A Primary Concern by John Siegenthaler, P.E. October 1, 2005

Similar documents
Flow Reversal in Primary/Secondary Systems by John Siegenthaler, P.E. April 17, 2007

hydronics WHAT S WRONG WITH THIS SCHEMATIC?

HYDRONICS BY JOHN SIEGENTHALER

"Best Practices in Modern Hydronic Heating - THE DETAILS

Hydraulic Separation Moving Beyond Priamry / Secondary Piping...

Threaded. Flanged. Model PSH. Primary Secondary Header A-451

SAMPLE. added benefit of reduced operating costs during low demand periods, such as spring and fall.

Distribution Efficiency: The Under-appreciated Benefit of Hydronics

The electrical wattage needed by the circulator is:

TOTAL SYSTEM EFFICIENCY: SYSTEM APPLICATIONS & DESIGNS. David Grassl PE Mechanical Engineer Principal

Chiller Plant Design. Julian R. de Bullet President debullet Consulting

Circulators high efficiency ECM Circulators

Best Practices for Condensing Boilers

Applications and Piping Strategies for Condensing Boilers - Introduction

A Review of Hydronic Balancing of Cooling Water Circuit

MAXIMIZING HYDRONIC SYSTEM DESIGN PART III

WM97+ Wall Mount Boiler

GETTING THE MOST OUT OF HYDRONIC HEATING SYSTEMS

Water Piping and Pumps

The Ultimate in Distribution Efficiency. Air Eliminator Dirt Separator Low Loss Header Hydraulic Separator

DISTRIBUTION SYSTEMS. Water Piping and Pumps

Selecting Circulators TD10 EFFECTIVE: SUPERSEDES:

TOTAL SYSTEM EFFICIENCY: CONDENSING BOILER SYSTEM MYTH BUSTING. David Grassl PE Mechanical Engineer Principal

INSTRUCTIONS REHAU PRO-BALANCE MIXING MODULE

Study and Design Considerations of HRSG Evaporators in Fast Start Combined Cycle Plants. Govind Rengarajan, P.E.CEM, Dan Taylor

Commercial Buildings Chilled water systems efficiency By Jens Nørgaard, Senior Application Manager, Grundfos, Denmark

NOVEMBER 2012 THE EUROPEAN EXPERIENCE

terminal units only provide sensible cooling, a separate dehumidification system is usually needed.

Heat Reclaim. Benefits,Methods, & Troubleshooting By Dave Demma, Manager Supermarket Sales, Sporlan Division - Parker Hannifin Corporation

Allcan TM Installation Manual

- Data Brochure Mixing Control 360

Outdoor Reset Control Theory FULL versus PARTIAL reset

Geothermal HVAC. Modern. Engineering and Control Applications. Greg Cunniff. Jay Egg. Carl D. Orio. Mc Graw Hill Education

HYDRONIC COMPONENTS & SYSTEMS

By Thomas H. Durkin, P.E., Member ASHRAE, and James B. (Burt) Rishel, P.E., Fellow/Life Member ASHRAE

Survey. Water. Hydronic. Systems. Pre-Installation Survey and Checklist for Water Systems

HYDRONIC SOLUTIONS. More than just hydronic boilers, we offer the most efficient integrated hydronic solutions on the market.

Radiant Heating. Systems

No matter how adventurous a process engineer may

LOW TEMPERATURE HYDRONIC HEATING FOR COLD CLIMATES TRAVIS SMITH PRESIDENT T AND T MOUNTAIN BUILDERS INC

B. Unit construction shall comply with ASHRAE 15 Safety Code, NEC, and ASME applicable codes (U.S.A. codes).

know exactly what you are getting before you order it. You can order with confidence knowing th each panel is completely tested before it ships.

- Data Brochure Boiler Control 274

TOTAL SYSTEM EFFICIENCY: CONTROL STRATEGIES & SYSTEM DISTRIBUTION. David Grassl PE Mechanical Engineer Principal

RSES Technical Institute Training Manual 3 72 hours, 72 NATE CEHs, 7.2 CEUs

CHAPTER 4. HVAC DELIVERY SYSTEMS

Final Design Statement

A hydronic system controls comfort by delivering heated or cooled fluid to the conditioned space through pipes.

Manual of Modern Hydronics

Get The Edge Over The Competition with The Summit

Richard Hiles ClimateMaster

- Data Brochure Mixing Control 361

TOTAL SYSTEM EFFICIENCY: AN INTRODUCTION TO CONDENSING BOILERS. David Grassl PE Mechanical Engineer Principal

NEW FEATURES IN THE CARRIER HOURLY ANALYSIS PROGRAM v4.80

HAP e-help. Modeling Induction Beams in HAP v4.8 QB TIP 001

InDEX. A Technical Journal from Caleffi Hydronic Solutions

- Data Brochure Universal Reset Module 422

SECTION PUMPS. 6. Section Steam and Condensate Piping and Specialties.

Product Instructions. Hydronic Mixing Block Version Wiring Terminal Block Pressure/Temperature Sensor Delivery Fitting (3) Display Screen

This guide will discuss the scope of work, and technical requirements of connecting to the Energy Transfer Station(s) (herein referred to as ETS).

Trim Pump Impellers. Fredrick/Weinman Engineered Products 2-1/2 KH, 2-1/2 x 3 x 12

Systems and Tanks. 40 H/V 60 H/V 80 V 115 V 139 V Gallon. Applications Sizing System Design

INSTANT CHILLER. Chester-Jensen Co., Inc. Unit Construction and Short Gas Flow

Hydronic Mechanical Panels

Discover the Difference

Heat Pumps COMFORT NEED IT. When You

- Data Brochure D 260. Boiler Control /09

Air-to-Water Heat Pumps + Boilers A Dynamic Duo

SERIES 24. Series 24 Features. Commercial, Forced Draft, Hot Water or Steam Boiler. The right fit for any commercial job

Modular Panel System for Radiant Floor Heating MICRO-BOILERS MODULAR PANEL SYSTEMS

WD7664 / WD7663 Maxon Burner Ellis Whisper Dryer Installation & Start UP

TECHNICAL. Series 18. Pump Packages

INSTALLATION INSTRUCTIONS WARRANTY

RADIANT PANEL SYSTEM CONTROL QUICK GUIDE

BOILER APPLICATION GUIDE for:

PESIT-Bangalore South Campus

A Better Boiler Just Got Better. Better Boilers. New Size Available. Express Setup. Load Status. User Setup. Installer Setup. Diagnostics.

ADVANCED HEATING AND HOT WATER SYSTEMS

What is a Secondary Pressure Drainer?

Maincor Underfloor Heating UNDERFLOOR HEATING SYSTEMS. Introduction. Overview. Tel: Web: Why use Underfloor Heating?

Fundamentals of Hydronic Design

TRACE 700. Slide 1. Hello, my name is Nick Cavitt and I m a marketing engineer in the C.D.S. group at TRANE.

Boiler Demand Mix 1 Demand Mix 2 Demand DHW Demand Setpoint Demand

OIL AND GAS INDUSTRY

Vitocrossal 300, CU3A - Introduction

NEW. Hydronic HVAC Systems. FloCon Watchman TM. Patent Numbers: GB , GB , GB Rev: /2015

WD7664 / WD7663 Maxon Burner. Ellis Whisper Dryer Installation & Start UP

Product and Technical Seminar April 16, 2013 FCX Oil fired Condensing Boiler

Air Vents for Hot and Chilled Water Systems

1+ SEER. 25% COP boost possible. Most valves expand your refrigerant EcoFlow expands your options. with silent defrost.

Taco 00 Series Cartridge Circulators

In-Line Air Separators

TACOTHERM DUAL PIKO MODULAR AND HIGHLY FLEXIBLE HEAT INTERFACE UNITS

PRODUCT GUIDE EARTHLINKED TECHNOLOGIES GEOTHERMAL RENEWABLE ENERGY SYSTEMS SIMPLE. EFFICIENT. EFFECTIVE.

Plant Application Guide

VENTS. Main Steam Vents. How to Select Steam Vents. For Steam Vent selection information, please refer to Selection Guidelines on page 133.

- Data Brochure Universal Reset Module 423

K.F. Fong *, C.K. Lee, T.T. Chow

Copyright 2003 and 2005 by The American Institute of Architects (AIA) Modified by MSU Physical Plant / Engineering and Architectural Services

Application Guide. Vitodens 100-W B1HA/B1KA Residential Boiler

Transcription:

A Primary Concern by John Siegenthaler, P.E. October 1, 2005 When does a parallel primary loop make sense? It s hard to have a discussion on modern hydronic heating and not talk about primary/secondary (P/S) piping. Listening in on such a conversation, someone new to hydronics might conclude that P/S is one of the latest innovations in hydronics. Not so. According to the Bell & Gossett Co., P/S piping dates back over 50 years (to 1954). You can read about this in the B&G publication, Primary Secondary Pumping Applications Manual (Bulletin No. THE-775), which I consider one of the classic references on the subject. Interestingly, the type of system this manual describes is not the piping configuration most designers of modern hydronic systems picture when the subject of P/S piping comes up. To be specific, the B&G publication describes parallel primary loop systems, whereas the majority of present designers working with residential and commercial applications of P/S piping are accustomed to series primary loops. The difference between these configurations is shown in Figure 1. Figure 1

After studying these two piping configurations, one might conclude that the series primary loop looks simpler in concept, as well as easier to construct. True, a series primary loop uses less pipe and fewer fittings. It doesn t require the balancing valves seen in the parallel primary loop. The closely spaced tees in the series primary loop provide hydraulic separation between the primary loop and each secondary circuit the same as in the parallel primary loop. So, why bother designing or building a parallel primary loop? The answer is that a parallel primary loop provides equal supply temperature to each secondary circuit, whereas a series primary loop does not. Having equal supply temperature to each secondary circuit is very important for chilled water cooling distribution systems. The terminal units in such systems must operate on a fairly narrow temperature rise to provide proper latent cooling (dehumidification). Maintaining equal supply temperature to each secondary circuit serving a heating load can also be important. Heat emitter sizing is simplified because the sequential temperature drop between successive secondary circuits that occurs in a series primary loop is not present in a parallel primary loop. One example of where a parallel primary loop can be useful in a heating application is the multizone minitube system shown in Figure 2. Figure 2 In this system, each injection (e.g., secondary) circuit is supplied with the same water temperature from the crossover bridges on the parallel primary loop. The primary loop temperature in this type of system is usually reset based on outdoor temperature. As this occurs, each injection circuit receives the same change in water temperature. Divvy It Up

Figure 3 Flow proportioning through the crossover bridges in a parallel primary loop is regulated by how the mains are piped, as well as through balancing valves in each crossover bridge. Piping the mains in reverse return, as shown in Figure 3, encourages (but doesn t guarantee) equal flows through the crossover bridges. Having such equal flows would be desirable if the load on each crossover bridge was about the same. In such cases, the balancing valves could, in theory, be eliminated. Figure 4 In the more typical case where the secondary circuit loads are different, crossover flows should be proportioned to those loads as shown in Figure 4. Flow proportional balancing allows the temperature drop across each crossover bridge to be equal. Although this is desirable, it s generally not crucial in heating system applications. A slightly higher temperature drop across one crossover bridge relative to another ultimately gets mixed away when all crossover bridge flows come together in the return main.

What s more important is ensuring the flow rate through each crossover bridge is equal to or slightly greater than the flow in the secondary circuit it serves. This prevents flow reversal at the closely spaced tees and subsequent mixing at the upstream tee. The latter will lower the supply temperature to the secondary circuit. Alternate Approaches The two key benefits of a classic parallel primary loop are: 1) Hydraulic separation between simultaneously operating circulators; and 2) Providing the same supply temperature to each secondary circuit. Other approaches that offer these same benefits include: Hydraulic separators; Low loss manifolds; and Pre-assembled P/S manifold systems. An example of a piping system using a hydraulic separator is shown in Figure 5. Figure 5 The hydraulic separator provides well hydraulic separation between the primary circuit (on the left side) and secondary circuit(s). It does so by creating a zone of low flow velocity (and hence very low differential pressure) where the two circuits come together. This zone provides an effect equivalent to a pair of closely spaced tees. In addition, the hydraulic separator serves as a separator for both air bubbles (which migrate to the top where they can be vented) and sediment (which settles to the bottom where it can be flushed out). The outlet side of the hydraulic separator is often a header, as shown in Figure 5. To minimize interaction between the simultaneously operating circulators, this header should have very little head loss. Size the header piping for a flow velocity of approximately two feet per second or less when all circuits are operating. Keep the supply and return headers as short as possible. These provisions allow the header to replicate the effect of primary/secondary circuit separation arguably with simple piping design and fewer components. If the header will be installed vertically, include an air vent at the higher end.

Figure 6 An example of a low loss manifold used for a minitube system is shown in Figure 6. The closely spaced tees in combination with the ultra low loss manifold piping create the hydraulic separation. The common supply manifold ensures equal supply temperatures. With either of these piping configurations, check valves must be installed downstream of each distribution circulator to prevent flow reversal. The options listed here are arguably simpler and use less hardware than a classic parallel primary loop. The latter makes most sense when the secondary circuits are spread throughout the building. In such cases, the parallel primary loop should be set up for reverse return flow. An example of such a system is shown in Figure 7. Figure 7 Still another option is a pre-assembled P/S manifold component. An example of such a device is shown in Figure 8. Notice the baffle with two holes near the left end of this device. This detail provides the hydraulic separation between the primary chamber on the left, and the secondary manifold chambers on the right. Up to four secondary circuits can be connected to this device. What About Series Primary Loops?

Figure 8 In systems where there s a significant difference in supply temperature requirements between secondary circuits, a series primary loop is a better choice. An example of the latter is a system using fin tube baseboard on one secondary circuit and low temperature radiant floor heating on another. The higher temperature secondary circuits should always be teed in near the beginning of the primary loop, with the lower temperature secondary circuits connected near the end. This sets the stage for a relatively high temperature drop around the primary loop, which in turn lowers flow requirements and reduces the size and power demand of the primary circulator. Primary loop temperature drops on the order of 30 degrees to 40 degrees F are entirely possible, and even desirable. Figure 9 shows a variation of the series primary loop intended to provide equal supply temperatures to each secondary circuit as well as hydraulic separation. The key to making this arrangement work is low head loss along the common piping. A flow-check or spring-loaded check should be installed in each secondary circuit to prevent flow reversal and heat migration. Also, to prevent flow reversal in the primary loop and subsequent reduction in the secondary supply temperature, be sure the primary loop flow rate is equal to or greater than the total of all secondary flow rates. Figure 9

This article has discussed both classic parallel primary loops and alternatives to them. All these approaches can provide a high degree of hydraulic separation and the same supply temperature to each circuit. Evaluate each potential application in terms of piping location, hardware requirements, and lifecycle operating cost when making a selection. John Siegenthaler, P.E. john@hydronicpros.com John Siegenthaler, P.E., is principal of Appropriate Designs, a consulting engineering firm in Holland Patent, NY, and author of Modern Hydronic Heating. Visit www.hydronicpros.com for information on his recently released second edition, as well as the new Hydronics Design Studio software. E-mail John at john@hydronicpros.com.