Rooftop Unit, Heat Pump and Indoor Air Quality Application Guide

Similar documents
Rooftop Unit, Heat Pump and Indoor Air Quality Application Guide VT8600 Series Room Controllers

Rooftop Unit, Heat Pump and Indoor Air Quality Application Guide. SE8600 Series Room Controllers

Fan Coil Unit (FCU) Application Guide

VT8600 Series Installation Guide Rooftop Unit, Heat Pump and Indoor Air Quality Controller

VT8300 Series Installation Guide 24 Vac Low Voltage

0 C to 50 C ( 32 F to 122 F ) 0% to 95% R.H. non-condensing. 30 to 95% R.H. Dry contact across terminal BI1, BI2 & UI3 to Scom

Document # R01

Document # R00

CONTENTS. Installation Guide. VT7200 Series

PIR Application Guide for the for VT76xxX5x00(X) Series thermostats (Issue Date: November, 2015)

ExactLogic BACnet Communicating Thermostat EXL01627 Sequence Datasheet Fan Coil with Modulating Fan and Heat or Cool Floating Heating and Cooling

LG ELECTRONICS Air Conditioning Technologies LG Guide Specifications Controls

VT8000 Series Replacement Procedure to Replace VT8000 Series Room Controller and Pair with ZigBee Pro Sensors

SECTION SEQUENCE OF OPERATION FOR HVAC CONTROLS PART 1 GENERAL

TB7300 Series Communicating Fan Coil Thermostats 24 VAC/FOR COMMERCIAL AND LODGING HVAC APPLICATIONS

ExactLogic BACnet Communicating Thermostat EXL01625 Sequence Datasheet Fan Coil with Modulatating H/C and PO-PC H/C

T600MEP-2 Programmable Economizer Thermostat

TB7200 Series Communicating Zone Thermostats

TEC Networked Multi-Stage Economizer Thermostat

TEC2620 Series Non-Programmable Fan Coil Network Thermostat Controller and Remote I/O Relay Packs

ExactLogic BACnet Communicating Thermostat EXL01622 Sequence Datasheet

A. Base Bid: 1. Heating Contractor provide: a. Control sequences for HVAC systems, subsystems, and equipment.

SE7200 Series Installation Guide

Table of Contents. WSHP Open v3

TEC3000 Series Field-Selectable BACnet MS/TP or N2 Networked Thermostat Controllers

TC-9102 Applications

Models available. Features and benefits. Models available with internal humidity sensing Advanced occupancy functions


Multi-Zone Wireless Control Training Systems ( )

ARO Series. Description. Features. Modbus CO2 VOC. Networkable* ARO AROB24TGVH AROB24TGH. room controller. (AROB series only) or network

T60xDFH-4 and T60xDFH-4+PIR Series Thermostat Controllers with Dehumidification and Occupancy Sensing Capability

PIR Ready VT7200 Series 24 Vac Low Voltage Zoning Thermostats For Commercial HVAC Applications September 1, 2010

York 25-Ton VAV Rooftop Unit

UNT Applications. Using UNT Applications...3. Introduction Key Concepts UNT Controller Applications Fan Coil Units...

SER7300 Series Installation Guide for HVAC FCU Applications

TEC3000 Series Wireless, Stand-Alone, and Field-Selectable BACnet MS/TP or N2 Networked Thermostat Controllers Catalog Page

Installation Instructions. Applications. North American Emissions Compliance. Installation. Part No , Rev. Issued February 8, 2010

Table of Contents. Unit Ventilator

Pioneer Gold Controller Technical Guide. Pioneer Gold Controller Code: Version 1.1 Used with AAON WSHP WV Series Vertical and WH Series Horizontal

PIR Ready VT76xx Series Programmable & Non-Programmable Thermostats For Commercial HVAC Applications. BACnet Integration Manual September 1, 2010

Digital Precise Air Control - DPAC

Installation and Operation. Tracer ZN521 Zone Controller CNT-SVX07C-EN

TEC BACnet MS/TP Networked Thermostat Controller with Single Proportional Output and One-Speed Fan Control

Contents. Appendix E: LonWorks Protocol Implementation Conformance Statement Document revision history... 47

Pioneer Gold Controller Technical Guide

Appendix A Equipment Used to Monitor Hotels

I/O ZONE 560/583 USERS GUIDE

Unit Vent for AppController overview and specifications

ETNC24-FC-BAC-PIR-01 Owner s manual & Technician Settings

Manual Supplement. Model Number: 8680-N2. Communications Protocol. Contents of this manual supplement include:

74 Humidity 66 % MultiSITE CRC1 Series Controllers INSTALLATION MANUAL. PREMTBVC0 MultiSITE CRC1 PREMTBVC1 MultiSITE CRC1+ Occ Auto Heat.

Eco Active H E A T R E C O V E R Y S Y S T E M S H Y B R I D U N I T. W: T:

Product Manual SZ1022/SZ1031/SZ1035/

CommStat 6. Controller for Redundant HVAC Systems PRODUCT DATA SHEET

Touch Screen Thermostat. MTSC/SUPER/CO2, MTSC24/SUPER/CO2 Series. MTS/SUPER/CO2, MTS24/SUPER/CO2 Series. Owner s manual and technician settings

MicroTech Self-Contained Air Conditioning System

Introduction. What is the W2W Open controller?

Verasys System Operation Overview Technical Bulletin

Owner s Manual. Part Number 33CS250-RC

Reciprocating Chiller

Siemens RDY2000BN. Start Up Guide

Reference Guide for Microprocessor Controller

AIRFLOW MEASUREMENT AND CONTROL PRODUCT CATALOG. Phone: 877-4GNTROL ( ) - Internet: GreenTrol.com. r1f

TEC20x7-2 Series Wireless Thermostat Controllers with Two Outputs

TEC2664Z-2 BACnet MS/TP Rooftop Controller for Stand-Alone and Networked Zoning Systems Part No , Rev. C

ZonexCommander. ZonexCommander(Plus) Installation and Applications Manual. Network All Your HVAC Equipment

T606MSx-4 and T606MSx-4+PIR Series Multi-Stage

Fan Coil for AppController overview and specifications

Installation and Maintenance Manual IM

BACnet Points for Single Compressor Water-to- Air Heat Pumps With Hot Gas Reheat Utilizing the FX10 Controller

Omnistat3 Hospitality Energy Management Thermostat

Dual Technology Wall Mounted Occupancy Sensor. Manual & Specification

Reference Guide for Microprocessor Controller

INSTALLATION, OPERATION & QUICK START GUIDE

IMC BACnet Module. Service Literature. Table of Contents. General. Field Connections. Physical

BACnet PTEC Controller VAV 0 to 10V Series Fan and 3- Stage Electric Heat, Application 6657

TAP v2.10 Version Date: 6/12/13. Document Microprocessor Controller for Tempered Air Products

Control Sequence Number

TEC2100 Series Networked Thermostats

SECTION SEQUENCE OF OPERATIONS FOR HVAC CONTROLS

DAP III Zone Master User s Guide

Product Catalog. Small Building Systems.

SECTION SEQUENCE OF OPERATIONS FOR HVAC CONTROLS

Eco Active H E A T R E C O V E R Y S Y S T E M S. Heat Recovery Penthouse Turret. W: T:

TEC210x-2 Series Networked Thermostats

UNIFIED FACILITIES GUIDE SPECIFICATIONS

AIR HANDLING SYSTEM RETRO-COMMISSIONING TRENDING ANALYSIS

ZonexCommander. ZonexCommander(Plus) Installation and Applications Manual. Network All Your HVAC Equipment

TEC and TEC PIR BACnet MS/TP Networked Multi-Stage Thermostat Controllers

Product Manual SZ1009

Touch Screen Thermostat. MTSC/SUPER, MTSC24/SUPER Series. MTS/SUPER, MTS24/SUPER Series. Owner s manual and technician settings

VCB-X Modular Service Tool Technical Guide. VCB-X Controller Code: SS1051 Version 2.0 Requires Service Tool Code: SS1041 Version 2.

Allure EC-Smart-Vue Sensor Series Line of communicating sensors with backlit display and graphical menus

NCU Mounting Details

CommStat 4. Controller for Redundant Telecom HVAC Systems PRODUCT DATA SHEET. Features and Benefits

2017 products.koer.com Page 1 of 14

OWNER S MANUAL. Part Number P RF

MicroTech Unit Ventilator

Sensors and Detectors

L SERIES UNITS 505,191M. 4/2006 Supersedes 504,908M

Transcription:

Rooftop Unit, Heat Pump and Indoor Air Quality Application Guide VT8600 Series Room Controllers TABLE OF CONTENTS Overview 2 VT8600 Rooftop Unit Heat Pump and Indoor Air Quality Controllers 3 VT86X0U5X00B Heating / 2 Cooling for Rootop Unit and Indoor Air Quality 4 VT86X0U5X00B Cooling / Modulating Heat for Rootop Unit and Indoor Air Quality 6 Fresh Air Damper Control Sequences 8 Economizer Control Only 8 Economizer Control Mode and Fresh Air Measurement Station 9 Economize Control Mode and CO2 Level Control 10 Economizer Control Mode, CO2 Level Control and Fresh Air Measurement Station 11 Appendix A - Passive infra-red (PIR) motion detector cover specifications 12 Appendix B - Optional Network Set-Up 13 Appendix C - Controllers Occupancy Sequence of Operation Schematic 13 Appendix D - SED Series - wireless door & window switch 14

2 Application Guide OVERVIEW VT8600 The is cost-effective solution for upgrading rooftop unit thermostats. The application allows existing wiring between the rooftop unit and the Room Controller to be re-used, reducing overall costs and installation time. The VT8600 can also add features like CO 2 and fresh air monitoring to the existing functions of a rooftop unit. The VT8600 Rooftop, Heat Pump, and Indoor Air Quality Controller can be configured to handle a broad variety of applications covering all the standard implementations necessary for rooftop HVAC systems. In addition to controlling heating, cooling and air quality, depending on the model and accessories, the VT8600 can handle wireless networking and switches, Passive Infrared (PIR) occupancy detection using either onboard or remote sensors, and can have custom programs implemented to fulfill specific User requirements. The applications described here cover all these features in combination with the VT8600 s advanced scheduling and occupancy controls to provide the functionality for any required rooftop HVAC implementation.

Application Guide 3 VT8600 ROOFTOP UNIT, HEAT PUMP AND INDOOR AIR QUALITY ROOM CONTROLLERS Commercial and Hospitality Interface (Local Override and Degrees C/F Selection) Power Part Number Description PIR Sensor Communication VT86X0U5X00B BACnet fan coil terminal equipment controller No BACnet VT86X0U5X00B BACnet fan coil terminal equipment controller Yes BACnet ZigBee Pro Module for SE(R)8300 Series Power Part Number VCM8000V5000P Description Optional ZigBee Pro module for VT8600 Series room controllers. Wireless Accessories for VT8600 Series Power Part Number Description SED-DOR-P-5045 Wireless door switch SED-WIN-P-5045 Wireless window switch SED-CMS-P-5045 Wireless ceiling mounted motion sensor SED-WDS-P-5045 Wireless window and door switch SED-WMS-P-5045 Wireless wall mounted motion sensor

4 Application Guide VT86X0U5X00B 2 HEATING / 2 COOLING FOR ROOFTOP UNIT AND INDOOR AIR QUALITY Fresh air measurement station Filter Cooling coil Fan Heating coil Outside air sensor Outside air DPS Control Board Supply air Return air Supply air sensor CO2 air sensor BACnet MS/TP Wired communication protocol ZigBee Pro Optional wireless communication Configuration Parameter Name Configuration Settings UI17 UI19 Econo. Config FA Range Min fresh air Max fresh air Min CO2 Max CO2 Filter CO2 On Set Max CFM, cannot be zero Set Min CFM, cannot be zero Set Max CFM, cannot be zero Set Min CO2, cannot be zero Set Max CO2, cannot be zero Note: Only required configuration parameters are listed. Other settings are configurable as needed by user.

Application Guide 5 VT8600 2 Heating / 2 Cooling BO 1 - Aux BO 2 - Y2 BO 3 - Y1 BO 4 - G RC (24 Vac) C (Common) 1 2 3 4 5 6 RH BO 8 - W1 UO 9 - W2 UO 10 - Econo UO 11 - Heat UO 12 7 8 9 10 11 12 C R CO2 TRANSMITTER (0-10 VDC) C OUT R AIR FLOW MEASURING STATION (0-10 VDC) ECONO OUT W2 W1 C R G Y1 Y2 FILTER DPS SAT SENSOR OAT SENSOR 13 14 15 16 17 18 19 20 21 22 23 24 BACnet + BACnet - BACnet REF UI 16 UI 17 Common UI 19 - CO2 UI 20 - RS Common UI 22 - SS UI 23 - OS UI 24 - Airflow Sequence of Operation and Wiring Occupied Mode Setpoints revert to those defined by occupied cooling and heating. Stand-by Mode (only available when PIR motion detector sensor is used) Setpoints revert to those defined by stand-by cooling and heating. Unoccupied Mode Setpoints revert to those defined by unoccupied heating and cooling. Occupied Override Mode System reverts to occupied mode for duration determined by ToccTime parameter. Options Wireless adapter modules for BACnet models are available. (see Appendix B for network wiring). 3 universal inputs can be used and configured for advanced functionality as required by the application.

6 Application Guide VT86X0U5X00B 2 COOLING / MODULATING HEAT FOR ROOFTOP UNIT AND INDOOR AIR QUALITY Optional economizer damper control output Cooling coil Fan Heating coil Airflow direction Outdoor air sensor DPS Control Board Supply air Return air Supply air sensor ZigBee Pro Optional wireless communication BACnet MS/TP Wired communication protocol Configuration Parameter Name Configuration Settings UI17 UI19 Econo. Config FA Range Min fresh air Max fresh air Min CO2 Max CO2 Filter CO2 On Set Max CFM, cannot be zero Set Min CFM, cannot be zero Set Max CFM, cannot be zero Set Min CO2, cannot be zero Set Max CO2, cannot be zero Note: Only required configuration parameters are listed. Other settings are configurable as needed by user.

Application Guide 7 VT8600 2 Cooling / Modulating Heat BO 1 - Aux BO 2 - Y2 BO 3 - Y1 BO 4 - G RC (24 Vac) C (Common) 1 2 3 4 5 6 RH BO 8 - W1 UO 9 - W2 UO 10 - Econo UO 11 - Heat UO 12 7 8 9 10 11 12 Mod. Heat (0-10 VDC) C R CO2 TRANSMITTER (0-10 VDC) C OUT R AIR FLOW MEASURING STATION (0-10 VDC) ECONO C R G Y1 Y2 OUT FILTER DPS SAT SENSOR OAT SENSOR 13 14 15 16 17 18 19 20 21 22 23 24 BACnet + BACnet - BACnet REF UI 16 UI 17 Common UI 19 - CO2 UI 20 - RS Common UI 22 - SS UI 23 - OS UI 24 - Airflow Sequence of Operation and Wiring Occupied Mode Setpoints revert to those defined by occupied cooling and heating. Stand-by Mode (only available when PIR motion detector sensor is used) Setpoints revert to those defined by stand-by cooling and heating. Unoccupied Mode Setpoints revert to those defined by unoccupied heating and cooling. Occupied Override Mode System reverts to occupied mode for duration determined by ToccTime parameter. Options Wireless adapter modules for BACnet models are available. (see Appendix B for network wiring). 3 universal inputs can be used and configured for advanced functionality as required by the application.

8 Application Guide FRESH AIR DAMPER CONTROL SEQUENCES The fresh air damper can be controlled through more than one sequence to achieve different control strategies such as free cooling (economizer mode), minimum fresh air control and CO2 level control. Here are the control sequences available: Note: For the sequences mentioned below, the following conditions must be met in order for the sequences to be performed as stated: Max Pos parameter value must be greater than Min Pos Parameter value. Mac CO2 parameter value must be greater than Min CO2 Parameter value. Max FA parameter value must be greater than Min FA Parameter value. Economizer Control Mode Only Cooling coil Fan Heating coil Outside air sensor Outside air Control Board Supply air Return air Supply air sensor BACnet MS/TP Wired communication protocol ZigBee Pro Optional wireless communication If the fresh air damper is to be used only for free cooling purposes (economizer mode, without fresh air measurement station or CO2 control), only the Min Pos parameter and the free cooling sequence will be active. The FA Range parameter should be set to 0 CFM. (Default Value = 0 CFM) Set the Chngstpt parameter to desired value which free cooling is enabled. (Default Value = 55 F) If the outside air temperature is greater than the changeover setpoint, then normal mechanical cooling will be used. If the outside air temperature is less than or equal to the changeover setpoint, then free cooling will be enabled and mechanical cooling stages will be locked out.

Application Guide 9 Economizer Control Mode and Fresh Air Measurement Station Fresh air measurement station Cooling coil Fan Heating coil Outside air sensor Outside air Control Board Supply air Return air Supply air sensor BACnet MS/TP Wired communication protocol ZigBee Pro Optional wireless communication If the fresh air damper is to be used for both free cooling and minimum fresh air volume control (economizer mode and fresh air measurement station, but without CO2 level control), only the Min FA parameter and the free cooling sequence will be active. The FA Range parameter should be set to a value higher than 0 CFM (0 CFM disables the fresh air control). Min FA (minimum fresh air) parameter should be set to the desired level. The FA Range parameter value should be set to the maximum capacity of the fresh air measurement station. Therefore the relationship between air volumes and input signals can be established. For example, if the fresh air station capacity is 10000 CFM, set FA Range to 10000. This will set the relationship of 0 VDC = 0 CFM and 10VDC = 10000 CFM.

10 Application Guide Economizer Control Mode and CO2 Level Control Cooling coil Fan Heating coil Outside air sensor Outside air Control Board Supply air Return air Supply air sensor CO2 air sensor BACnet MS/TP Wired communication protocol ZigBee Pro Optional wireless communication If the fresh air damper is to be used for both free cooling and CO2 level control (economizer mode and CO2 level control, but without fresh air measurement station), only the Min Pos, Max Pos, Min CO2 and Max CO2 parameters as well as the free cooling sequence will be active. The FA Range parameter should be set to 0 CFM. Set AI1 parameter to CO2 (0 VDC = 0ppm ; 10VDC = 2000ppm) Max Pos Min Pos Current Fresh Air Setpoint Min CO 2 Current CO2 Level Max CO 2 Min Pos, Max Pos, Min CO2 and Max CO2 parameters should be set according to the required setting. The highest value between free cooling demand output and interpolation output for the fresh air setpoint will be the output to the fresh air damper.

Application Guide 11 Economizer Control Mode, CO2 Level Control and Fresh Air Measurement Station Fresh air measurement station Cooling coil Fan Heating coil Outside air sensor Outside air Control Board Supply air Return air Supply air sensor CO2 air sensor BACnet MS/TP Wired communication protocol ZigBee Pro Optional wireless communication If the fresh air damper is to be used for both free cooling and CO2 level control with a fresh air measurement station, only the Min FA, Max FA, Min CO2 and Max CO2 parameters as well as the free cooling sequence will be active. The FA Range parameter should be set to something other than 0 CFM. Use an air flow transmitter to read fresh air level with AI2 input (0-5 VDC input) Min FA, Max FA, Min CO2 and Max CO2 parameters should be set according to the required setting. Max FA Setpoint Min FA Setpoint Current Fresh Setpoint Min CO 2 Current CO2 Level Max CO 2 The highest value between free cooling demand output and interpolation output for the fresh air setpoint based on the CO2 level will be the output to the fresh air damper.

12 Application Guide APPENDIX A PASSIVE INFRA-RED (PIR) MOTION DETECTOR COVER SPECIFICATIONS PIR cover sequence of operation Initially, the controller is in Stand-by mode. Stand-by setpoints are used at the controller. As soon as the PIR detects motion, the Occupancy status switches to Occupied and the Stand-By Time timer is reset. The Occupied setpoints are used. If no motion is detected in the room for the entire Stand-By Time duration (adjustable parameter), the room then switches to Stand-by mode and stand-by setpoints are used. While in Stand-by mode, if no motion is detected for the entire Unoccupied Time period (adjustable parameter), the room switches to Unoccupied mode and uses its Unoccupied setpoints. While in Stand-By or Unoccupied mode, any motion will switch the room back to Occupied mode. For this reason, avoid installing PIR sensors near heat vents or other sources of moving warm air in order to avoid false detections. Typical Detection Pattern for PIR Lens Horizontal Angles (Typical) Vertical Angle (Typical) Recommended installation height for PIR sensor: Transverse motion: 4-5 ft/s / 1.5 m/s 4-5 ft. / 1.2-1.5 m Sensor Ranges A = 20 ft. / 6.1 m B = 14 ft. / 4.3 m C = 11 ft. / 3.4 m 40 O A Center 30 O 20 O B B 20 O 20 O C C 20 O Center Energy savings The PIR can maximize your energy saving from 10-30% by relaxing temperature set points in unoccupied zones during scheduled periods. Energy Usage (KWh) 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Typical Savings of 10-30% 0% 0 2 4 6 8 10 12 14 16 18 20 22 24 Time of Day (EST) Typical Consumption PIR Thermostat Consumption Savings 50% 40% 30% 20% 10% Saving Percentage

Application Guide 13 APPENDIX B OPTIONAL NETWORK SET-UP BACnet communication wiring Wireless Communication BACnet thermostat 1 BACnet thermostat 2 BACnet thermostat 3 + - ref + - ref + - ref Notes: - Wiring should be daisy chained - Respect polarity - If using 2 conductors shielded wires, connect the shield of each feed together on the back of the controller. ONLY ground the shield at one location. DO NOT connect the shield to the ref terminal. No communication wires required APPENDIX C CONTROLLERS OCCUPANCY SEQUENCE OF OPERATION SCHEMATIC Setpoints Unoccupied cool 26.5 C 80 F Stand-by cool Occupied cool Occupied heat Stand-by heat Unoccupied heat Movement detected - Stand-by timer reset 22 C 72 F Deadband Stand-by time Into Stand-by mode - Unoccupied timer reset 24.5 C 76 F Deadband 70 F 70 F 21 C 21 C Unoccupied time Into Unoccupied mode 62 F 16.5 C Next movement detected 66 F 19 C Deadband 22 C 72 F Time

14 Application Guide APPENDIX D SED SERIES WIRELESS SENSORS Wireless ZigBee Pro Motion Sensors and Door/Window Switch Wireless door switches used with an onboard or remote PIR sensor provide advanced local occupancy routines allowing for increased energy savings during occupied hours without sacrificing occupant comfort. Wireless window switches are used to monitor exterior windows or patio/balcony doors when opened to prevent unnecessary energy consumption. Rooftop Unit, Heat Pump, and Indoor Air Quality Controllers with SED Series ZigBee Pro wireless sensors can be used in standalone mode, or with integration to a central management system, to allow for advanced functions such as central reservation and occupancy functions. Up to twenty SED-WIN or SED-DOR ZigBee wireless switches can be used with a VT8600 Room Controller Up to 10 different ZigBee motion sensors and switches (SED-WMS, SED-CMS, or SED-WDS) can be used with a VT8600 Room Controller. Note that if a ZigBee wireless window switch is used, the VT8600 Room Controller cannot also use a remote PIR motion sensor, whether wired or wireless. Using one or more wireless remote PIR motion sensors means that a wired PIR motion sensor cannot be used, and vice versa. The SED Series sensors are factory delivered with batteries and are ready to be installed, configured, and used right out of the box. Due to the extremely small current consumption of the sensors, the expected battery life is approximately 10 years, which is equivalent to the battery shelf life. No tools are required for commissioning or servicing the ZigBee devices. A simple interface on the devices with an on-board LED and hidden switch provides all required functions for local interaction. The VT8600 user interface has screens used to pair and configure ZigBee devices (SED-WMS, SED-CMS, or SED-WDS only). Local information for battery life and connectivity (heartbeat) are also displayed through the ZigBee Pro wireless network. For more information about using the SED-WIN and SED-DOR switches, consult the SED-WIN / SED-DOR Wireless Door and Window Switch Installation Guide. For more information about using the SED-WDS, SED-WMS and SED-CMS wireless switches and sensors, consult the Pairing VT8000 Series Room Controllers with ZigBee Sensors Installation Guide and Procedure. Model Selection Window Switch Door Switch Door switch SED-DOR-P-5045 Window switch SED-WIN-P-5045 Door/window switch Wall mounted motion sensor Ceiling mounted motion sensor SED-WDS-P-5045 SED-WMS-P-5045 SED-CMS-P-5045

Application Guide 15 LED LED LED SED-CMS SED-WMS SED-WDS SED-WIN SED-DOR LED Hidden switch Hidden switch Hidden switch Hidden switch APPENDIX E TERMINAL CORRESPONDENCE The terminals of an VT8600 are identified differently and have a wider range of possible functions compared to those of any of the VT7000 series Room Controllers. Nonetheless, there is a direct correspondence of functions between the terminals of the VT7000 series and the VT8600 series. Consult the table below to verify the appropriate terminal when replacing a VT7000 Room Controller with a VT8600 Room Controller. VT7000 VT8600 Terminal name Terminal ID Terminal name Terminal ID Binary Input 1 BI1 Universal Input 16 UI16 Binary Input 2 BI2 Universal Input 17 UI17 Universal Input 3 UI3 Universal Input 19 UI19 Sensor Common Scom Terminal 18 Common COM Remote Sensor RS Universal Input 20 UI20 - RS Sensor Common Scom Terminal 21 Common COM Mix/Supply Sensor MS Universal Input 22 UI22 - SS