Be Mr. Clean! Using Fluids Other than Alcohol When Cleaning Fiber Optic Connectors. By Mike Jones, MicroCare Corp.

Similar documents
The Importance of Properly Cleaning Fiber During Splicing


MOST EFFECTIVE METHOD FOR WIPING A FIBRE

The True Value of Connector Inspection: New Challenges and Best Practices

Sticklers Fiber Optic Splice &

Fiber Optic Connector Cleaning and Inspection Kit Instructions

Sources of End Face Contamination on Fiber Optical Interconnects and Recommended Best Practices for Removing the Contaminates

Suits SC, ST & FC 2.5mm PC & APC polish 525+ uses. Suits HFOCs in Optitip systems and other FTTx applications

When you need perfectly clean splices & connectors. Sticklers Fiber Optic Cleaners

2.5mm CLEANCLICKER 750 Fiber Optic Cleaner Performance Verification Report OptiTap-Style Connectors

INDUSTRY STATS SNAPSHOT

Reduce Energy Costs with Vapor Degreasing. Mike Jones MicroCare Corp., New Britain, CT

The Seven Deadly Sins of Fiber Optics By Sean Sheedy, Fiber Optic Specialist

RLH Industries, Inc. Cleaning and Testing Fiber Optic Cable. Reference Guide MD A 0507

Best Practice Briefing

Fiber Optic Cleaning Overview. Prepared by Steve Lytle, Westover Scientific March 10 th, 2004

Contemporary Considerations When Precision Cleaning Fiber Optic Connections

SMOKE DETECTOR TESTERS

Chemical Products COMPLETE LINE

Perfects your life...

Fiber Optic Cleaners When you need perfectly clean splices & connectors

Scroll Chillers Transition from HCFC-22 to HFCs

The smart handling of liquid chemicals: quickly connected safely dispensed.

CONTAMINANT FREE REFINISHING

Cleaning a Fibre Optic Solution

CONTAMINANT FREE REFINISHING

solution simplified order Panasonic ideas for life maintenance solutions

Discover Perfectly Clean. PRODUCT CATALOG. MicroCare International

The Use of Solvents in Laboratory Freeze Dryers A Discussion of Issues and Some Helpful Tips

White Paper: Fiber Contamination, Cleaning and Inspection. Introduction.

Vacuum in the laboratory. products and solutions

R-407A R-448A R-449A

Contents. Introduction... A Note About Heatsinks... Precautions...

The smart handling of liquid chemicals: quickly connected safely dispensed.

User s Manual & Safety Instructions Read Carefully Before Use

Scroll Chillers: Conversion from HCFC-22 to HFC-410A and HFC-407C

KD Innovative extinguishing with Novec TM 1230 by 3M TM

SELF-ADHESIVE FILM INSTALLATION GUIDE

Static Electricity: Causes and Cures in Web Converting Presented By: Matt Fyffe

Clean! Clean working by Qdel. Qdel laminating supplies Hamburgstraat 9 NL-7575 EG Oldenzaal T: E: I :

OUR REEFER REPAIR ADHESIVE RANGE. Adhesives That Outperform

Tovatech LLC Phone (973) Rutgers St, Maplewood, NJ 07040

CalMag Filter Installation Instructions

Requests for Daily Care and Maintenance

Cleaning of fiber optic connectors

Routine Cleaning of the icolor 700 Continuous Digital Label Press

Main Anthropogenic Sources of Greenhouse Gases Refrigerants

14. The center port of the manifold is used for evacuation, charging and refrigerant recovery.

White Paper Fiber optic connections: check and clean first, then connect!

Reflectance, The Hidden Danger That Increases Bit Error Rates in Your Fiber Networks Denver, May 22nd, 2010

Guide for Thin Film Evaporation Edited 7/22/13 by Stephen Albright, BJAM & Steven Palefsky

What provides highly reliable fire protection?

White Paper: Standard-Compliant Certification & Best Practices Ensure Fiber End-face Cleanliness to Eliminate the #1 Cause of Fiber Failure

Which RO/DI Water Heater is Right For Your Application? By: Caitlin Carrier

THE DEVELOPMENT OF THE ISOPROPYL ALCOHOL/PFC CLEANING SYSTEM. presented by

Daily Cleaning Instructions: KL1Plus

Perimeter Product Overview. Effective protection for your business

SNC1P Electricity Practice Test

Application of a Reagentless Direct Conductivity Online TOC Analyzer for Clean-in-Place Verification

PARTS CLEANING AND DEGREASING

All Cleaning Options for Parts Cleaning

5CONSIDERATIONS WHEN SELECTING A DESICCANT BREATHER FOR YOUR EQUIPMENT

There is Still Something in the Air Consumer Reports Article Raises New Concerns About Ionizers. By Jim Rosenthal, CAFS and Stevan Brown, CAFS

Requests for Daily Care and Maintenance

Maintenance Guide. for your Mercier prefinished floor PRINTED IN CANADA SP-CAREGUBIL 04-15

4.0 Mechanical Redesign

Development of a dry fabric cleaner for miniature parallel optical interface PRIZM LightTurn connector

SUNBEAM IRON. User Guide SR6300 SR6400. SR6300 Sunbeam Sprint Iron SR6400 Sunbeam Aerostream Iron

Desiccant Breathers: A Front Line Defense in the War on Contamination

a. CFCs. b. HCFCs. c. Pressurized nitrogen. d. Compressed dry air. 17. The state of the refrigerant leaving the condenser of a refrigeration system

Outdoor Enclosures. Outdoor Enclosures Protected like a bunker for all harsh environments

Owner s Manual. Airgle Personal Air Purifier ( Model: AG25 )

OPX-BOX. Platform Highlights. Software Support. Key Features

Focused Solutions for PARTS WASHING. LOWEST TOTAL COST OF OWNERSHIP Reduced Disposal Fees Reduced Solvent Cost Eliminate monthly rental fees

Membrane Technologies DMD Series Dryers ESM Series Dryers

CLEACOM Engineered System Solutions. Established 24/7 technology for the separation of dust and fume during compounding processes

User Guide. Portable banknote counter AB300

The FTA-02 Fiber Arranger

PORTABLE DOG BATH TOOL

Gallagher Perimeter Product Overview

Care instructions for leather furniture

UM120W OPERATING MANUAL MANUAL WATERBORNE GUN CLEANER CAUTION FOR WATERBORNE PAINTS ONLY UNI-RAM CORPORATION ONTARIO CANADA

dissipation: air conditioning, compressed air and heat exchangers. Air conditioning was

EASYkleen TEC BRUSH. DC Weld Electropolisher

HEPASilent Air Purification Systems. Clean air is a human right

Laser Class 4 Laser Type Nd-YAG Laser Manufacturer New Wave Research Laser Model SoloII-30 PIV Laser Serial / Id # Serial number 16582

Leak-Seeker I Refrigerant Leak Detector

Caractéristiques Unités Valeurs Méthodes. Appearance - Colourless Visual. Density (at 20 C) kg/cm³ 1,52 - Purity % 99,8 -

300KV Van de Graaff Generator Kit Builders Manual

How can you minimize consequential damages in case of a fire?

NFPA 33 Standard for Spray Applica4on Using Flammable or Combus4ble Materials

Connector Maintenance

REFRIGERATION CYCLE Principles of Mechanical Refrigeration Level 2: Cycle Analysis

The New Ice Age. Electrolux Professional Refrigeration. Pure. Zero waste. Sustainable. Electrolux Pebble Ice Makers

Blueair Pro User Manual

Low GWP alternative refrigerants to R404A

Containment of Basket Filtration Centrifuges ABSTRACT

Air Purification Unit MODEL 300/RHO2 USER GUIDE. Because You Care, Clean the Air

Chargebuster Ion Gun Installation, Operation and Maintenance

The complete approach to the care and management of A/C & refrigeration systems

Transcription:

Be Mr. Clean! Using Fluids Other than Alcohol When Cleaning Fiber Optic Connectors By Mike Jones, MicroCare Corp. First published in OSP Magazine, Sept 2015 Long ago in days of yore, like the 1970s, Bell Labs was busy perfecting the technologies to commercialize fiber optic communications. Peering into their crystal ball in the nascent years of the digital age, they could see a time in the not-to-distant future when all the copper wire in the world could not handle the volume of data that people would want to send over phone lines. They knew fiber was the answer. Working in the lab, one of the issues with which they struggled was finding suitable ways to quickly, conveniently and consistently clean the delicate fiber optic connectors. They found very early on that even the slightest contamination on the end-faces significantly degraded the performance of their networks. The scientists at Bell Labs recommended using only 99% reagent grade isopropyl alcohol (also known as IPA and rubbing alcohol ) for cleaning fiber optic connectors. 595 John Downey Drive, New Britain CT 06051 USA Tel: 860.827.0626 Fax: 860.827.8105 In North America, dial: 800.638.0125 On the Web: www.sticklerscleaners.com The terms Sticklers: and MicroCare and the Sticklers logo are registered trademarks of MicroCare Corp.

2 They made this recommendation for two reasons: it was readily available on their workbenches, and it worked. It worked because the solvent provided additional chemical action to enhance the mechanical action provided by the cleaning device (the wipe or swab). Alcohol and other solvents also are very effective at softening, loosening and/or dissolving dried-on contaminants and particulate. In short, those clever engineers at Bell Labs proved what everybody intuitively understands: a well-engineered cleaning fluid will enhance the removal of contaminants from the optical end-face. So Much For The Good Ole Days Since that time much has changed. Fiber optics technologies are no longer the exclusive, exotic technology of the monolithic phone company but a enabling capability of almost every company (and soon, every home). Mobile video on demand has created skyrocketing demand for greater bandwidth. Computing technology has plummeted in cost and expanded in capability. All of this means networks have become larger, commonplace and faster. Good news, all of it. Except for one odd little quirk: fiber networks, as they have become ubiquitous also have become more fragile. We don t expect this from our electronics, do we? Today s cell phone is far better than the model from a few years ago. Today s laptop vastly outperforms the first Compaq luggable computer, and today s flat-screen TV well, don t even try to compare a WIFI-enabled, 80-inch screen to the color TVs of the 1970s. But today s fiber, while more capable, is positively delicate. The first fiber link that Bell Labs built under the streets of Atlanta in 1976 operated at 44.7 mhz. The lasers generated a pulse of light that was enormously long by today s standard: literally hundreds of meters in length. But as fast as it seemed at the time, in today s world 44.7 MHz is not just a lethargic, it s comatose. Modern networks work at gigahertz speeds which means (since the speed of light is constant) the pulse of light is just inches long. Such an ephemeral signal is easily knocked off the rails by the slightest contamination on the end-faces.

3 Everything has changed, except that technicians around the globe still are trying to clean their fiber with IPA. This is no longer a good idea. First, reagent-grade IPA (also called rubbing alcohol ) is a laboratory product that is not readily available to fiber optic technicians. The quality of IPA alcohol that is available to fiber technicians is completely unsuitable for cleaning fiber optics. It usually is diluted with water to lower the cost. The mixture is packaged in a (relatively) dirty plastic container from which all sorts of plasticizers and contaminates may leach. The container may be re-used, and the alcohol certainly will become contaminated as it rides around in the back of an installer s truck for months or even years. Photo, left: This image from an interferometer shows contamination on a fiber end-face in 3-D clarity. Notice the contamination extends not just in the contact zone but all the way to the endge of the connector. This peripheral contamination can migrate into the contact zone and degrade network performance. Next, alcohol actually isn t a very good cleaner. In terms of solvent technology, it s pretty far down on the list of old technologies. It has a very low density so it cannot easily clean particulate. It has a high boiling point so it is relatively slow to dry. It is easily saturated, so it will no longer be an effective cleaner. Modern cleaning chemistries usually try to avoid, or at least minimize, the presence of alcohols in the fluid because of these problems. Thirdly, IPA is easily contaminated. Alcohol has a property of being infinitely hygroscopic which means it likes water; it wants to absorb water. This property means that IPA in loosely sealed bottles in the back of a truck will absorb moisture from the air along with any contamination that resides in the air. This is why IPA often leaves a water-mark residue on the connector end-face. These residues can burn into the surface of the glass and increase the signal loss of the connector permanently, requiring time-consuming re-termination.

4 Lastly, alcohol is flammable. It cannot be carried on to an airplane nor easily shipped without hazmat paperwork and fees. This means that technicians, installing and repairing fiber links in remote locations, often have to leave their cleaning fluid at home: not a good plan if you wish to have a happy, reliable, fast fiber network. Fiber Dry Cleaning? Becoming aware of the problems of alcohol, many folks discontinued the use of solvents and went with dry cleaning only. However, that has been proven to be less than optimal. As it turns out, wiping dry on a fiber end-face will generate a static charge (technically known as a triboelectric charge ) on that end-face that is extremely difficult to dissipate. (These charges are like the ones you generated in school when you rubbed silk on a glass rod, fur on a hard rubber rod, or a rubber balloon on your hair.) This static charge turns the end-face into a microscopic magnet, attracting dust out of the air right on to the heart of the end-face. Triboeclectric charging will occur when rubbing any nonconductive surface with any dry wipe. The static charge on a connector end-face will attract unwanted airborne particulate and dust to the connector end-face. The condition will be exacerbated in dry conditions (low humidity) such as winter cold or desert heat (See Note 1). Therefore, the use of static-dissipative solvents during the wet/dry cleaning of connector end-faces is now the recommended practice. With data rates over fiber only increasing, the need to clean properly has never been more important. A modern, water-free, high-purity fluid engineered for cleaning fiber optic connectors will both dissipate, or at least temporarily prevent, the build-up of triboelectric charges in the connector end-face. Solvents always should play an import role in cleaning. During the wet/dry cleaning process, a section of the cleaning wipe is dampened with the cleaning fluid. The connector end-face is wiped, usually moving from the damp area towards the dry area of the cleaning material. (In the case of port cleaning sticks or automated devices, a cleaning stick or device is dampened with a solvent and used to clean the end-face.) When a fast-drying, static-dissipative fluid is used with a wipe or highly absorbent cleaning stick, no drying step is necessary. This saves time, money and cleaning supplies.

5 When a user (or corporate buyer) is selecting a fiber optic cleaning fluid, there are seven factors that should be considered: 1. Does the solvent readily remove a wide variety of soils and contamination? This is easily tested in the field with sample products. Also, the user should make sure that the fluid is compatible with the wiping material or cleaning swabs. For example, one would not want to pair a solvent with a swab or wipe which was constructed of a material that the liquid would dissolve (perhaps a glue used in construction of the swab). Photo, right: Wet-dry cleaning has been proven by inemi and others to improve cleaning results. Here a technician uses a high-purity lint free wipe dampened with the STICKLERS connector cleaning fluid to clean an APC end-face. 2. Is the cleaning fluid safe or flammable? Is the cleaning fluid safe for technicians to handle? Can it be shipped as a non-hazardous material? Will it freeze? Is it safe for the environment? The answers will be found on the product spec sheet and the SDS sheet for the cleaning fluid. If the answers are not instantly available on the published documents, this usually is a sign of a vendor not fully disclosing the contents and properties of the material. 3. When it comes to the speed of drying of the solvent - faster is better. Slower drying solvents require more time or more wiping to dry (which can delay progress, and also contribute to static charge build-up). But more importantly, slower drying solvents can hang in the split of the alignment sleeve of an adaptor or optical port of device. The trapped liquid, which cannot be seen with an inspection scope, then can weep back onto the connector end-face spreading contamination.

6 Very fast drying solvents will not remain in the liquid state long enough to become trapped within an alignment sleeve. (This has been demonstrated for IPA when compared to a fasterdrying fluid). A water-based cleaner would certainly require very special attention to drying. 4. The packaging of the fluid is important. The ideal packaging will prevent spillage, prevent recontamination of the fluid during storage and normal use, and only dispense in quantities that are well-suited for a single cleaning. The fluid should be safe to use over a wide temperature range and should not freeze in field applications. Spilling is another worry; it can be costly and dangerous, particularly in the case of flammable liquids. Open containers (bottles) or pumptype dispensers easily can be contaminated from wipes, airborne contaminates or by refilling with unapproved fluids. Aerosol cleaners are not recommended because it is very easy to use excessive quantities of solvents with uncontrolled aerosol sprays. Metered pumps are the ideal dispenser since the user cannot over apply a solvent (which can also be costly and dangerous). Photo, left: The STICKLERS fiber optic cleaning fluid is packaged in a hermetically-sealed mini-pump canister that cannot spill. It also keeps atmospheric humidity out of the fluid. This is an optimal packaging configuration for operators in the field. 5. Materials compatibility matters. A wellengineered fluid will be compatible and safe to use with a wide range of materials including optics, plastics, metals, elastomers, electronic assemblies and adhesives. A proper cleaning fluid will dry without residue, and will not create unwanted corrosion, surface crazing, or otherwise damage /alter the connector end-face, its housing, or surrounding associated equipment. 6. The environmental impact of the fluid is important as well. The U.S. Government has four classifications of chemicals effecting air quality and the environment. The classifications are

7 VOCs (Volatile Organic Compounds, which contribute to ground level ozone and smog), ODPs (Ozone Depleting Pollutants, which breakdown the protective ozone layer of the atmosphere), HAPs (Hazardous Air Pollutants, which consists of a list of chemicals whose use must be measured and monitored), and lastly GWP (Global Warming Potential, a measure of the potential damage to the environment over 100 years). In general, most fluids cannot be positive in all four categories. For example, if a material is not a VOC then it probably has a higher Global Warming material. Trade-offs must be made. The best recommendation is to select the safest solvent that will satisfactorily perform the cleaning task and select the best packaging to utilize as little fluid as possible. 7. Lastly, remember that the cost is more than just the solvent. It is the cost of the solvent, the safe storage and transport of the solvent (shipping), and the packaging of the solvent (the likely amount of solvent used per clean). Engineers should search for the lowest cost per connector cleaned to make bona-fide comparisons among competing products. In conclusion, users will need new cleaning fluids in data centers, telco central offices, cable TV head-ends, and out in the field to clean today s fiber optic connectors. There are many considerations that must be taken into account to provide the best product for the user. Price per can or bottle alone does not reflect the real cost. We all have responsibilities to provide the user with a fluid and a package that is safe, convenient, reliable and environmentally responsible. # # # About the Author Mike Jones is Vice President, MicroCare Corp., the maker of the STICKLERS fiber optic cleaners. He has more than 25 years of experience in critical cleaning. For more information, please email: Mikej@MicroCare.com or visit: SticklersCleaners.com. # # # (1) Accumulation of Particles Near the Core During Repetitive Fiber Connector Matings and De-matings by Tatiana Berdinskikh, Jeno Chen Celestica International Inc, John M

8 Culbert Megladon Manufacturing Group Ltd., David Fisher Tyco Electronics, Sun-Yuan Huang Intel Corp, Brian J. Roche Cisco Systems, Inc, Heather Tkalec Alcatel Corp, Douglas H. Wilson, Steven B. Ainley PVI Systems Inc. presented at NFOEC 2007.