Maintaining Packaged Rooftop Units

Similar documents
How to Take Basic Readings to Show Energy Efficiency

INSTALLATION INSTRUCTIONS TXV Horizontal Duct Coils EHD

Cased Aluminum Coils "Dedicated Upflow / Downflow" Convertible to horizontal with separately purchased kit

INSTALLATION INSTRUCTIONS TXV Horizontal Slab Coils WLSH

Standard and CELDEK Evaporative Cooler Modules Installation, Operation, and Maintenance Manual

INSTALLATION INSTRUCTIONS

Surna 25-Ton Chiller Operating & Maintenance Manual

WKS 2200 SERIES (USA only) --INSTALLATION INSTRUCTIONS--

Standard and CELDEK Evaporative Cooler Modules Installation, Operation, and Maintenance Manual

CELDEK Evaporative Cooler Module Installation, Operation, and Maintenance Manual. CELDEK Evaporative Cooler

INSTALLATION INSTRUCTIONS TXV Horizontal Duct Coils EHD

C7 Series Split System Uncased Indoor Coils

CMHC HOME MAINTENANCE CHECKLIST

INSTALLATION INSTRUCTIONS

SECTION PLUMBING/HVAC FINAL TESTING, ADJUSTING AND BALANCING

Frontload Washer. Preventative Maintenance.

60+ NEED-TO-KNOW APPLIANCE MAINTENANCE TIPS

Installation Instructions

Cased Aluminum "Convertible" Coils 4TXCB003CC3HC** 4TXCB004CC3HC** 4TXCC005CC3HC** 4TXCC006CC3HC**

Aprilaire Dehumidifier Troubleshooting Manual Models 1830 & 1850

Hood Depot Internatioonal, Inc., Phone S. Powerline Road, Deerfield Beach, FL

INSTALLATION INSTRUCTIONS TXV Coils EDM, EDD, EDA

INSTALLATION INSTRUCTIONS

INSTALLATION INSTRUCTIONS

Fig. 1 - Unit PHD4 and WPH4

INSTALLATION INSTRUCTIONS

1.1 This section applies to air handling units for HVAC Systems.

WKS 4000 SERIES (USA only) --INSTALLATION INSTRUCTIONS--

EBAC MODEL WM150 INDUSTRIAL DEHUMIDIFIER OWNER S MANUAL

INSTALLATION INSTRUCTIONS

Owner s Information Manual

Installation Instructions

INSTALLATION INSTRUCTIONS TXV Coils EBD, EBA

INSTALLATION INSTRUCTIONS TXV Coils EBU, EBA

Instructors: Contact information. Don Reynolds Doug McGee Factory Tech Support

INSTALLATION MANUAL UN-CASED A COILS UPFLOW FOR COOLING/HEAT PUMPS FLEX COILS FOR FIELD INSTALLED TXV MODELS: UC LIST OF SECTIONS LIST OF FIGURES

Aprilaire Dehumidifier Troubleshooting Manual Models 1830, 1850, 1870

USER S INFORMATION MANUAL

2/4TXCC037BC3HCA 2/4TXCB042BC3HCA 4TXCC044BC3HCA 2/4TXCC043BC3HCA 2/4TXCB048BC3HCA

A. Air Handling Units shall be designed to the specific requirements of the application: Recirculation or 100% Makeup.

INSTALLATION INSTRUCTIONS

Installation, Operation, and Maintenance Information

442 Chapter 16. Figure 16-5 Gas leak detection

Installation Instructions

OWNER S MANUAL. Vintage Signature Series models: AC750, AC1050, AC1100, AC1250, AC1500, AC1750. Proudly Made in the USA.

SeasonMaker Hi-Line Fan-coil Units Model HSS S10 & S12

DLCLRA. INSTALLATION INSTRUCTIONS Outdoor Unit Single Zone Ductless System Sizes 36 to 58 TABLE OF CONTENTS

Daikin Water Cooling, Heating, and High Capacity Booster Coils

RV Products Division INSTALLATION INSTRUCTIONS FOR SERIES PACKAGE AIR CONDITIONER

INSTALLATION INSTRUCTIONS TXV Coils for Manufactured Housing EMA

OWNER S MANUAL. Vintage Classic HEAT COOL models. Proudly Made in the USA

User s Information and Installation Instructions

Installation Instructions

SLP98UH SERIES VARIABLE CAPACITY GAS FURNACE WARNING WARNING

CROWN. Boiler Co. Santa-Fe Series. Hydronic Air Handlers INSTALLATION, OPERATION & MAINTENANCE INSTRUCTIONS

EL SERIES INSTALLATION INSTRUCTIONS

Fig. 1 - Unit PGD4, PGS4, WPG4

Installation Instructions

FDT11 FDT15 FDT18. DUCTED TYPE SPLIT SYSTEMS (3 Phase, Fixed Speed)

Mobile Evaporative Cooler. Use & Care Guide MC37 / MC61 INDEX

Advance Release September 2009

Complete HVAC Capability. Central Station Air Handling Units. Publication No. WT-CSX-0616A

CUSTOMIZED TEACHER ASSESSMENT BLUEPRINT HVAC MAINTENANCE TECHNOLOGY. Test Code: 5937 Version: 01

ML180UH SERIES GAS FURNACE WARNING WARNING

Packaged Gas/Electric Units. Owner s Guide to Operating and Maintaining Your Gas/Electric Unit

While most maintenance is seasonal, there are some things you should do on a frequent basis year-round:

Installation Instructions

KINGS COUNTY JAIL EXPANSION PHASE III COUNTY OF KINGS SECTION

Daikin Direct Expansion (DX) Cooling Coils

A. Section includes Factory Packaged, Modular units, providing cooling and heating for air distribution systems.

WineZone Ceiling Mount Ductless Split 15

Installation Instructions

SeasonMaker Hi-Line Fan-coil Unit Model HSS S30 through S80

Union County Vocational - Technical Schools Scotch Plains, New Jersey

EBAC MODEL K100 DEHUMIDIFIER OWNER S MANUAL

Owner s Information Manual

HVAC Module Assembly Replacement

5 Cool Tips for Getting the Right Air Conditioning System pg. 1

OWNER S MANUAL. Models: AC110, AC125, AC150 made from 2003 through Proudly Made in the USA

INSTALLATION INSTRUCTIONS ENERGY RECOVERY VENTILATOR WITH EXHAUST

What is Included with a Seasonal Service?

InstructIon Manual KrEs EQuIPMEnt stands

Brown University Revised August 3, 2012 Facilities Design & Construction Standards SECTION AIR HANDLING UNITS

Installation Instructions

INSTALLATION MANUAL LIST OF SECTIONS LIST OF FIGURES LIST OF TABLES SECTION I: SAFETY UIM-C-0214

HVAC/R Repair and Maintenance In The Current Economy. How To Minimize Costs

SEVEN STEPS TO EFFECTIVE PRE- SEASON COOLING CHECKUPS

LOW TEMPERATURE FREEZER MANAGEMENT GUIDE

Packaged Heat Pumps. Owner s Guide to Operating and Maintaining Your Heat Pump

Installation & Maintenance Data IM Contents

SECTION AIR HANDLING UNITS WITH COILS. 1. Central Station Air Handling Units. 1. Section Basic Mechanical Requirements.

INVERTER SPLIT - TYPE

USER S INFORMATION MANUAL SLP98UHV SERIES

Commercial Unitary Air Conditioners

R410a Installation and fault finding training

ACT Cartridge Dust Collector

Motor Vehicle Air Conditioning (MVAC) System operation and the refrigerant cycle

Mortex INSTALLATION INSTRUCTIONS AIR CONDITIONING & HEAT PUMP INDOOR COILS

INTRODUCTION HVAC BASICS AND HVAC SYSTEM EFFICIENCY IMPROVEMENT SECTION O 4/19/2012

INSTALLATION MANUAL. Split-type Air Conditioner (Cooling and Heating) Outdoor Unit UQB09JJWC UQB12JJWC. Indoor Unit AQB09JJWC AQB12JJWC

Transcription:

Published on Business Energy Advisor (https://fpl.bizenergyadvisor.com) Home > Maintaining Packaged Rooftop Units Maintaining Packaged Rooftop Units Packaged air-conditioner and heat-pump systems, also called rooftop units (RTUs), fall into disrepair over time, leading to energy waste and compromised comfort for a building s occupants. It s crucial to maintain these RTUs on a regular basis to ensure that they cool buildings and occupants as intended without wasting energy. Regular maintenance will also help to prevent or quickly catch malfunctions before they have a chance to further degrade the equipment or waste prodigious amounts of energy. An economizer stuck in the open position in a climate such as that of Tampa, Florida, for example, can cause the HVAC system to use 50 percent more energy than a system without an economizer. Because a large part of the cost of servicing an RTU is incurred just getting service personnel and equipment on site, it doesn t make sense to use a piecemeal approach that only addresses one or two maintenance measures at a time. Rather, use an annual service or maintenance program or contract to maintain the entire unit. These contracts typically include a host of measures. Several of these, including cleaning both the condenser and evaporator coils, verifying refrigerant charge levels, and maintaining the RTU cabinet integrity are covered here. Other measures, such as changing filters and maintaining fans and outside air dampers, are covered in our Maintaining Air-Handling Equipment topic, because they also apply to equipment other than RTUs. Based on a short survey of service providers, the cost for an annual maintenance contract that includes all of these tasks is between approximately US$1,000 and $1,200 for a 10-ton unit. Filter changes and inspections are frequently performed quarterly, with the remaining tasks performed annually. CLEANING CONDENSER COILS In a packaged rooftop air conditioner, the condenser coil is exposed to unfiltered outdoor air, so it will accumulate dirt buildup at a much higher rate. The performance penalty of a dirty condenser makes cleaning it one of the most important practices available for RTU

maintenance. As dirt accumulates, the coil s ability to exchange heat and thus its cooling capacity will decrease, and its power consumption will increase. A dirty coil will also impede airflow, contributing to a capacity reduction. A 1999 study by the Proctor Engineering Group estimates that unmaintained condenser coils will gradually degrade unit efficiency by 5 percent over 17 years and by up to 30 percent over 20 years. Harsh environments or high equipment loading (that is, running equipment at or near capacity for long periods of time) can shorten these time periods by a factor of three. The best tool for this maintenance job is a power washer that feeds cleaning solution into a high-pressure water spray. Some companies specialize in performing this type of cleaning for a competitive price. They typically use tank trucks and custom self-contained equipment. Spray-on cleaning solutions that are intended to be used with a brush and a hose will not do a good enough job of cleaning the coils, even though they may brighten the outer surface. A serious condenser cleaning involves before-and-after measurements of the temperature difference across the coil to verify the effectiveness of the cleaning. These measurements should be included in a report to the owner or supervisor. Take care, however: Power washing, if done improperly (for instance, using the wrong spray angle or excessive pressure), can damage coils by bending the fins or even breaking them off if the coil is old. This task isn t complicated, but it should be done only by people trained in the proper use of the necessary equipment. CLEANING EVAPORATOR COILS Dirt on the evaporator coil causes two problems: It reduces system airflow, and it directly degrades the coil s heat-transfer efficiency (which significantly cuts cooling capacity). With good filtration, a rooftop unit s evaporator coil will stay fairly clean. Some technicians claim that specifying annual evaporator coil cleaning is an unnecessary expense, but others maintain that enough dirt gets around or through the filters to justify the expense. Those in favor of annual evaporator coil cleaning contend that as long as the equipment required to clean the condenser coil is on the roof anyway as it should be for the unit s annual cleaning it s worthwhile to clean the evaporator coil as well. The evaporator coil should at least be inspected once a year to make sure that the filters have been doing their job. Shining a light through the coil is one way to inspect it (although

wavy enhanced fin designs can make this type of check difficult). Another approach is to measure supply-fan amperage and filter/coil pressure drop (with fresh filters). If the amps are lower and the pressure drop is higher than last year s measurement (also with fresh filters), then the evaporator coil is dirty and needs to be cleaned. FIXING REFRIGERANT LEAKS Fixing refrigerant leaks in RTUs is a tedious but important task. Refrigerant charge that s too low can compromise efficiency and capacity. The following tips can help prevent leaks and speed their repair: Use rubber-gasketed brass caps for all service-port connections and keep them wrenchtight (rather than just hand-tight). Have plenty of spares on hand like the valve caps on your car tires, they have a way of wandering off. Replace these gaskets (or the complete caps) periodically, because they can become dry and cracked. Enforce a standard of cleanliness for all refrigerant lines. Keep the copper pipes wiped down with a clean rag. Refrigerant leaks also leak oil, and it is easier to find oil on clean pipes. Look for leaks on flanged and screw fittings first, rather than on soldered joints. Minimize the number of times that refrigerant gauges must be connected to the service ports each time this happens, it bleeds a bit of refrigerant from the system. Repair a leaking coil only once; when you do, mark it with paint or chalk. The next time it leaks, replace the coil completely. Repairing refrigerant leaks requires several steps, including refrigerant recovery, nitrogen charging, inspection with a leak detector, brazing or otherwise fixing the leak, vacuum drying, and recharging. MAINTAINING CABINET INTEGRITY

It s not unusual for RTUs to spill much of their expensive chilled air onto the roof. The reason: poorly designed or poorly maintained cabinet hardware (Figure 1). Annual checkups should include a survey of air leaks, followed by corrective action such as replacing screws or latches and patching or replacing gaskets. Cabinet integrity is particularly important on the supply-air side, where high pressure created by the fan can force considerable air out of a small crack. Losing 200 cubic feet per minute (cfm) from a 10-ton rooftop unit reduces cooling and airflow capacity by about 5 percent and wastes more than $100 per year in energy costs (assuming an energy-efficiency ratio of 11.2 and 2,000 hours of operation at 10 cents per kilowatt-hour). Another potential source of air leakage is through the condensate drain pipe that leads out from the pan under the evaporator coil. A narrow pipe section or U-bend water trap can reduce or eliminate this type of leak. FIGURE 1: Leaky rooftop cabinet Leaking cabinets waste expensive air. A leak of 200 cubic feet per minute can cost about $100 per year in energy.

Most RTUs are covered with access panels that are held in place by small sheet-metal screws. Using hand tools to remove and reinstall these small screws can be exasperating which explains why many panels have only one or two screws left in place after a few service calls. But loose panels mean leaky units, which in turn means valuable chilled air is spilling onto the roof. A cordless drill with the correct nut driver makes panel access quick and easy and is conducive to screw replacement. (Make sure that the drill has a clutch to prevent overtightening or stripping the screws.) Technicians will also find their work is made easier by keeping a bag of screws on hand to replace missing ones, including oversized screws for stripped holes. The final step in checking the air side of the system is to measure the airflow and make sure it is within the expected range (350 to 400 cfm per ton of cooling capacity). This is a difficult task; nonuniform flow in the unit and ducts makes single-point air-velocity measurements nearly worthless in assessing total flow rate. The following three-step process is suggested: 1. Measure total static pressure drop across the fan. 2. Measure fan shaft rotation with a tachometer. 3. Look up the flow from the manufacturer s fan curve based on fan speed and pressure. The hardest part of this process is likely to be obtaining the fan curve. You can call the manufacturer s technical support service with the model number and field measurements and have them read back the corresponding flow rate. Collecting and archiving complete performance documentation on an RTU when it is first installed (or first incorporated into a comprehensive service program) makes this type of measurement much easier. If the airflow is not within the expected range and the cabinet is properly sealed, then conduct a system investigation to find out why. Ducts could be leaking or obstructed, dampers may not be set or performing properly, or the fan may be malfunctioning. All content copyright 1986-2017 E Source Companies LLC. All rights reserved. Source URL: https://fpl.bizenergyadvisor.com/bea1/oma/oma_hvac/oma-01