NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A

Similar documents
NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A

Thermodynamic study of R134a in Vapour Compression Refrigeration System in Summer Climate

Role of Nano-technology for improving of thermal performances of vapour compression refrigeration system (VCRS): An Overview

EVALUATION OF REFRIGERANT R290 AS A REPLACEMENT TO R22

A Review of Hydroflorocarbons (HFC S) Refrigerants as an Alternative to R134a Refrigerant

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 05 May p-issn:

η second law = Second law efficiency

Subscripts 1-4 States of the given system Comp Compressor Cond Condenser E Evaporator vol Volumetric G Gas L Liquid

Thermodynamic Analysis of Cascade Refrigeration System Using R12-R13, R290-R23 and R404A-R23

Study of Performance of Binary Mixture of R134a and R161 as a Substitution of R134a in a Domestic Refrigerator

International Journal of Research in Engineering and Innovation Vol-1, Issue-5 (2017), 68-72

Volume 4, Issue 1 (2016) ISSN International Journal of Advance Research and Innovation

A Theoretical investigation on HC Mixtures as Possible Alternatives to R134a in Vapor Compression Refrigeration

Experimental Evaluation of Refrigerant Mixtures as Substitutes for HFC134a

International Journal of Research in Engineering and Innovation Vol-2, Issue-2 (2018),

ASSESSMENT OF R430A REFRIGERANT AS A POSSIBLE SUBSTITUTE TO R134A REFRIGERANT IN LARGE CAPACITY FREEZER

Effects of evaporator load on vapour compression refrigeration system using ecofriendly hydrocarbon refrigerants with sub cooling

Australian Journal of Basic and Applied Sciences. Investigation of New Eco Friendly Refrigerant Mixture Alternative to R134a in Domestic Refrigerator

Comparative Performance Analysis of Domestic Refrigerator using R12, R134a and R600a Refrigerants

Use of fourth generation ecofriendly refrigerants in two and three cascade refrigeration systems for reducing global warming and ozone depletion

Part load performance analysis of vapour compression refrigeration system with hydrocarbon refrigerants

IR-REVERSIBILITY ANALYSIS OF A SPLIT TYPE AIRCONDITIONER USING R600a AS REFRIGERANT

Experimental investigation on the performance of air conditioner using R32 Refrigerant

Available online at ScienceDirect. Energy Procedia 109 (2017 ) 56 63

Experimental study of Hydrocarbon Refrigerant Mixture R290/R600a as an alternative to Refrigerant R134a used in a Domestic Refrigerator

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 12, December

Theoretical performance evaluation of R134a and its low GWP Hydrocarbon alternatives in Domestic Refrigerator

Study of R-161 refrigerant as an Alternate Refrigerant to various other refrigerants

Study of R161 Refrigerant for Residential Airconditioning

Assessment of Alternatives to Refrigerant R134a in Automotive Air Conditioning System

Comparative assessment for drop in replacement of R134a in domestic refrigerator.

Volume 2, Issue 4 (2014) ISSN International Journal of Advance Research and Innovation

A Comparison Between Refrigerants Used In Air Conditioning

EXERGY ANALYSIS OF DOMESTIC REFRIGERATOR WITH DIFFERENT REFRIGERANTS

Volume 2, Issue 1 (2014) ISSN International Journal of Advance Research and Innovation

Performance Evaluation of Eco- Friendly Alternate Refrigerants for VCRS

International Journal Of Core Engineering & Management (IJCEM) Volume 2, Issue 9, December 2015

Improving and Comparing the Coefficient of Performance of Domestic Refgirator by using Refrigerants R134a and R600a

REPLACING HARMFUL CFC 12 BY ECO-FRIENDLY REFRIGERANT IN MILK CHILLER

Keywords: Climate change; ozone depletion; Montreal protocol; eco-friendly refrigerant; hydrocarbon refrigerant; performance analysis.

JJMIE Jordan Journal of Mechanical and Industrial Engineering

Performance improvement of vapour compression refrigeration systems

Volume 3, Issue 4 (2015) ISSN International Journal of Advance Research and Innovation

AN EXPERIMENTAL STUDY OF A REFRIGERATING PLANT WHEN REPLACING R22 WITH HFCs REFRIGERANTS

Experimental Study on Performance Parameters for Refrigerants R22, R410a and R404a at Various Air Outlet Temperatures

Optimization of Capillary Tube Parameters in Vapour Compression System using Environmentally Friendly Refrigerant R1234yf

A COMPARATIVE STUDY OF REFRIGERANTS R12, R134A, R407 & R717 FOR VAPOUR COMPRESSION REFRIGERATION SYSTEM

Comparative Exergy Analysis of Vapor Compression Refrigeration System Using Alternative Refrigerants

ADVANCES in NATURAL and APPLIED SCIENCES

CHAPTER 1 INTRODUCTION

International Journal of Advance Engineering and Research Development

Experimental Analysis Of Vapour Compression Refrigeration System With Superheating By Using R-134a, R-12, R-717 Refrigerant

Analysis of Vapour Compression Refrigeration System with Refrigerants R134a, R143a, R152a, R290 and R32

PERFORMANCE OF DEEP FREEZER BY USING HYDROCARBON BLENDS AS REFRIGERANTS

Oyelami S., Bolaji B. O.

R134a Refrigerant in Vapour Compression Cycle: A Review Paper

IJESRT. (I2OR), Publication Impact Factor: (ISRA), Journal Impact Factor: 2.114

Performance Evaluation of R290 as Substitution to R22 & Mixture of Them in Vapour Compression Refrigeration System

A Review Paper on Comparative Study of Household- Refrigerator with Alternative Low Global Warming Potential Refrigerants

Performance Evaluation of R290 as Substitution to R22 & Mixture of Them in Vapour Compression Refrigeration System

ISSN Electronic International Interdisciplinary Research Journal (EIIRJ) Bi-monthly Reviewed Journal Mar- April 2015

A COMPARATIVE STUDY FOR RETROFITTING OF R-12 VAPOUR COMPRESSION REFRIGERATION SYSTEM BY ECO- FRIENDLY REFRIGERANTS R-134A, R-413A, R-423A

THEORETICAL INVESTIGATION OF THE PERFORMANCE OF SOME ENVIRONMENT-FRIENDLY REFRIGERANTS IN A SUB-COOLING HEAT EXCHANGER REFRIGERATION SYSTEM

Performance Comparison of Ejector Expansion Refrigeration Cycle with Throttled Expansion Cycle Using R-170 as Refrigerant

R. S. Mishra Department of Mechanical Engineering, Delhi Technological University, New Delhi, India Article Info IJARI.

A Review on selecting an Eco-friendly Refrigerant alternate to R134a in Domestic Refrigerators

EXPERIMENTAL INVESTIGATIONS ON AUTOMOBILE AIR CONDITIONERS WORKING WITH R134a AND R290/R600a AS AN ALTERNATIVE

EXPERIMENTAL INVESTIGATION OF WATER COOLER SYSTEM BY USING ECO-FRIENDLY REFRIGERANT (R-134a)

International Engineering Research Journal (IERJ) Special Issue Page , June 2016, ISSN

CHAPTER 1 INTRODUCTION

Performance Analysis of Electronic Expansion Valve in 1 TR Window Air Conditioner using Various Refrigerants

WORK STUDY ON LOW TEMPERATURE (CASCADE) REFRIGERATION SYSTEM

Experimental Performance Evaluation Of Vapour Compression Refrigeration System using R134a and R152a Refrigerants, A review

EXPERIMENTAL INVESTIGATION OF A REFRIGERATOR BY USING ALTERNATIVE ECO FRIENDLY REFRIGERANTS (R600A & HC MIXTURE)

Performance analysis of a vapour compression refrigeration system with a diffuser for theeco-friendly refrigerants R-134a, R-600a and R-152a

Thermal Design of Condenser Using Ecofriendly Refrigerants R404A-R508B for Cascade Refrigeration System

Thermodynamic Cycle Analysis of Mobile Air Conditioning System Using HFO-1234yf as an Alternative Replacement of HFC-134a

Waghmare Tushar Ramrao, D.S.Nakate

International Journal of Engineering & Technology Sciences Volume 03, Issue 01, Pages 55-64, 2015

DEEPAK PALIWAL, S.P.S.RAJPUT

Assessment of LPG as a possible alternative to R-12 in domestic refrigerators

Performance Study of Geotropic Blends of Isobutane R600a and Propane R290 in Domestic Refrigerator as Alternative Refrigerants to R134a

U.G. Student, Department of Mechanical Engineering, J D Engineering College, Nagpur, Maharashtra, India

Performance analysis of vapour compression refrigeration systems using eighteen ecofriendly and other CFC refrigerants

Department of MCE, Islamic University of Technology 2. Abstract

Performance and exergy analysis of vapour compression refrigeration system using various alternative of R134a.

Volume 1, Issue 2 (2013) ISSN International Journal of Advance Research and Innovation

A RECENT REVIEW OF REFRIGERANT R-1234YF AND R-1234ZE (E)

Volume 6, Issue 3(2018) ISSN International Journal of Advance Research and Innovation

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

International Journal of Multidisciplinary Research and Modern Education (IJMRME) ISSN (Online): (

An Experimental Study of a Simple Vapour Compression Refrigeration System with Varying Parameters

International Journal of Research in Engineering and Innovation Vol-3, Issue-1 (2019), 1-5

Design of LPG Refrigeration System

*Corresponding author;

Experimentation and Fabrication of Iceplant Using Ecofriendly Refrigerant

Refrigerants Retrofit as Alternative for R12 and R134a in Household Refrigerators

Performance of an Improved Household Refrigerator/Freezer

Performance Evaluation of Vapour Compression System with R22 and Environment-Friendly Refrigerant

Waste Heat Utilization of Vapor Compression Cycle for Operation of Vapor Absorption System

Transcription:

NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A [1] Ranendra Roy, [2] Madhu Sruthi Emani, [3] Bijan Kumar Mandal [1], [2],[3] Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal Abstract: A numerical simulation of vapor compression refrigeration system has been carried out using different refrigerants such as R152a, R404A and R600a. A computational simulation model is developed and simulation is carried out using Cool Pack software for analyzing the vapor compression refrigeration system performances. Simulation is done within the condenser temperature range of 25 C to 45 C and evaporator temperature range of 0 C to -20 C. Effect of compressor isentropic efficiency and degree of sub cooling is also taken into consideration for the simulation model. The parameters that are computed in this study are required compressor power, coefficient of performance () and required mass flow rate of refrigerants. Effect of degree of sub cooling on these computed parameters are also computed in this present work. The performances of the different refrigerants mentioned have been compared and R-152a is found to be the most efficient one. Index Terms: Alternative Refrigerants,, GWP, ODP R152a, R600a, Sub-cooling, VCRS I. INTRODUCTION Refrigerant is a substance that is used as a primary working fluid in a refrigeration system. It absorbs heat from a lower temperature and releases it to higher temperature along with the compressor work to get cooling effect. The halogen derivatives of hydrocarbon discovered by Midgley were used as excellent refrigerants having favorable thermodynamic properties. But these halogenated hydrocarbon refrigerants have a tendency to destroy ozone layer and warm the environment due to their higher ozone depletion potential (ODP) and higher global warming potential (GWP). Molina and Rowland [1] first discovered ozone holes in the stratosphere. For this reason, now-a-days, ODP and GWP play a significant role for searching alternative refrigerants to CFC and HCFC refrigerants. The discovery of ozone depletion properties of CFC and HCFC refrigerants leads to phase out of these refrigerants through Montreal protocol (1987), London amendments (1990), Copenhagen amendments (1992) and Kyoto protocol (1997) [2] and finally ban of these refrigerants by the end of 2030 throughout the world. So it is necessary to find out environment friendly alternative to these refrigerants with zero ODP and low GWP. Different researchers suggested few HFC and HC refrigerants as suitable alternative to these CFC and HCFC refrigerants. Properties of some HFC and HC refrigerants with zero ODP and relatively less GWP as compared to CFC and HCFC refrigerants are shown in table I [3]. Bolaji [4] experimentally investigated the exergetic performance of a domestic refrigeration system using R 12 and two environment-friendly alternative refrigerants R134a and R152a. Author concluded that refrigerant R152a gave better performance than refrigerant R 12 and R134a as working fluids in the experimental domestic refrigeration system. Bolaji et al. [5] in another study experimentally investigated the performance of vapor compression refrigeration system using three environment friendly refrigerants R152a, R134a and R32 and compared with the theoretical analysis. They observed that R32 had the most undesirable performance characteristics among the refrigerants and R152a showed the most desirable property on the basis of operating pressure and temperature, VCC and. Mohanraj et al. [6] numerically investigated on a domestic refrigerator using R152a, R290, R1270, R600a and R600. They found that except for flammability, R152a, R600a and R600 were best alternative option. They also stated that R290 and R1270 could not be used as alternatives due to their high operating pressures. They found that R152a offer many desirable characteristics such as low operating pressure, mass flow rate, higher and approximately the same volumetric cooling capacity (VCC). Arora and Kaushik [7] made an energy and exergy analysis of an actual vapor compression cycle using R502, R404A and 343

R507A as refrigerants. They observed that the and the exergetic efficiency for R507A were better than that for R404A. It was also noted that the increase in dead state temperature had a positive effect on exergetic efficiency. and exergetic efficiency of both R404A and R507A improved by sub cooling of refrigerant and the reversed happened when effectiveness of liquid vapor heat exchanger was increased. Table I: Properties of Refrigerants Refrigerant Molecular weight(gm) Critical temperature ( C) Boiling Point ( C) ODP GWP R134a 103 101.1-2 0 1300 R152a 65 113.3-24 0 120 R600a 58.12 134.7-1 0 20 R600 58.12 152-0.5 0 20 R404A 97.60 72.1-46.6 0 3800 R507 98.9 70.9-47.1 0 3900 R12 120.93 112-29.79 2 10600 R22 86.47 96.2-4 0.034 1700 R11 137.37 23.7 198 1 4600 So, an attempt has been made to simulate vapor compression refrigeration system with some HFC and HC environment friendly refrigerants. Few HFC and HC refrigerants are taken to simulate vapor compression refrigeration system for this work. II. SIMULATION USING COOL PACK SOFTWARE A simulation of an actual vapor compression refrigeration system is done using CoolPack software. A computational model has been developed in this software to simulate the cycle with refrigerants R152a, R404A and R600a. Various parameters such as compressor power requirement, of the system, mass flow rate of refrigerants are calculated. The effect of sub cooling on the above said parameters is also investigated in the study. The computed results have been plotted and the variation has been shown in figure 1 8. In this simulation work few assumptions are made. These are: Evaporator temperature, TE = 0 C -20 C Condenser temperature, TC = 25 C 45 C Compressor isentropic efficiency, ηs = 0.7 Degree of sub cool, ΔTsb = 10K Refrigeration effect = 1 TR Volumetric efficiency, ηv = 1 III. VALIDATION OF THE SIMULATED RESULTS In this section, simulated results obtained from CoolPack software validated with the numerical work of Chen and Prasad [8] for the same working working conditions. Validation has been carried out for different system performance of the system using R134a as refrigerant. The comparison of the simulated results and the work of Chen and Prasad have been shown in figures 1 amd 2. From fig. 1, it is observed that CoolPack predicts slightly higher. At higher evaporator temperature (0 C), the values obtained from the simulation and the work of Chen and Prasad are found to be 3.81 and 3.84 respectively. However, at lower evaporator temperature (- 20 C) the corresponding values are noted to be 8 and 2.14 respectively. Simulated results also predicts same value (0.26 kw) of compressor power at higher evaporator temperature (at 0 C) as shown in fig. 2, whereas, simulated result decreases at lower evaporator temperature than the work of Chen and Prasad. The corresponding values of the simulated work and the work of Chen and Prasad are found to be 0.47 kw and 0.48 kw respectively. The simulated results match well qualitatively with the numerical results of Chen and Prasad for all the parameters. The predicted results from this software have also been validated with the numerical work of Roy and Mandal [9]. The next section deals with the analysis of different parameters including sub cooling effect using various refrigerants by utilizing the simulated data obtained using CoolPack software. Work of Chen and Prasad Simulated Work 344

0.50 0.45 Work of Chen and Prasad Simulated Work condenser temperature between 25 C to 45 C for four refrigerants, namely R152a, R404A and R600a respectively. The figures show that with the decrease in evaporator temperature required compressor power changes and similar trends are seen for all the refrigerants considered here. It is seen from the figures that with the decrease in evaporator temperature, compressor power increases. It is also noted from the figures that compressor power requirement for R152a is less and that for R404A is maximum for all evaporator temperature and condenser temperature range. This is because of the different specific volume of different refrigerants used in the work. Power requirement for refrigerant R600a is slightly higher than R152a and lower than R404A. Compressor work (kw) 0.40 0.35 Fig. 2. Validation of Compressor work with evaporator temperature 0.30 0.25 0-5 -10 IV. RESULTS AND DISCUSSIONS -15-20 A. Variation of Compressor Power with Evaporator Temperature Fig. 3(a) (c) show the effect of evaporator temperature on compressor power at different (a) R152a (b) R404A (c) R600a Fig. 3 Variation of required compressor power with evaporator temperature for refrigerants (a) R152a, (b) R404A and (c) R600a B. Variation of Coefficient of Performance of the System with Evaporator Temperature Fig. 4(a) (c) show the effect of evaporator temperature on of the system for refrigerants R152a, R404A and R600a with varying condenser temperature from 25 C to 45 C. It is seen from the figures that the of the system decreases with the decrease in evaporator temperature and increases when condenser temperature decreases. This is 345

because as the evaporator temperature decreases, compressor power increases. As a result, overall decreases for all the investigated refrigerants. Similarly, when condenser temperature decreases, compressor power decreases that leads to increase in of the system. All investigated refrigerants are showing the similar trends. It is seen from the figure that maximum of the system is obtained when R152a is used as the working fluid in the system and minimum value of is achieved when R404A is used as refrigerant, where both R600a and R152a gives almost similar result with R152a. The difference in the of the system while using R600a and R152a as refrigerants in the system is calculated and it is found to be % while the maximum difference is obtained while using R404A as refrigerant which is about 10% at higher condenser temperature. C. Effect of Evaporator Temperature on Mass Flow Rate The variations of mass flow rate of different refrigerants with evaporator temperature have been shown in fig. 5(a) - (c) at varying condenser temperature range of 25 C to (a) R152a Fig. 4 Effect of evaporator temperature on of the system for refrigerant (a) R152a, (b) R404A and (c) R600a (b) R404A (c) R600a 45 C respectively. It is seen from the figures that required mass flow rate of refrigerant to achieve same refrigeration effect increases as the evaporator temperature decreases and increases when condenser temperature increases. Similar trends are found for all the investigated refrigerants. It is seen from the figures that minimum mass flow rate is required when R600a is used as the working fluid in the system and maximum mass flow is required when R404A is used as refrigerant. The required mass flow rate of R600a differ from that of R152a is 3% lower while the maximum difference obtain while using R404A which is about 62% lower at higher condenser temperature. D. Effect of Sub cooling Temperature Fig. 6 shows the effect of degree of sub cooling on refrigerant flow rate for investigated refrigerants with fixed evaporator and condenser temperature of 0 C and 40 C respectively. It is seen from the figure that refrigerant flow rate decreases with the increase in degree of sub cool to achieve a desirable cooling effect. As the degree of sub cool increases, refrigerating effect increases and it leads to a decrease in refrigerant flow rate. All four refrigerants show the similar trend. It is interesting to note that the mass flow rates of refrigerants R600a and R152a are much lower than the corresponding value of R404A. The effect of degree of sub cooling on compressor power requirement for various refrigerants with fixed evaporator and condenser temperature of 0 C and 40 C respectively has been shown in fig. 7. It is seen from the figure that compressor power requirement decreases with the flow requirement (kg/s) 0.036 0.032 mpressor power (kw) 5 0 R152a R404A R600a T 0.028 C R152a 0.95 T R404A E = 0 o C Proceedings of 0.024 IIRAJ International R600a Conference (ICCI-SEM-2K17), GIFT, Bhubaneswar, India, 18th - 19th February 2017, 3.8 ISBN: 978-93-86352-38-5 0.90 346 T C 0.020 T E = 0 o 3.6 C 5 4.4 4.2 T C T E = 0 o C

8) R152a shows a better performance than the other investigated refrigerants. increase in sub cool temperature to achieve a desirable cooling effect. This is because the specific compressor work does not change with sub cool temperature, but as the mass flow rate of refrigerant decreases with the increase in sub cooling, compressor power requirement also decreases because compressor power is the product of specific compressor power and mass flow rate of refrigerant. All four refrigerants show the similar trend. The variations of of the system with degree of sub cooling for various refrigerants with fixed evaporator and condenser temperature of 0 C and 40 C respectively have been shown in fig. 8. It is seen from the figure that of the system increases with the increase in degree of sub cooling to achieve a desirable cooling effect. With the increase in degree of sub cool temperature the refrigeration effect increase but degree of sub cooling has no effect on specific compressor work. For this reason the ratio of these two also increases, i.e., of the system increases with the increase in sub cool temperature. It is found from the figure that, of the system is obtained maximum while R152a is used as refrigerant whereas, minimum obtained for R404A when degree of sub cooling is 10 K. REFERENCES [1] M. J. Molina and F. S. Rowland, Stratospheric sink for chlorofluoromethane: chlorine atom catalyzed destruction of ozone, Nature, vol. 249, pp. 810 812, 1974. [2] S. Paul, A. Sarkar and B. K. Mandal, Environmental impacts of halogenated refrigerants and their alternatives: recent developments, International Journal of Emerging Technology and Advanced Engineering, vol. 3, pp. 400-409, 2013, [3] J. M. Calm and G. C. Hourahan, Refrigerant data summary, Engineered Systems, vol. 18, pp. 74 78, 2001. [4] B. O. Bolaji, Exergetic performance of a domestic refrigerator using R12 and its alternative refrigerants, Journal of Engineering Science and Technology, vol. 5, no. 4, pp. 435-446 2010, [5] B. O. Bolaji, M. A. Akintunde and T. O. Falade, Comparative analysis of performance of three ozone-friends HFC refrigerants in a vapour compression refrigerator, Journal of Sustainable Energy & Environment, vol. 2, pp. 61-64, 2011, [6] M. Mohanraj, S. Jayaraj and C. Muraleedharan, Comparative assessment of environment-friendly alternatives to R134a in domestic refrigerators, Energy Efficiency, vol. 1, pp. 189 198, 2008 V. CONCLUSIONS The following conclusions can be drawn from the above mentioned work where simulation has been carried using CoolPack software. 1) Compressor power requirement increases with the decrease in evaporator temperature and increases with the increase in condenser temperature for all four Investigated refrigerants. 2) The compressor power requirement is maximum for R152a and minimum for R404A among the refrigerants for all the condenser temperature within same evaporator temperature range. 3) Coefficient of performance of the system decreases with decrease in evaporator temperature and also decreases with the increase in condenser temperature for all the refrigerants. 4) Maximum is achieved when R152a is used and minimum is achieved when R404A is used as refrigerant. 5) Mass flow rate increases with the decrease in evaporator temperature and it also increases when condenser temperature increases. 6) Mass flow rate of R404A is maximum and minimum for R600a. 7), mass flow rate and required compressor power of all four investigated refrigerants improve with the subcooling of condensed liquid refrigerants. [7] A. Arora and S. C. Kaushik, Theoretical analysis of a vapor compression refrigeration system with R502, R404A and R507A, International Journal of Refrigeration, vol. 31, pp. 998 1005, 2008, [8] Q. Chen and R. C. Prasad, Simulation of a vapour compression refrigeration cycles using HFC134a and CFC12, Int. Comm. Heat Mass Transfer, vol. 26, no. 4, pp. 513-521, 1999. [9] R. ROY and B. K. Mandal, First law and second law analysis of mechanical vapour compression refrigeration system using refrigerants CFC12, R134a and R290, International Journal of Current Engineering and Technology, special issue 3, 2014. 347