ROMAS Remote Operations of Machinery and Automation Systems

Similar documents
Sergey Gribanov Head of Technical Service, Germany

The SMART Choice of Control & Automation. always on top of the situation

Solutions for Oil & Gas

Design. Innovations in Integrated Control Systems

Effective Alarm Management for Dynamic and Vessel Control Systems

Introduction to SRtP. Mr Georgios Vavourakis

BWTS Installation DNV GL Experience

Part 6 Additional class notations Chapter 2 Propulsion, power generation and auxiliary systems

Manager Other (Specify) Gross Tonnage: Main Propulsion (kw): Generating Power (kw):

Innovations in Integrated Control Systems

Marine Solutions. Honeywell s Solution for LNG Vessels

ARM 10.2 MAINTENANCE OF CRITICAL SYSTEMS

MB05. RESPOND TO EMERGENCIES BASIC KNOWLEDGE OF EMERGENCY PROCEDURES, INCLUDING EMERGENCY SHUTDOWN

FT NAVVISION AMCS TYPE-APPROVED, USER-CENTERED YACHT AUTOMATION

Training, Assessment, Consultants for Hazardous & Industrial Areas

Part 4 Systems and components Chapter 5 Control and Monitoring Systems

PLN9 Security Services Pvt. Ltd.

IMO GUIDELINES ON THE LAYOUT AND ERGONOMIC DESIGN OF SAFETY CENTRES ON PASSENGER SHIPS. Submitted by the Cruise Lines International Association (CLIA)

Imtech Marine Free Technics. Type-approved, user-centered yacht automation

MSC Guidelines for Vital System Automation Procedure Number: E2-01 Revision Date: 11/10/2011

SmartShip Technologies

Every ETY marine panel is fully inspected and tested to IEC Switchboards Power management systems Panels and systems

1. GENERAL. In case of change of Class, foreseen Classification Society 20 Date of last Dry Docking

Health and Safety Documents in connection with offshore oil and gas operations

Human-centered Design of a Mooring Winch Control Panel DNV GL & IST

TYPE APPROVAL CERTIFICATE

Part 6 Additional class notations Chapter 6 Additional fire protection for passenger vessels

Crosswalk: Weight-Based Rating versus Performance-Based Rating

AUTOMATED CLIMBER DETECTION

APPENDIX D Inspection Check List for Chartering Non-UNOLS Vessels

ClassNK Technical Information No. TEC-0838 (iii) The dormant period, visual indication, first stage audible alarm, second stage remote audible alarm a

A safe journey with Dräger CRUISE CATALOGUE

Fact Sheet TANK CONTENT AND DRAUGHT MEASURING SYSTEM Issue Date

TYPE APPROVAL CERTIFICATE

MSC Guidelines for General Emergency Alarm & Public Address Systems

ARE YOU AN AUTHORISED REFRIGERATION GAS PRACTITIONER?

Fully redundant and customizable alarm, monitoring & Control system

Low-voltage switchgear and controlgear - rated voltage does not exceed 1000V AC or 1500V DC

GUIDE TO APPROVAL OF RETROFIT BALLAST WATER MANAGEMENT SYSTEM INSTALLATIONS

WELCOME. The human touch in technology. marine

COMPANY PROFILE. Design, Development & Installation of Electrical & Automatic Control Systems

C Command. Engine monitoring that puts you in control

SUPERYACHT SAFETY & SECURITY 360 AIR, SURFACE & UNDERWATER PROTECTION

Access Professional Edition. The flexible access control system that grows with your business.

TYPE APPROVAL CERTIFICATE

The evolution of level switches and detectors

Certification and Class reports Item Common deficiencies Check items Finding Corrective Action Statutory / mandatory certificates

WORLD CALIMA. Summary report on engine room fire

NOTTINGHAM CITY HOMES

OFFSHORE SUPPORT VESSELS 2014

PASCOE S PTY LTD EMERGENCY RESPONSE MANUAL. (Public Version) SOP 517. July 2015

REPUBLIC OF LIBERIA BUREAU OF MARITIME AFFAIRS

DNVGL-CP-0407 Edition February 2016

ELC International Inc

MV THOMSON MAJESTY Engine-room fire South of Gorgona Island 21 October 2016

E-16 Main Engine Remote Control System

ESF 4. Fire Fighting

THE REPUBLIC OF LIBERIA LIBERIA MARITIME AUTHORITY

A Bridge to Inspection

Course Outline Cover Page

ROUTINE MAINTENANCE CHECKLIST FOR THE MASTERS

DeltaV Operate. DeltaV Operate. Introduction. DeltaV Product Data Sheet. Robust and secure plant operations

LIQUEFIED GAS TANK BARGES WITH REMOTE CONTROL AND MONITORING OF ESSENTIAL SYSTEMS

Requirements for ships carrying hydrogen and compressed natural gas vehicles

PROJECT PERIODIC REPORT

Terminal lugs for LV power cables with aluminum conductors

INTERNATIONAL STANDARD

1.3 REFERENCE STANDARDS

IMO DEVELOPMENT OF MODEL PROCEDURE FOR EXECUTING SHIPBOARD EMERGENCY MEASURES. Fire-fighting drills. Submitted by the Republic of Korea

For the compliance with the resolution MEPC.174(58), the Certificate is issued on behalf of the Norwegian Maritime Authority.

Safer & quicker evacuation From Emergency Lighting Systems to Adaptive Evacuation Systems

GL-001. CIRM Guideline PERFORMANCE TEST PROCEDURE FOR ELECTRONIC CHART DISPLAY AND INFORMATION SYSTEM (ECDIS) Edition 1.

EPSS FOR CARGO HOLD HUMIDITY CONTROL. Mr Rajan Bhandari Senior Lecturer. Ms. Chong Yee Shia Technical Officer. Mr. Apurva Lawale Technical Officer

Smarter Field Instrumentation Life Cycle Management. Ray Rogowski Global Marketing PMC Instruments

TRANSAS ENGINE ROOM SIMULATOR

SAFETY ON A BROADER SCALE Safety and security for people, processes, plants, communities and environment

Safety Instrumented Systems The Smart Approach

Sustain.Ability. Adrian Fielding Integrated Safety & Security Honeywell Users Group EMEA

/ / White Paper. Focusing on user experience

Design & Use of Ground Based Pumps Guidance Document

Fire Safety in Guest Harbours and Marinas

Safety, Security and Entertainment The Turnkey Solution for all kind of Ships

COMMISSION REGULATION (EU)

DNVGL-CP-0398 Edition December 2015

26 June 2001 GUIDELINES ON ALTERNATIVE DESIGN AND ARRANGEMENTS FOR FIRE SAFETY

Implementation Guidance for ISO 9001:2008

EMERGENCY PREPAREDNESS - POLLUTION INCIDENT RESPONSE PROGRAM

Additional Fire Protection (F-AMC)

ALARM DEVICES FOR MAN OVER BOARD AND RESCUE ACTIONS (DAHMAS)

This is a preview - click here to buy the full publication

VANUATU GENERAL CONDITION SURVEY REPORT

Dynamic Solutions. Endless Possibilities. Steve Padasack, Finch Paper LLC Rick Van Fleet, Honeywell

RULES PUBLICATION NO. 35//P ONE MAN BRIDGE OPERATED (OMBO) SHIPS March

ALARMING NEWS FROM INVENSYS PROCESS SYSTEMS, INC.

How Oslo works with Sustainable Mobility. Ellen de Vibe, Chief Town Planner Agency for Planning and Building Services, City of Oslo

Main changes in BV Rules for Steel Ships

VANUATU GENERAL CONDITION SURVEY REPORT

CCU Family of Modules

Riviera 51 Enclosed $949,000

For compliance with Resolution MEPC.174(58), the Certificate is issued on behalf of the Norwegian Maritime Authority.

Transcription:

MARITIME ROMAS Remote Operations of Machinery and Automation Systems Haugesundkonferansen 6.februar 2019 Steinar Låg 06 February 2019 1 DNV GL 2018 06 February 2019 SAFER, SMARTER, GREENER

Outline The ROMAS Project Some of the work done CONOPS Concept of operations HaziD analysis IAS Data analysis Pilot testing Way forward 2

The ROMAS Project 3

The ROMAS project ROMAS: Remote Operation of Machinery and Automation Systems NFR application granted Dec 2016 Research project 2017-2019 Total budget 9,5 MNOK Partners: Reference partner: 4

Remote machinery operation: Background and motivation Shortage of machinery engineers to man ships Increasingly complex ships, new skills needed Increased digitalisation & improved ship-shore connectivity Automation and remote operations is increasingly adopted in other industries Idea: Move the Engine Control Room (ECR) from the ship to a shorebased Engine Control Centre (ECC) Fleet wide control from an on-shore ECC Reduced need for engineers on-board Improved efficiency & safety Not as revolutionary as remote/autonomous navigation 5

Some of the work done so far - CONOPS Concept of Operations - HazID analysis - IAS data analysis 7

Concept qualification process as per CG-0264 (Class Guideline for Autonomous and remotely operated ships) Submitter s activities Decide on operations and automation High-level design Detailed design Build and integrate Commissioning and test Operations CONOPS Safety philosophy Maintenance philosophy Off-ship systems design Verification and validation strategy Test Reports Configuration management reports Preliminary risk analysis report Design philosophy Detailed vessel design Detailed risk analysis reports Test specifications DNV GL newbuild process Review of overall concepts Plan approval Newbuild survey Test scope approval Test witnessing DNV GL fleet in service process Analyse class operations data FiS surveys 9

Fjord1 s ferry route Molde-Vestnes M/F Korsfjord 10

Pilot vessel MF Fannefjord Norwegian flagged Ro-ro ferry built for Fjord1 in 2010 Yard: Gdanska Stocznia Remontowa, Gdansk Poland Built to DNV class (Vessel ID 28425/D28424) 1A1 Car ferry B Clean E0 Gas fuelled R4(nor) Double-ended ferry design with battery hybrid gas (and diesel) electric propulsion Highly redundant propulsion system: 2 azimuth thrusters Power: 2x Gas + Battery + Diesel 11

Remote operations concept: ECC side ECC located in Fjord1 s office in Molde Manning: 24x7 by 1 operator (chief engineer) Arrangement for additional support (bakvakt) ECC designed to support 3 ferries Similar design & operational profile Pilot tests: Just one ferry (MF Fannefjord) Responsibilities Main responsibility for maintenance & operation Communication with ship and shore-parties Equipment 2 workstations (~ECR-like) Big screen with fleet view 12

Remote operations concept: Ferry side Overall manning level (5) remains unchanged to comply with requirements for safety manning Chief engineer replaced by combiman Qualification: Able Seafarer Engine ( Motormann ) Responsibilities: Combination of deck- and machinery- work Emergency/safety duties acc.to safety plan Planned maintenance Assist ECC operator when required Visual inspections and routine work Take local command of technical systems (when required) Receive support and guidance from ECC ECR and Bridge workstations: upgraded 13

Remote operations concept: Communications The IAS Network onboard is extended to ECC over a reliable and redundant ship-shore communication link Communications 2 x 4G modems (Telia and Telenor) + ICE Automatic switching Always on 2-way voice ECC-Bridge VHF at ECC Portable communication device to support troubleshooting https://www.ice.no/dekning/ Example: DAQRI s smart helmet (www.daqri.com) 14

Remote operations concept: Monitoring & Control IAS (Integrated Automation System) hub for monitoring & control of the machinery and engineering systems IAS functional enhancements Communication system integration: Health monitoring Transfer of Command: Automatic and manual Cyber protection Remote connections from other relevant ship systems such as: Fire alarm / safety systems Shiplog admin and operational data CCTV from engine room 15

CONOPS: Mapping of Normal operations 16

CONOPS: Identification of abnormal conditions / scenarios 17

HazID analysis 19

Hazid Analysis DNV GL, Fjord1, Høglund, Rederiforbundet and Sjøfartsdirektoratet Goal: Identify and assess hazards associated with the concept Input: CONOPS Output: Hazid Report + Risk sheets serving as input for further work Two steps Jan 2018 (v1.0): MF Norangsfjord (workshop) Oct-Dec 2018 (v1.1) MF Fannefjord (@ DNV GL) Limitations: Relative exercise, no formal voting, CONOPS completeness Effect on Human Safety Severity 1 2 3 4 Minor Significant Severe Catastrophic Single or minor injuries Multiple or severe injuries Single fatality or multiple severe injuries Multiple fatalities Effect on Ship Local equipment Non-severe ship Severe damage Total loss Frequency F\S 0,01 0,1 1 10 7 Frequent Likely to occur once per month on one ship 1E+1 6 Probable Likely to occur once per year on one ship 1E+0 5 Reasonably probable Likely to occur once per year in a fleet of 10 ships, i.e. likely 1E-1 to occur a few times during the ship's life 4 Seldom Likely to occur once per 10 years in a fleet of 10 ships 1E-2 3 Remote Likely to occur once per year in a fleet of 1,000 ships, i.e. likely to occur in the total life of several similar ships 1E-3 2 Very remote Likely to occur once per 10 years in a fleet of 1000 ships 1E-4 1 Extremely remote Likely to occur once in the lifetime (20 years) of a world fleet of 5,000 ships 1E-5 20

Hazid Workshop risk matrix Conventional ops Rempote ops Remote ops w/mitigations Risk matrix 21

30 mitigations identified 30 mitigations Training (2) Design (13) Procedure (15) 22

30 mitigations identified Training(2) Machinery training (Combiman) Safety training (Combiman) Design(13) UPS for IAS & Comms Descriptive Battery Alarm Alarm limits adjusted for remote operations Alarms with priority/criticality Sufficient IAS integration Additional ICE modem Comms outage alarm Walkthrough of all essential sensors Visual surveillance (CCTV) at ECC Redundancy of comms modems VHF at ECC Sufficient UPS, broadband and security at ECC Additional sensors or inspection tools for gas system Procedures(15) Avoid simultaneous overhaul of two engines/generators Procedure for ECC-Bridge communication Procedure for handling comms loss Procedure for spare ferry to be put into operations Procedure for ECC handling for simultaneous problems on two ferries Procedures/criteria for taking the ferry out of service Procedure for transferring command from ECC to Bridge Procedure for ECC support in severe weather conditions Updated procedures for remote/eccoperations Procedure for handling water ingress Procedure for fire handling Procedure for bilge handling CBM (Condition Based Maintenance) Updated procedure for gas system Updated procedure for battery system 23

Hazid Results Conventional ops ROMAS ops w/mitigations Increased risk 6.6 Communication failure 6.7 ECR/ECC outage Reduced risk 2.3.2 Too many alarms for ECC operator 2.3.3 Alarm information not detailed enough 6.4 Unplanned Maintenance & Repair 6.13 Fire incident 6.14 Environmental emissions 24

IAS data analysis 25

Analysis of historic IAS data why? The IAS (Integrated Automation System) the main user interface for the chief engineer integrates many important ship systems Displays the health status of the machinery logs important measurements, alarms and events Combine with other data sources ALARM Could be automated? Affecting manning levels? Does it trigger work? MF Fannefjord Does it trigger maintenance or repairs? Skills & tools needed? MF Norangsfjord Is safety affected? Analysis Could be done remotely? On-board or in port? Countermeasures? Insights Aim: Build knowledge about the existing operations and practices

Data sources IAS logs events and alarms AIS data position, speed, operational mode Historic maintenance logs Chief engineer s log book 27

IAS-log: Need for filtering... (Norangsfjord 2016) Alarmer + Eventer [126100] ~ 345 per dag Eventer: ikke behov for håndtering Overgangsalarmer rel til DG start/stop og THR stop Alarmer (alle statuser) [28166] Nye alarmer (status 5) [1773] Ex DG Stop/Start & THR Stop [1555] Pivot System-Alarmer [661] Kun hørbare alarmer Oppfølgingsalarmer for samme system (2 min) Alarmer fra M&R 19.-23. September Ekskludert Maintenance & Repair [540] Ex Other [250] ~ 0,7 per dag Koble på landstrøm Tester og feilsøk REPEAT og FIRE Alarmer 28

COMMON alarms 29

Handling of routine work (planned maintenance) 2017 : 1434 records Mapped into categories Currently carried out by Service Personell (external) Could be carried out by Service Personell (external) Requires local precence of Chief Engineer Could be carried out by other crew (e.g. Combiman) Could be remotely operated Could be automated/skipped 30

IAS data analysis key findings Better and wider integration needed Data collected/presented in fewer systems => operator-focus Alarm improvements are needed Too many «nuisance alarms» need for cleaning up and reduce volume Context/mode awareness and suppression of non-essential alarms Descriptive alarm texts - get rid of COMMON Alarms Categorisation of alarm criticality to enable prioritisation Increase automation minimise manual operations However, automation will call for new alarms.. Sensor quality and self-diagnostics Need for supporting offline analysis Historical IAS logs and digital engine log Standard data/formats Benefit: analysis / trending for CBM Total BILGE BLACKOUT BOILER BUS_ COMMUNICATIO DEAD DG1 DG2 DG3 DG4 FO FW HYD. AGG MBS MSB NODE PUBLIC ADDRES SEWAGE SLUDGE START AIR THR1 THR2 UPS 31

Pilot testing campaign 32

Pilot test program 1Q 2019 M/F Fannefjord as pilot vessel ECC in Molde (Fjord1 s premises) Based on previous work: CONOPS, Hazid and IAS data analysis In between test phases: Analysis of logs, documenting and assessing experiences. Making adjustment to equipment in ECC and on-board the ship, as well as operational procedures. 33

Hazid: 30 mitigations identified Training(2) Design(13) Procedures(15) Machinery training (Combiman) Safety training (Combiman) UPS for IAS & Comms Descriptive Battery Alarm Alarm limits adjusted for remote operations Alarms with priority/criticality Sufficient IAS integration Additional ICE modem Comms outage alarm Walkthrough of all essential sensors Visual surveillance (CCTV) at ECC Redundancy of comms modems VHF at ECC Sufficient UPS, broadband and security at ECC Additional sensors or inspection tools for gas system Avoid simultaneous overhaul of two engines/generators Procedure for ECC-Bridge communication Procedure for handling comms loss Procedure for spare ferry to be put into operations Procedure for ECC handling for simultaneous problems on two ferries Procedures/criteria for taking the ferry out of service Procedure for transferring command from ECC to Bridge Procedure for ECC support in severe weather conditions Updated procedures for remote/eccoperations Procedure for handling water ingress Procedure for fire handling Procedure for bilge handling CBM (Condition Based Maintenance) Updated procedure for gas system Updated procedure for battery system 34

Mitigations implemented for pilot testing (implemented, partly implemented) Training(2) Machinery training (Combiman) Safety training (Combiman) Design(13) UPS for IAS & Comms Descriptive Battery Alarms Alarm limits adjusted for remote operations Alarms with priority/criticality Sufficient IAS integration Additional ICE modem Comms outage alarm Walkthrough of all essential sensors Visual surveillance (CCTV) at ECC Redundancy of comms modems VHF at ECC Sufficient UPS, broadband and security at ECC Additional sensors or inspection tools for gas system Procedures(15) Avoid simultaneous overhaul of two engines/generators Procedure for ECC-Bridge communication Procedure for handling comms loss Procedure for spare ferry to be put into operations Procedure for ECC handling for simultaneous problems on two ferries Procedures/criteria for taking the ferry out of service Procedure for transferring command from ECC to Bridge Procedure for ECC support in severe weather conditions Updated procedures for remote/eccoperations Procedure for handling water ingress Procedure for fire handling Procedure for bilge handling CBM (Condition Based Maintenance) Updated procedure for gas system Updated procedure for battery system 35

+ new features identified in pilot planning (implemented, partly implemented) Training(2) Machinery training (Combiman) Safety training (Combiman) 36 Design(13) UPS for IAS & Comms Descriptive Battery Alarms Alarm limits adjusted for remote operations Alarms with priority/criticality Sufficient IAS integration Additional ICE modem Comms outage alarm Walkthrough of all essential sensors Visual surveillance (CCTV) at ECC Redundancy of comms modems VHF at ECC Sufficient UPS, broadband and security at ECC Additional sensors or inspection tools for gas system IAS Command transfer functionality IAS alarm history resynchronisation Shiplog integration (ticket/adm system) Voice communication ECC-Bridge Comms system health monitoring Digital engine log book Big Screen Fleet view in ECC ESS/battery integration Fire system integration Procedures(15) Avoid simultaneous overhaul of two engines/generators Procedure for ECC-Bridge communication Procedure for handling comms loss Procedure for spare ferry to be put into operations Procedure for ECC handling for simultaneous problems on two ferries Procedures/criteria for taking the ferry out of service Procedure for transferring command from ECC to Bridge Procedure for ECC support in severe weather conditions Updated procedures for remote/eccoperations Procedure for handling water ingress Procedure for fire handling Procedure for bilge handling CBM (Condition Based Maintenance) Updated procedure for gas system Updated procedure for battery system

Fleet Status ECC implementation by Høglund Big Screen CCTV ECC BIG screen layout AIS

ECC Implementation by Høglund Fleet Status Persons On Board: Automatically updated from Shiplog. Can easily be expanded with other info e.g. dangerous cargo Time saver during emergencies

Pilot test scope Normal operations Test cases Abnormal cases & failures Functional tests Ship-to-shore comms failures IAS Comms interworking New ECC & IAS functionality Nr Test type Scenario 1 Abormal 2 Abormal 3 Abormal DG auto-stop 4 Abormal 5 Abormal Black-out. 6 Abormal Putting spare ferry into operation Operational problems on two ferries simultaneously Unplanned Maintenance & Repair. Loss of ship-shore communications 7 Abormal ECC unavailable. 8 Abormal Loss of propulsion or manoeuvring capability. 9 Abormal Extreme weather 10 Abormal Evacuation 11 Abormal Mob boat operation 12 Abormal Water ingress / Loss of stability. 13 Abormal Fire alarm / fire incident. 14 Abormal Equipment down for maintenance 39

Pilot test program 1Q 2019 Dry-run P0 Tønsberg 5/12 Test P1: Molde 23/1 40

Way forward 41

Way forward Continue and complete pilot campaign Document and share learnings within the project and externally Use learnings for future operations and development of new products & services Remote Ready IAS system [Høglund] Rules, RPs and TQ/AIP programs [DNV GL] and regulations [NMA] Consider commercial deployment for new ferries [Fjord1] 42

Thank you for the attention! Steinar Låg Steinar.Laag@dnvgl.com Phone: +47 95236838 www.dnvgl.com SAFER, SMARTER, GREENER Read more about ROMAS in DNV GL s Research Review 2018: https://www.dnvgl.com/research/review2018/featured-projects/romas-remote-operationsmachinery-automation.html 43