PUMPCELL. KEMIX (Pty) Ltd.

Similar documents
KEMIX (Pty) Ltd. INTERSTAGE SCREEN

Mixers and Flocculators. For Municipal Water Treatment

Metso in filtration. Mechanical dewatering by pressure

Komline-Sanderson Paddle Dryer. Drying technology for biosolids, sludges and by-products

Coarse Coal Centrifuges. VM1650 is the world s largest capacity Coarse Coal Centrifuge

EIMCO Clarifiers... Customized Designs to Match Unique Specifications Most standard or special sedimentation/clarification requirements can be accommo

Vacuum filters. Established for industrial dewatering

Rotodynamic Pumps INTRODUCTION:

Centrifuging Solutions

MIX Type Blenders. I Application. I Principle of operation

FAIRBANKS NIJHUIS SOLIDS HANDLING PUMPS.

International Reactor Bulletin 1100 Corporation. Standard and Custom Reactors for the Chemical Process Industries

Tel Group

CENTRIFUGAL PUMPS. STATE the purposes of the following centrifugal pump components:

Performance Beyond Expectation

Evaporation System: Types and Design Aspects

DOUBLE AND SINGLE ENTRY DRUM SCREEN ADVANCED WATER SCREENING TECHNOLOGY

Vertical In-line Self-Priming liquid ring Centripetal pump TYPE - STP

Grinding & Dispersing. Submersible Basket Mill MASTERMILL The very Highest Degree of Efficiency. our technology YOUR SUCCESS

Excellence in providing solutions for biogas plants

Installation, Operation and Maintenance Instructions

The SALA Series of. Vertical & horizontal ST Pumps. Tough, general purpose slurry pumps. ST pumps

Tube press Booster range. Superior performance

IRRIGATION EQUIPMENT LTD. The Perfect Solution for Water Filtration and Irrigation Problems

HOW TO SELECT AN INDIRECT THERMAL TECHNOLOGY FOR INDUSTRIAL MATERIALS PROCESSING

KREBS slurrymax pumps

DS series STERLING PUMPS. Industrial End Suction Pumps ISO/DP

The AST Dryer

Multifunction pump for handling gaseous liquids in process engineering

Experience In Motion. WXH and WXM Utility-Grade Multistage Ring Section Pumps

Rugged dependability. DeLaval manure pumps. Clearing manure from barns. is vital for animal health, but. time consuming.

Pumps SELECTION OF A PUMP

By Barry A. Perlmutter, Managing Director. Solid-Liquid Separation Cake Washing & Drying Technologies.

MSMCR. Counter-Rotating Blenders. I Application. I Principle of operation

SPECIALIZED EQUIPMENT

侧进式搅拌器. 产品介绍 Product introduction

KREBS slurrymax TM Split Case Design Slurry Pumps

The Sterling Series. Pressing Excellence. Pre Pressing Full Pressing Rendering

FLOTATION MACHINES FOR THE MINING INDUSTRY

Flygt Top-Entry Agitators CONVENIENT AND EFFICIENT

WHITE PAPER The Importance of Rinsing in Metal Finishing Operations

KUBOTA Double suction volute pump

GOLF TECHNICAL BULLETIN

3500 XD. Medium Consistency Pumping Technology Introducing X-Ducer Medium Consistency Pumping Technology

Freeze drying and alternative technologies for drying of biopharmaceutical products

Development of Large Size Hybrid Fan

EMD - Rotary Drum Screens

Spiral dewaterer. Optimal for dewatering of solids in water treatment systems

The Next Generation Machine Protection System

2x58 MW Coal Fired Power Plant at Mauritius

Extrusion Blow Molding Resin or Color Change: Performance Tips

Girapac and Girasieve Rotating drum screens for wastewater pre-treatment

Extrusion Profile Resin or Color Change: Performance Tips

Family Curve. Submersible Grinder Pumps 1¼" and 2" Discharge. Effluent/Grinder Pumps.

InterSeptor Centrifugal Separators Operating & Maintenance Manual

ROTARY DRYER CONSTRUCTION

Ribbon Blenders and other horizontal mixers

Grinding & Dispersing. Ψ-MIX Inline-Disperser A revolutionary system for mixing and dispersing of solids in liquids. our technology YOUR SUCCESS

Energy Conservation with PARAG Energy Efficient Axial Flow FRP Fans

Goulds Model 3500 Medium Consistency Pump Systems. Pump System Advantage PP-1D. Standpipe Arrangement

BAGI - MIXER. Magnetically Driven Bottom Mounted Mixers. Sealless ZERO LEAKAGE Design. CIP / SIP Capable. Non Contaminating Mixing

For the successful distillation of heat sensitive materials

Goulds 3600 Between-Bearing, Axially-Split, Multi-Stage Pumps. Goulds Pumps

ZETA MAGNETIC AGITATORS

DLKF. EBARA Submersible Sewage Pumps Specifications Project: Model: Chk d: Date:

Flygt centrifugal grinder pumps

Wet Frac Sand Processing

OWNERS MANUAL FOR MEC 300E ATA

Drive Power and Torque in Paper Machine Dryers

Soil mixing. An efficient and flexible technology to overcome a variety of soil problems

UNDERGROUND JUMBO FACE PUMPS

We think the lines DD...and TDA.. can do this job to satisfy your customers And your workshop.

HEADWORKS PERFORATED PLATE FILTER SCREEN ROTARY DRUM SCREEN IN CHANNEL PERFORATED DRUM SCREEN

DualPak Series FILE NO: DATE: Feb. 15, 1999 SUPERSEDES: DATE: Sept. 28, DualPak 6900 Series Booster System

COGEIM COGEIM EQUIPMENT MAINTENANCE AND REFURBISHMENT A NECESSARY CHOISE Number 1 filter-dryer supplier in the world

Effect of Impeller Clearance and Multiple Impeller Combinations on Solid Suspension in a Standard Flat Bottom Agitated Vessel

VERSA Rotary Drum Screens

Goulds 3600 Between-Bearing, Axially-Split, Multistage Pumps

IONIC LAMELLA PLATE CLARIFIER. Small in size - big in performance

ASPHALT PLANT. AtlasTechnologiesIndia.com

Phone: x121

Jacopa Screenings Transfer Options

Mixing Technologies Solutions for Flue Gas Desulfurization

Pulse Jet Baghouse ASTEC PULSE JET BAGHOUSE. for Asphalt Facilities

Lenntech. Tel Fax bar. Multistage Pumps.

Water engineers and utilities are often

DESIGN AND MANUFACTURING OF CHEMICAL AGITATOR

Understanding Process Vacuum for Process Improvement

REVERSING DRUM MIXER

TECHNICAL. Series 18. Pump Packages

BHC. Replacing Air Sparging Agitation Increases Cleaning Efficiency in Immersion/Soak Tank Degreasing BHC WHITE PAPER

High Performance Diesel Fueled Cabin Heater. Abstract

DENVER PUBLIC SCHOOLS DESIGN AND CONSTRUCTION STANDARDS This Standard is for guidance only. SECTION PUMPS

Multistage Centrifugal Blowers

Beverage Processing System

The new device is called the Disposable Rotary Drum Filter.

1600 Series Rotating Suction Screen

When Mixing Matters MIXING TECHNOLOGY FROM LIGHTNIN

Multistage Centrifugal Blowers

Agitation and Mixing

Transcription:

PUMPCELL KEMIX (Pty) Ltd.

14 Stage, 330 m 3 Carbon in Pulp Pumpcell Plant complete with 21.35 m 2 Pumpcell Mechanisms 10 Stage, 150 m 3 Resin in Pulp Pumpcell Plant complete with 14 m 2 Pumpcell Mechanisms Page 2

Kemix (Pty) Ltd (Kemix) in conjunction with Anglo American Corporation (AAC) developed the Mineral Processing Separating (MPS) and Mineral Processing Separating (Pumping) (MPS(P)) Interstage screens. The development of the MPS(P) Interstage screen was instrumental in the ultimate development of the Pumpcell. The formation of the Pumpcell concept was based on the supposition that improved carbon performance could be achieved by employing the carousel mode of operation. The Pumpcell is in essence a complete CIP plant incorporating a Pumpcell mechanism and launder system enabling the carousel mode of operation to be employed. The carousel mode of operation involves keeping the carbon in a discreet batch within each contactor and rotating the pulp feed and discharge positions. The pulp feed and tailings discharge positions are rotated in such a manner that the counter current movement of carbon relative to pulp is simulated without physically having to pump carbon through the circuit. The benefit associated with the carousel mode of operation is that backmixing associated with conventional counter current CIP circuits is eliminated. Coupled to the carousel configuration, the Pumpcell design and operating philosophy is based on the fact that the circuit is operated at increased carbon concentrations and reduced residence time relative to conventional counter current CIP circuits. The design of the Pumpcell circuit allows all contactors to be placed at the same elevation, in contrast to the stepped arrangement used for conventional cascade CIP adsorption plants. Furthermore, the potential capital and operating cost benefits coupled with the operational advantages of a carousel Pumpcell circuit is considered to offer an attractive alternative to the conventional cascade CIP process. There is no standard Pumpcell design, each application is evaluated with the aim of optimizing the active volume of the cell, the number of the adsorption stages required, the carbon concentration and the carbon elution rate (loading cycle). Of the Pumpcell plants installed, the active volume of the cells range from 10 m 3 to 330 m 3 providing an approximate residence time of 15 minutes per stage. The number of stages installed typically varies from six stages for lower grade operations (<6 g/t Au) to eight stages for the higher grade operations (> 6 g/t Au). Carbon concentrations vary between 30-60 g/l. Pumpcell Mechanism Page 3

Page 4 PUMPCELL MECHANISM DESCRIPTION The Pumpcell Mechanism incorporates a cylindrical wedge wire basket (screen) attached to the underside of the volute. The volute also houses the drive unit and includes a discharge launder. Rotating around the periphery of the screen is a cage and pulse blades. The rotating cage sets up a pulse and sweeping action around the periphery of the screen. This reduces the possibility of carbon and near size material pegging in the screen s apertures which in turn ensures that pulp flowrate through the screen is maintained. The drive shaft of the cage is surrounded by a stationary pipe, which extends up beyond the slurry operating level. This pipe is referred to as the hydraulic seal, which ensures that pulp and carbon can not by-pass the screen, thus providing an effective seal having no moving parts. The hydraulic seal is attached to the bottom of the screen by means of hydraulic seal base. Around the stationary hydraulic seal is a hollow (outer) shaft, which is attached to the drive shaft above the top of the hydraulic seal. This hollow shaft rotates along with the main drive shaft and has a pitch blade turbine (PBT) attached which provides the agitation inside the screen basket. The PBT blades in turn cause an upwards movement of the pulp inside the screen thus maintaining the pulp in a suspended state. This also aids in keeping the internal wedge wire area clean. The hollow (outer) shaft of the Pumpcell Mechanism also houses the up-pumping impeller. The pumping impeller is a mixflo type, specially designed to handle high flowrates at low tip speeds. The up-pumping impeller elevates the pulp from inside the screen and deposits it in the launder higher than the level of the pulp in the adsorption contactor in which the screen is operating and imparts horizontal velocity. Thus, the Pumpcell Mechanism is able to generate pulp height and horizontal velocity sufficient to overcome the pressure drop around the screen, thus overcoming the need to have a series of cascade adsorption contactors. Pumpcell Mechanism Motor Gear drive Base plate Main Drive shaft Outer shaft Up-pumping impeller Pitch Blade Turbine Volute Hydraulic seal Wedge wire screen Rotating cage Bottom Drive shaft Hydrofoil impeller

Attached to the bottom of the drive shaft is a down pumping hydrofoil. This hydrofoil is situated in the cell to ensure that an efficient high velocity flow pattern is achieved and maintained thus reducing the possibility of pulp and carbon settlement occurring within the cell. A single gearbox and electric motor drive the entire mechanism. The Pumpcell Mechanism is attached to the internal launder of the adsorption tank by means of a hookon arrangement such that the complete mechanism can be removed from the tank without having to loosen bolts. PUMPCELL DESCRIPTION The Pumpcell tank is comprised of an internal launder system, discharge and feed pipes, launder gate and plug valves. The internal launder is arranged such that it facilitates the individual functions of feeding pulp to the Pumpcell, discharging pulp from the Pumpcell and bypassing the Pumpcell in the event of taking the particular Pumpcell off line. This launder also connects the adjacent Pumpcells together. The nature of this launder arrangement enables the carousel mode of operation to be employed. Pulp should be screened prior to the CIP circuit to remove grit or fibrous material thus preventing the ingress of this material into the Pumpcell circuit. The screened pulp exiting the leach circuit either gravitates or is pumped to the Pumpcell feed launder arrestor box. The head Pumpcell receives fresh pulp from the feed launder located above the Pumpcell top platform. The feed launder valve arrangement directs the flow of pulp into the desired Pumpcell. The pulp enters the Pumpcell via a feed pipe and is directed to an area below the down pumping hydrofoil, thus reducing the possibility of short circuiting with the Pumpcell. The pulp flows through the Pumpcell Mechanism to the subsequent tank. Once the Pulp has passed through all the stages in the Pumpcell train the pulp exits the last Pumpcell in the carousel sequence and is directed via a residue valve and manifold to the residue screen. When the gold on carbon loading in the head Pumpcell has reached the predetermined value, the head Pumpcell is isolated and the feed material will be directed to the second Pumpcell in the carousel sequence. When the content of the original head Pumpcell has been drained, that Pumpcell is brought back on line as the new tail Pumpcell. During the draining of the head Pumpcell the entire Pumpcell plant operates with one Pumpcell less in the carousel sequence. TO TAILS FEED 6 1 5 2 4 3 Normal Pumpcell Flow Conditions TO TAILS FEED 5 DRAIN 4 1 3 2 Pumpcell Flow Conditions During Transfer Page 5

KEMIX KEMIX HOUSE 47 KYALAMI BOULEVARD KYALAMI BUSINESS PARK MIDRAND P O BOX 31949 KYALAMI, 1684 SOUTH AFRICA TEL : (+27 11) 466-2490 FAX : (+27 11) 466-2190 MAIL : marketing@kemix.com WEB : www.kemix.com