal.org. published by seventh sense research group. 2. Kalamkar, S. S., & Banerjee, A. (2013, January 1). Improved Double Threshold Energy Detection for Cooperative Spectrum Sensing in Cognitive Radio. Academia.edu. Retrieved July 29, 2014. 3. Zhao, Y., Huang, J., Pradhan, J., & Sun, H. Experimental Approach: Energy-and- Bandwidth Spectrum Sensing Using GNU Radio and USRP, ACM RACS, 2014. 4. Verma, P. K., Taluja, S., & Dua, R. L. Performance analysis of Energy detection, Matched filter detection & Cyclostationary feature detection Spectrum Sensing Techniques. International Journal of Computational Engineering Research, 2. from http://www.ijceronline.com/papers/vol2_issue5/t02512961301.pdf. 5. Wyglinski, A., Nekovee, M., & Hou, Y. (2009, December 1). Cognitive Radio Communications and Networks: Principles and Practice. from http://ecewp.ece.wpi.edu/wordpress/wireless/files/2011/11/crtextbook_ch05.pdf. 6. Frequency allocation. (2014, February 8). Retrieved August 8, 2014, from http://en.wikipedia.org/wiki/frequency_allocation

18 Acknowledgments The funding for this research came from the National Science Foundation. Thanks to advisors Dr. Yanxiao Zhao, Dr. Thomas Montoya, Dr. Alfred Boysen and also to all of the students of EEP 339 for helping me out immensely on this project.