Eclipse 90 UV Scanner Model A Version 1

Similar documents
UV Scanner. Model Specification. Introduction. 854 Instruction Manual

Eclipse Self-Check UV Scanner

Fireye FLAME SCANNERS

Distributed By: M&M Control Service, INC

VeriFlame CE Burner Monitoring System

MBCE-110/230UV Flame Sensor Module

FIREYE FLAME SCANNERS

Distributed By: M&M Control Service, INC

MBCE-110/230FR Flame Sensor Module

FIREYE FLAME SCANNERS

MBCE-110/230FR Flame Sensor Module

FIREYE C9707A ALL FUEL SCANNER

ELECTRONIC FLAME SUPERVISION MULTI-BURNER

FIREYE FLAME SCANNERS

FIREYE FLAME SCANNERS

DESCRIPTION AND INSTALLATION

SLATE. UV Ampli-Check Flame Amplifier INSTALLATION INSTRUCTIONS R8001S1071

DESCRIPTION AND INSTALLATION

Instruction Manual 826 7/22/2009. Eclipse Bi-Flame Dual Burner Monitoring System Model 6500 Version 1

LFL Series Burner Flame Safeguard Control

C7915A Infrared Flame Detector

FIREYE M4RT1 FLAME SAFEGUARD CONTROLS DESCRIPTION

North American Flame Detector Adapters 8832 through 8839 and Series R

LAE10 LFE10. Use. Series 02

R7824, R7847, R7848, R7849, R7851, R7852, R7861, R7886 Amplifiers for 7800 SERIES and R7140 Relay Modules

UV Flame Supervision System

DESCRIPTION AND INSTALLATION

ECLIPSE INFORMATION GUIDE

SIL3. C7961E,F Dynamic Self-Check Ultraviolet Flame Detector. Capable APPLICATION FEATURES PRODUCT DATA. Contents

R7910A SOLA (Hydronic Control) and R7911 SOLA (Steam Control) Systems

SLATE. Rectification Ampli-Check Flame Amplifier INSTALLATION INSTRUCTIONS R8001V1031

Internet Version for Reference Only INDUCED DRAFT COMMERCIAL WATER HEATERS SUPPLEMENT INSTRUCTIONS TO PART #

55UV5 SCANNER MODEL 1010

FLAME DETECTOR ADAPTERS 8832 through 8839 and Series R Bulletin 8832

7800 SERIES Relay Modules

LFE50. UV Flame Safeguard. Siemens Building Technologies HVAC Products DETACTOGYR. Series 02

R7824, R7847, R7848, R7849, R7851, R7852, R7861, R7886 Amplifiers for 7800 SERIES and R7140 Relay Modules

Safety. Operating instructions UV sensor UVS 10 DANGER WARNING. Contents CAUTION Edition Please read and keep in a safe place

Indirect gas-fired air heater

FIREYE FLAME SAFEGUARD CONTROLS DESCRIPTION

OPERATING AND MAINTENANCE MANUAL

ECLIPSE INFORMATION GUIDE

R7910A SOLA (Hydronic Control) and R7911 SOLA (Steam Control) Systems

COMPACT FLAME CONTROLLER CFC 2000

COMPACT FLAME CONTROLLER CFC 1000

Flame Safeguard Fault Code Diagnostics

Design Guide 111 9/25/2008. Eclipse Winnox Burners WX Series Version 1

R7120M 7800 SERIES Relay Modules

C7007A, C7008A, C7009A Flame Rod Holder & Flame Rod Assemblies

Flame Safeguards LFE10. Building Technologies HVAC Products

Flame Safeguards LFE10. Building Technologies HVAC Products

C7061C/F ULTRA VIOLET FLAME DETECTOR FEATURES APPLICATION PRODUCT HANDBOOK. Contents

SERIES VAC Microprocessor-Based Direct Spark Ignition Control FEATURES APPLICATIONS SPECIFICATIONS DESCRIPTION. Export Information (USA)

EUROFLAT SERIES TYPES C... S... M...

ABB. Measure IT Uvisor System Flame scanner for gas and oil burners. UR450 Mod UV flame scanner Product Data Sheet (Rev. B)

Flame Rod Manual. Publication Rev A

Design Guide No /01. RatioMatic Burners. RM Series Version 3.10

COMPACT FLAME CONTROLLER CFC 100

UV - flame detector dual fuel burners for intermittent burner operations

PACKAGED METALLIC BURNERS

LFE50. UV Flame Safeguard. Building Technologies Division DETACTOGYR

SOLID STATE Burner Management Controls SERIES D40-41

C7061A,F Dynamic Self-Check Ultraviolet Flame Detector

SUPER HIGH EFFICIENCY WATER HEATERS SUPPLEMENT TO INSTRUCTION MANUAL P/N (Replaces pg. 2 in instruction manual.) CONGRATULATIONS!

MULTIPLEX SELF RECUPERATIVE gas burner

Q - Series Boiler. Troubleshooting Manual

ABB. Measure IT Uvisor System Dual sensor flame scanner. UR460 Mod. UVIR /ER/EF/DV Flame Scanner Product Data Sheet (rev B)

SERIES VAC Microprocessor-Based Direct Spark Ignition Control with Inducer Blower Relay FEATURES APPLICATIONS SPECIFICATIONS DESCRIPTION

ABB. Measure IT Uvisor System Flame scanner for fuel oil and coal flame. UR600 IR Mod flame scanner Product Data Sheet (rev.

AUR300C. Advanced Ultraviolet Burner Controller

Proper maintenance of tunnel finisher will prolong its life and enable the equipment to produce the best possible quality.

Bert Uneken, Field Engineering Manager Ruben Kranenburg, Technical Support

EUROBOX SERIES TYPES CM... SM... MM...

TYPE 85UVF/IRF Integrated Flame Scanner with Internal Flame Relay

SERVICE AND INSTALLATION MANUAL MODELS HDO(H) OIL FOR YOUR SAFETY

C7061A,F Dynamic Self-Check Ultraviolet Flame Detector

Model 3300 Technical Support and Installation Manual

C7061A,F Dynamic Self-Check Ultraviolet Flame Detector

Design Guide /12/2008. Eclipse RatioAir Burners RA Series Version 1

C7061A,F Dynamic Self-Check Ultraviolet Flame Detector

AUR300C, AUR350C. Advanced Ultraviolet Burner Controller

S55XB and S55XBE Series Viewing Heads

Advanced Ultraviolet Burner Controller

V-VTP Maintenance Manual

FIREYE NXF4000 ADVANCED BURNER MANAGEMENT SYSTEM with INTERNAL FLAME SAFEGUARD

UV - flame detector KLC 10 for oil -, gas- and dual fuel burners for intermittent burner operations

C Note! LGI16... Burner Controls. Building Technologies

CSD-1 COMMERCIAL BOILER CONTROLS

DIRECTIVE NO: D-B

COMPACT FLAME CONTROLLER CFC 200 (Formerly 8.XX)

C7061A Dynamic Self-Check Ultraviolet Flame Detector

24 VAC SYSTEM CONTROL KIT

FlameHawk ATEX / IEC Ex Model

User Manual. 110 Cup (55 Cup Raw) Gas Rice Cooker. Model: 177GRCLP, 177GRCNAT 12/2018. Please read and keep these instructions. Indoor use only.

PRODUCT: SEL-SV-MCQ-O5- K6 VERSION TECHNICAL SHEET 1/5 SAC

Operator: Save these instructions for future use!

Solid State Burner Management Controls Series D10-20 for Automatic Burners

LATTNER BOILER COMPANY 9.5 HP Low-NOx Installation and Start-Up Checklist for Dry Cleaners

RM7890A1056, RM7890B SERIES

Installation Instructions

Transcription:

85 Instruction Manual 10/14/010 Eclipse 90 UV Model 5600-90A Version 1 C US Introduction This sensor features a high sensitivity ultraviolet (UV) tube for monitoring gas or oil flames that cycle on and off frequently. It is protected against reverse connection. The Eclipse flame safeguard checks for a short-circuited, or "runaway" scanner at the beginning and end of each flame cycle. The scanner is UL listed for USA and Canada, and is FM approved. This product is also in conformance with the "CE Mark" directives when used with the model VF56 Veri-Flame CE as listed in Instruction Manual 818-. It comes with a 10 ft (305 cm) lead. The 90 UV operates with 5600 and VF56 series Veri- Flames, the 6000 Series Multi-Flame and 6500 Series Bi- Flame controllers, or series 7000 Peek-A-Flame. The UV tube is made of quartz and is filled with a gas that surrounds two electrodes. These electrodes are energized continuously by a high voltage. The gas acts as an insulator in the absence of UV radiation. Combustion produces UV radiation to ionize the gas and causes current pulses to flow between the electrodes. These current pulses result in a flame signal which is transmitted to the amplifier in the control, where it is processed to energize and hold in the flame relay. Specifications Parameter Specification Part Number 49600-90 Spectral Response 185 to 60nm Supply Voltage 35 VDC ± 5 VDC Discharge Current 0.1 ma Supply Wiring 10 ft (305 cm) cable lead of two #18 AWG conductors Temperature Range 0 to 140 F (-0 to +60 C) Temperature 450 F (30 C) Support Lens Materials Housing: Aluminum Lens Support: PAI (Polyamide-imide) Weight 0.6 lbs (70 grams) Options Magnifying lens (Part #49600-98) or 1/" insulated coupling (Part #49099), support replacement (Part #07)

Sensor Installation CAUTION Veri-Flame S1 Peek-A-Flame 7 Incorrect sensor installation may cause the sensor to generate a false flame signal. This can cause unburned fuel to collect in the combustion chamber, resulting in explosions, injuries, and property damage. Be certain that the flame sensor detects only the pilot and/or main flame of the intended burner by testing the control system under varying operating conditions and firing rates. Follow the test procedures given in this manual and the equipment provider s instructions after installation and at regularly scheduled maintenance intervals. Sensor Wiring Route sensor wiring a sufficient distance from ignition and other high voltage wiring to avoid electrical interference. Some areas may have high levels of electromagnetic fields or ground currents that require the use of special cables, isolation and grounding methods. Figure 1 illustrates the sensor wiring to appropriate Eclipse controls. The blue wire supplies power and carries the flame signal, the yellow wire connects to circuit common. S Multi-Flame 3 4 9 8 10 Main Burner Figure 1. 8 Bi-Flame J4 3 4 J5 1 4 One-Third of Flame Length If sensor wiring is to extend beyond the supplied 10 feet (305 cm) length, use #14 to #18 AWG wire suitable for at least 167 F (75 C) and 600 volt insulation. If each scanner has its own dedicated conduit, unshielded wiring may be used for wiring runs less than 0 feet (6 m) and that have at least one foot of separation from ignition and other high voltage conductors. For wiring runs greater than 0 feet (6 m) use two-conductor shielded cable (such as Belden #8719 or #934, or for extreme temperatures #833E). For multiple burner installations, shielded cables can be run in a common conduit. Use isolated shielded pairs to avoid the possibility of interference (cross-talk) between wiring of multiple scanners. The success of wiring runs of 150 feet (45 m) or more is dependent upon site conditions; therefore the equipment layout should be redesigned to allow the control to be mounted closer to the burner. For these longer wiring runs, it may be necessary to use a pair of RG6A/U coax cables (Eclipse #1741) per scanner, with the shielding insulated and not grounded. Sight Line Sensor Installation Figure. UV Sighting In most cases, the location for this scanner will be predetermined by the burner manufacturer. However, proper application of this scanner requires knowledge of the burner, the combustion chamber, and the process. Opposing burners, flame swirl patterns, and substance in the line-of-sight may require special mounting techniques. Eclipse 90 UV, V1, Instruction Manual 85, 10/14/010

The UV tube is fragile. Handle carefully and avoid dropping or sharp blows. Consult the burner manufacturer s instructions for mounting location. The scanner should view the intersection of the pilot and main flames. It typically should be aimed at the first third of the flame closest to the burner nozzle, see Figure. Certain unburned hydrocarbons, oil mist, recirculated flue gas or other contaminants may mask and absorb the ultraviolet radiation. Position the scanner within 18 inches (457 mm) of the flame. Longer distances are allowed, but could limit the field of view and may reduce the turndown or firing range of the burner. Mount the scanner to a 1/" NPT pipe nipple to the burner. Insure that the scanner body does not exceed 140 F (60 C) from conducted, radiated, or ambient heat. To protect from high temperatures, use the insulated coupling (#49099) with a heat block seal (#400011) and source of clean purging air (5 CFM typical), or a purge assembly constructed with a 1/" WYE fitting. Keep the scanner lens and line-of-sight free of contamination. Be aware that scanners looking up are susceptible to dirt and dust settling. Soot, steam, and unburned hydrocarbons may reduce or even mask the radiation from the flame. A purging assembly as described above may alleviate these problems. Some burners have an open construction allowing the scanner to view into a furnace. Avoid sighting background sources of UV light. If necessary, mask the offending background source by use of an orifice, the magnifying lens assembly (#49600-98), or a combination of both to reduce the field of view. Test Procedures Perform the following tests for every new installation and at periodic maintenance intervals. Depending on the burner equipment (such as pilot versus direct spark), some of the tests may not be possible. Measuring Flame Signal Strength Insert the positive probe of a 0-15 VDC voltmeter (100k ohm minimum input impedance) into the test point on the control cover. Connect the negative probe to the GND or terminal for the yellow wire. Readings greater than 4 VDC are adequate. Minimum Pilot Test CAUTION Run this test on pilot ignited burners to ensure that the sensor will not detect a pilot flame too small to reliably light the main flame. 1. Manually shut off the fuel supply to the burner, but not to the pilot.. Put the control in the pilot test mode. On the Veri-Flame push the Test/Reset button in the Test position (button in). On the Bi-Flame and Multi-Flame press the Reset and Enter buttons together then release the Reset and after a few seconds release the Enter. 3. Start the system normally. The control will hold the operating sequence at the pilot flame step. 4. Measure the flame signal strength as described above. 5. Slowly reduce the pilot fuel until the signal drops out. Increase the pilot fuel slightly and restart the system. Observe the flame signal and adjust the pilot fuel as required to prevent flame failure. This is the minimum pilot. 6. Take the control out of the pilot test mode and begin the start-up sequence again. On the Veri-Flame push the Test/Reset button again so that it pops out to the Run position. On the Bi-Flame and Multi-Flame press the Reset button. 7. When the sequence reaches the main flame trial for ignition, smoothly restore the fuel supply to the main burner. If the main burner does not light within five seconds, immediately shut off the burner fuel supply, stop the control and purge the system. Attempt to light the burner again before proceeding with adjustments in the next step. 8. For burners with an adjustable scanner sighting assembly, adjust the sighting assembly further away from the nozzle of the pilot flame thus requiring a larger minimum pilot for adequate signal strength. For burners with fixed sighting, increase the pilot flame. Repeat steps 1 through 8 until the main burner lights off smoothly and reliably. Ignition Interference Test Test the effect of the ignition system (transformer, spark plug, wiring and grounding) on the flame signal and control. Ignition interference can decrease or increase the flame signal strength or can cause erratic operation of the control. The scanner placement on some burners allows direct sighting of the spark, creating a strong but false flame signal. The Eclipse flame control sequence does not interrupt the spark upon flame detection until after the trial for ignition period. Therefore spark detection is not a problem; however ignition interference should still be reduced or eliminated where possible. 1. Manually shut off the fuel supply to the burner.. Start the system normally. Observe the flame signal during ignition to see if it responds during the spark. Readings above VDC indicate spark interference or spark sighting. 3. On pilot ignited burners, manually shut off the fuel supply to the main burner. For direct spark burners, lock the burner firing-rate at the start position. Eclipse 90 UV, V1, Instruction Manual 85, 10/14/010 3

4. Put the control in the pilot test mode (see step of Minimum Pilot Test above). 5. Start the system normally. Observe the flame signal during spark and after the trial for ignition. Spark interference causes the signal during the spark to differ more than VDC from the signal after the spark. 6. If spark interference is observed, try to minimize its affect: a. Ensure proper grounding for the ignition circuit. b. Isolate the scanner from ground and/or remove the shield connection from ground. c. Check for proper spark gap. d. Clean, repair, or replace faulty wiring and connectors. e. Separate or shield the scanner wiring from the ignition wiring. f. Reverse the wires feeding the primary to the ignition transformer. g. Move the location of the ignition transformer. Pilot Flame Failure Test 1. Put the control in the pilot test mode (see step of Minimum Pilot Test above).. Start the system normally. 3. After the pilot has lit, manually turn off the fuel supply. The controller should lock out of flame failure. If not, then the controller is detecting a false flame signal. Find the problem and correct it before resuming normal operation. Main Flame Failure Test 1. Put the control in the "Run" position (see step 6 of Minimum Pilot Test above).. Start the system normally. 3. After the sequence lights the main flame, manually shut off the fuel supply. If the control does not shut down in less than 4 seconds after visually observing that the flame extinguished, it may be detecting a false flame signal. Find the problem and correct it before resuming normal operation. Process Conditions Test 1. Start the system normally.. Observe the flame signal as the system operates at various firing rates under process (at temperature) conditions. 3. Perform the Main Flame Failure Test under these conditions and verify that the control shuts down in less than 4 seconds after visually observing that the flame extinguished. Limit & Interlock Tests Periodically check all interlock and limit switches by manually tripping them during burner operation to make sure they cause a system to lock out. Never operate a system that is improperly adjusted or has faulty interlocks or limit switches. Always replace faulty equipment with new equipment before resuming operation. Operating a system with defective safety equipment can cause explosions, injuries, and property damage. Maintenance WARNING CAUTION High voltage, turn off power before disconnecting or installing sensors or controls. All burner systems must be maintained to ensure their safe operation. The operator of this equipment must be trained in safe operating procedures. The owner and operator must set a regularly scheduled maintenance interval based on recommendations from the equipment manufacturers, environmental conditions, and their own operational history. System Checks Periodically test the sensors as described in the Test Procedure section. Sensor Lens Clean the glass lens regularly with a soft, damp cloth. The presence of foreign material will measurably reduce the flame signal strength. Rotation To ensure operability of stored items and to reduce the possibility of extended down-time, periodically swap spare sensors and control units with active ones. 4 Eclipse 90 UV, V1, Instruction Manual 85, 10/14/010

Dimensions in inches (mm) Optional Insulated Coupling 1/" Int. NPT Bushing 0.38 (9.53) MIN Full Threads 18 AWG Wires () 1/-14 NPSL Thread.50 (63.5) 1/-14 NPT Thread Ø1.13 (8.6) 0.75 (19.0) Sq. 3.63 (9.0).75 (70.0) 0.47 (11.9) 10 (3050) Eclipse 90 UV, V1, Instruction Manual 85, 10/14/010 5

Offered By: Power Equipment Company 011 Williamsburg Road Richmond, Virginia 331 Phone (804) 36-3800 Fax (804) 36-388 www.peconet.com