Plant Tissue Testing. Crop Production and Soil Mangement Series FGV-00244

Similar documents
SAMPLING FOR PLANT ANALYSIS. K.A. Kelling, S.M. Combs, and J.B. Peters

MEASURE AND MANAGE. Plant Sampling and Testing Information

Soil Test Report. HOME GARDEN VEGETABLE GARDEN Analysis Results

Sunlight. Chlorophyll

Table 4. Nutrient uptake and removal by sunflower in Manitoba studies. Nutrient Uptake Removal Uptake Removal

Soil Test Report. Sample ID Client Information Susan Varlamoff. Results Mehlich I Extractant UGA Lime Buffer Capacity Method*

Nutrient Management of Irrigated Alfalfa and Timothy

Vine Nutrition. A g e n d a 4/10/2017. Soil How to sample Sample submission sheet Lab analysis & results Interpretation

Anorganic Fertilizer. Lenny Sri Nopriani, SP.MP

Using Fertilizers: Feeding plants. Lydia Clayton UAF Cooperative Extension Service Kenai Peninsula District

Fertilizers and nutrient management for hops. Diane Brown, Michigan State University Extension

Soils. Nutrients needed by plants 10/21/2013. Consists of a series of layers called. Soils consists of: Topsoil (A horizon) upper most layer

8. Fertility Management

G A Gardener's Guide for Soil and Nutrient Management in Growing Vegetables

STOLLER ENTERPRISES, INC. World leader in crop nutrition Potato Production Challenge - Page 1 of 9

Fertilizers. TheBasics. Whats in a Fertilizer? Why use Fertilizer? Nitrogen (N) Nitrogen (N) Its on the Label! Other sources of Nitrogen

Home and Market Garden Fertilization

OSU. Fertility aspects of green pea production

Title: Lecture 16 Soil Water and Nutrients Speaker: Teresa Koenig Created by: Teresa Koenig, Kim Kidwell. online.wsu.edu

Growing Vegetables in Containers

Soil and Plant Basics 2016 EKS Grazing School September 20, 2016

Developing Fertilizer Programs for Fruit Crops Utilizing Soil and Tissue Analysis Soil analysis

Nutrient Management for Tree Fruit. Mary Concklin Visiting Extension Educator Fruit Production and IPM University of Connecticut

Pruning Grapes. Establishment pruning Pruning mature vines Goal: to fill the trellis system as quickly as possible.

Fundamentals of Vine Management (vine training, trellis, planting, early vine training, nutrition, canopy management & crop management)

Crop Nutrition and Fertilizer Requirements

Soil Sampling FGV-00044

The Effects of Soil Acidity on Phosphorus Uptake. by Vegetable Crops in Hestern Oregon- W. A. Sheets,-

Plant Tissue Sampling Procedure

Monitoring Nutrition for Crops

SOIL SAMPLING AND ANALYSIS

Assessing and Amending Your Garden Soil Craig Cogger, Soil Scientist Emeritus Washington State University Puyallup

Apply approx 50-65g per square metre. Available in pack sizes: 1kg, 2kg and 5kg. Apply 100g per square metre, each spring. Water in well.

#3: Fertilize Appropriately

How to Read a Soil Test Report: Step by Step

Making Sense of Soil Tests

Getting Started with Your Vegetable Garden

Soluble Fertilisers 30.0% 29.0% - 1.0%

Plant Tissue Testing as a Guide to Side-Dressing Sugar Beets 1

Soils and plant nutrients

Inherent Factors Affecting Soil ph. Soil ph Management

Green Works International BV T: +31 (0) Witte Paal 341 F: +31 (0) LE Schagen E:

KEEP OUT OF REACH OF CHILDREN KEEP FROM FREEZING

Vineyard Establishment (vine training, trellis, planting, early vine training, nutrition, & canopy management)

Effect of Max-In Technology on Roundup Power Max Performance on Sugarbeet and Weeds at Mitchell, Nebraska during the 2009 Growing Season.

TISSUE ANALYSIS. Elmer G. Terrell I/ New York Conservation Department

Soil: We Can t Grow without it!

ACTIVITY 2 How Does Your Garden Grow?

Class 3: Soil Sampling and Testing. Chris Thoreau

Basics of Plant Growth in Greenhouses: Temperature, Light, Moisture, Growing Media, etc.

Nutrient Considerations for Olives

LAQUA Twin Nitrate NO 3 Meter SUPPLEMENT MANUAL

Full Disclosure, I create and sell Sumo Cakes Bonsai Fertilizer Basics

TOPICS TO COVER. Turfgrass Types Seeding Fertilizer Lawn Care Lawn Pests & Problems

FERTILITY MANAGEMENT FOR TOMATOES AND PEPPERS

Bed preparation and Seedplug Transplanting Vegetable Master Grower Program 14 th Feb 2014

Workgroup. UCD Alfalfa. Utilizing Plant Tissue Testing & Application Methods to Maximize Fertilizer Efficiency

Fertility Considerations for Sod Production 1

Effect of Method of Application of Double Superphosphate on the Yield and Phosphorus Uptake by Sugar Beets 1

The goal of cranberry fertilization, as for any

General concept of fertilizer efficiency

Unit D: Fruit and Vegetable Crop Production. Lesson 1: Planning and Preparing a Vegetable Garden Site

How your rose bush makes food

Sandy, low CEC, irrigated soil Acidic ph High ph Cold soils Soil low in P content or available P

Brian Arnall Oklahoma State Univ. Dept. Plant and Soil Science

New Planting. A&L Canada Laboratories Small Fruit News Letter Vol. 3 April 17, application should be at a 90 o direction to the row direction.

Soil test recommendations

REQUIREMENTS FOR SUCCESSFUL ALFALFA ESTABLISHMENT

Inherent Factors Affecting Soil ph. Soil ph Management

How to Fertilize Smart

Nutrient Management And Nutrient Cycling Raymond C. Ward, President Ward Laboratories, Inc Kearney, NE

Fertilizing Grass for Hay and Pasture

Central Florida Youth

Abiotic Diseases of Dry Beans

Soils of Palau. Diversity and Fertility. Palau Livestock Management Workshop March 23-25, Jonathan Deenik, PhD University of Hawaii

WOODY AND TURF MANAGEMENT Lesson 14: FERTILIZERS

Understanding Your Virginia Soil Test Report

Tobacco Fertilization. Andy Bailey

Effects of Phosphorus and Calcium on Tuber Set, Yield, and Quality in Goldrush Potato

A Beginner s Guide to Vegetable Gardening in Kentucky Plans and Preparations

High Tunnel Primocane Fruiting Blackberry Production in Cold Region of Midwest*

Hybrid Seed Carrot. (Central Oregon) J. Hart and M. Butler. Yield, growth, and nutrient accumulation. NUTRIENT MANAGEMENT EM 8879-E November 2004

PASTURE AND HAY FIELDS: SOIL FUNDAMENTALS. Sanders County April 8, Clain Jones

Alaska Master Gardener Online Course Syllabus

Peony Care newsletter: March

Potassium Thiosulfate Fertilizer

Virginia Cooperative Extension- York County

LEAF & SOIL SAMPLING AND ANALYSIS TO ADJUST CITRUS FERTILIZER PROGRAMS. Mongi Zekri

CHECKLIST NUTRIENT MANAGEMENT

HUMACROPS.

Soil. The Foundation of the Garden

Getting the Most out of Your Strawberry Soil Test Report. General Information

Understanding Fertilizers

Recommended Resources: The following resources may be useful in teaching this

Soils and Fertilizers. Leo Espinoza Soils Specialist

Irrigation and Fertilization. Mary M. Peet North Carolina State University

1. Which is a light-weight inorganic mica mineral capable of absorbing a large amount of water in growing media? A. B. C. D.

Fertigation. There are four fundamental components for success with fertigation: 1) Do not irrigate longer than 1 hour at a time.

Professors on. Academics discuss everything from testing to frequency and formulations

POTATO VARIETY RESPONSE TO PHOSPHORUS FERTILIZER

Transcription:

Crop Production and Soil Mangement Series FGV-00244 Plant Tissue Testing UNIVERSITY UNIVERSITY OF OF ALASKA ALASKA FAIRBANKS FAIRBANKS Soil testing can provide an estimate of plant nutrient availability in a soil. However, soil testing cannot predict the quantity of nutrients a plant or crop will actually use because many factors other than soil fertility levels are involved in plant nutrition. Only through plant tissue analysis can we assess the plant s nutritional status and determine how well the soil is supplying the plant s nutritional requirements. Plant tissue analysis cannot replace a good soil testing program; however, plant tissue analysis can provide additional information on plant nutrient status not obtained from soil analysis. In theory, plant tissue testing is quite simple. Plant samples from a field are collected and the nutrient levels determined after the plant tissue has been digested or extracted in a solution. Generally, only those plant portions growing above ground are sampled, although underground parts are sometimes sampled. Frequently, only specific plant parts (leaves or petioles, for example) are sampled. After nutrient levels are measured, the plant s nutritional status can be determined by comparing the measured levels with standard levels that have been previously determined through field research. Alternatively, when a field contains both healthy and unhealthy plants, samples can be taken from both and a comparison of nutritional levels can be made. Nutritional problems frequently can be identified by this process. In reality, there are a number of factors that make plant tissue testing far more complicated than suggested. Plant nutrient concentrations are affected by plant age, plant part and sometimes by variety even in a healthy plant. These influences must be taken into consideration. As a plant ages, the proportions of the various types of structures change. Young plants are very succulent, with a high proportion of water in the tissues. When the plant gets older, water content decreases, the proportion of cell walls increases and the plant may become woody. The different plant structures vary in plant nutrient content. Concentrations of some nutrients (N, P, K, Cu, Zn) tend to decrease as plants age, while the concentrations of others (Ca and Mn) often increase. Unfortunately, the rates in which these tissues change are difficult to quantify. Therefore, it is extremely important to know the plant s growth stage (or age) when sampled if the composition is to be compared to standardized levels. There are commonly recommended growth stages for sampling and standard nutrient stages. Samples taken from plants at different growth stages are not easily evaluated. Just as plants of various ages differ in nutrient content, different plant parts may contain varying levels of plant nutrients. For example, the wood and the leaves of a tree contain very different nutrient levels. Similarly, stems, leaves, roots and fruits of non-woody plants may have distinct nutrient concentrations. Therefore, it is critical when taking a plant tissue sample that the plant structure collected is the one for which standard values are known. In small plants, the whole above-ground portion of the plant is usually sampled. In older plants, the most common sampling method is to collect the youngest fully expanded (grown to its full size) leaf, or to take the petioles (leaf stems) associated with those leaves. For plants requiring leaf sampling, the petiole is usually not included. Petioles are often used for sampling water-soluble (nitrate and phosphate) rather than total nutrients because

the petiole is the conducting tissue where nutrients travel from the stem to the leaf. The recommended plant part for sampling should be determined for each specific plant (see Table 1.) If a field contains both healthy and unhealthy plants, these sampling guidelines are less critical. One can remove a sample from both healthy and unhealthy plants, making sure that the same plant part is taken in both. The healthy plant can be used as the standard value to compare against the unhealthy plant. This type of comparison may be less ideal than it appears because the physiological age of the two plant groups differ. It is not uncommon for an unhealthy plant to mature at a different rate than a healthy one. For example, an unhealthy plant may bloom much earlier than its healthy counterpart. Therefore, although two plants may have been planted at the same time in the same field, their physiological age, or stage of development, may not be the same. This can make direct comparison difficult. It is helpful if soil samples are collected from healthy and unhealthy areas when tissue samples are collected. Plant tissue samples should be taken from plants representative of the sampling area. Dead or damaged plants, those with insect or disease problems, those at the end of rows or in edge rows, or plants that differ significantly from those in the rest of the planting should not be sampled. Plants that have been recently sprayed with foliar fertilizers should be avoided. It is important that at least the recommended number of plants is sampled to ensure that a representative sample is obtained. If the recommended sample size is 25 mature leaves, all leaves should be taken from separate plants. In addition, the sampled plants should be randomly selected from a field, not concentrated in one area. Try to sample clean leaves. Plants analyzed for iron or aluminum should first be washed quickly in a mild (2 percent) detergent solution. Fresh tissue samples must be dried rapidly at 150 to 175 F until all water is removed (a kitchen oven on the warm setting will suffice). Drying at higher temperatures may destroy plant tissues; drying at lower temperatures will not stop biological activity. Tissue samples will dry best in open containers, cloth bags or opened paper bags. Samples should be dried immediately following sampling. If this is not possible, samples may be refrigerated for short periods of time prior to drying. Tissue samples are ground to powder in the laboratory, then put into a liquid form for analysis. One of several methods may be used. Often plant tissues are digested in acid solutions. The tissue may be directly digested in boiling acid or it may be ashed in a furnace prior to acid digestion. Sometimes soluble nutrients are extracted from plant tissue in water or in salt or dilute acid solutions. Selection of appropriate methodology depends on the specific analysis to be conducted. Results from analyses are most frequently compared directly to previously determined standard values. Standards are established for nutrient concentration ranges adequate for healthy plant growth; these are called sufficiency ranges. By comparing the results of a plant tissue analysis with these standards, the nutritional status of the test crop can be established. Sufficient nutrient concentration ranges for most crops grown in Alaska are presented in Table 2. In some cases, the levels of soluble nutrients in petiole tissues provide more sensitive parameters for nutritional diagnoses than leaf analyses. Diagnostic values for petiole nutrient levels are given in Table 3. 2

Table 1. Recommended plant part and growth stage for selected crop plants. Number of Crop Plants Sampled Plant Part Stage of Growth Alfalfa 12 Top 6 inches Prior to bloom Barley 25 Whole top 1 Emergence of head from boot Beets 20 Most recently mature leaf 2 At maturity Bluegrass Clippings 4 6 weeks after last cut Broccoli 12 Most recently mature leaf At heading Bromegrass 25 First mature stem w/leaves At maturity Brussels sprouts 12 Most recently mature leaf At maturity Cabbage 15 Whole tops 2 6 weeks old Cabbage 12 Wrapper leaf 2 3 months old Canola 20 First fully mature leaves At flowering Carrot 15 Most recently mature leaf Mid-season Carrot 15 Oldest leaf At maturity Cauliflower 12 Most recently mature leaf At heading Celery 12 Most recently mature leaf Half-grown Chinese cabbage 12 First fully developed leaf 8-leaf stage Chinese cabbage 12 First fully developed leaf At maturity Clover, red 15 Whole top Prior to bloom Clover, alsike 20 Whole top At first flower Clover, white 50 Leaves Prior to bloom Romaine lettuce 12 Wrapper leaf At maturity Head lettuce 12 Wrapper leaf Heads half-size Oats 25 Whole top Emergence of head from boot Potato 25 Most recently mature leaf Plant 12 inches tall Potato 25 Most recently mature leaf Tubers half-grown Raspberry 50 Most recently mature whole leaves Flower bud start Strawberry 25 Most recently mature whole leaves At flowering Tall fescue 20 Clipping 5 6 weeks after last cut Timothy 25 Whole top Early bloom Turnip 12 Most recently mature leaf Mid-growth 1 Whole top is the entire above ground portion of the plant. 2 Most recently mature leaf is the youngest fully developed leaf. 3

Table 2. Nutrient sufficiency ranges for selected crop plants. 1 Nutrient Alfalfa Barley Beets Bluegrass Broccoli % Nitrogen 2.95-5.00 1.75-3.00 4.00-5.50 2.60-3.50 3.20-5.50 Phosphorus 0.24-0.70 0.20-0.50 0.25-0.50 0.28-0.40 0.30-0.75 Potassium 2.00-3.50 1.50-3.00 2.00-4.50 2.00-3.00 2.00-4.00 Calcium 1.20-3.00 0.30-1.20 2.50-3.50 1.00-2.50 Magnesium 0.16-1.00 0.15-0.50 0.30-1.00 0.40-0.48 0.23-0.75 Sulfur 0.23-0.50 0.15-0.40 0.16-0.24 0.30-0.75 ppm Boron 20-80 30-85 0-100 Copper 6-30 4.25 5-15 5-15 Iron 31-250 50-200 70-300 Manganese 21-200 18-100 50-250 25-200 Molybdenum 1.0-5.0 0.11-0.18 Zinc 20-70 20-70 15-200 35-200 Nutrient Brome Brussels Cabbage Cabbage Canola grass sprouts 2 6 wks 2 3 months % Nitrogen 2.00-3.50 2.20-5.50 3.00-5.00 3.00-5.00 2.50-4.00 Phosphorus 0.25-0.35 0.26-0.75 0.35-0.75 0.30-0.75 0.25-0.50 Potassium 2.00-3.50 2.00-4.00 3.50-6.00 3.00-5.00 1.50-2.50 Calcium 0.25-0.40 0.30-2.50 3.00-4.50 1.10-3.50 0.50-4.00 Magnesium 0.14-0.30 0.23-0.75 0.50-2.00 0.24-0.75 0.20-1.50 Sulfur 0.17-0.30 0.30-0.75 0.30-0.75 0.25-0.50 ppm Boron 10-20 30-100 25-75 25-75 30-80 Copper 5-10 5-15 5-15 5-15 2.7-20 Iron 50-100 60-300 30-200 30-200 20-200 Manganese 40-80 25-200 50-200 25-200 15-100 Molybdenum 0.25-1.00 0.4-0.7 Zinc 20-50 25-200 25-200 20-200 15-70 Nutrient Carrots Carrots Cauliflower Celery Chinese mid-season mature Cabbage % Nitrogen 1.80-3.50 3.00-3.50 3.00-4.50 2.50-3.50 4.50-5.50 Phosphorus 0.20-0.50 0.20-0.40 0.33-0.80 0.30-0.50 0.50-0.60 Potassium 2.00-4.30 2.90-3.50 2.60-4.20 4.00-7.00 7.50-9.00 Calcium 1.40-3.00 1.00-2.00 0.70-3.50 0.60-3.00 3.00-5.50 Magnesium 0.30-0.53 0.25-0.60 0.24-0.50 0.20-0.50 0.35-0.50 ppm Boron 29-100 30-75 30-100 30-50 23-75 Copper 4.5-15 5-15 4-15 5-8 5-25 Iron 50-300 50-300 30-200 20-40 31-200 Manganese 60-200 60-200 25-250 200-300 25-200 Molybdenum 0.5-1.5 0.5-1.4 0.5-0.8 Zinc 20-250 20-250 20-250 20-50 30-200 4

Nutrient Alsike Red White Romaine Head Clover Clover Clover Lettuce Lettuce % Nitrogen 3.00-4.50 4.5-5.0 3.50-4.50 3.50-5.00 Phosphorus 0.25-0.50 0.20-0.60 0.36-0.45 0.45-0.80 0.40-0.60 Potassium 1.50-3.00 2.20-3.00 2.00-2.50 5.50-6.20 6.00-9.60 Calcium 1.00-1.80 2.00-2.60 0.50-1.00 2.00-2.80 1.40-2.25 Magnesium 0.30-0.60 0.21-0.60 0.20-0.30 0.60-0.80 0.36-0.70 Sulfur 0.26-0.30 0.25-0.50 ppm Boron 15-50 30-80 25-50 25-60 23-50 Copper 3-15 8-15 5-8 5-25 7-25 Iron 50-100 30-250 25-100 40-100 50-175 Manganese 40-100 30-120 25-100 11-250 20-250 Molybdenum 0.50-1.00 0.15-0.25 Zinc 15-80 18-80 15-25 20-250 25-250 Nutrient Oats Potatoes Potatoes Raspberry 12-in. plants tubers 1 2 grown plants % Nitrogen 2.00-3.00 4.50-6.50 3.00-4.00 2.20-4.00 Phosphorus 0.20-0.50 0.29-0.50 0.25-0.40 0.30-0.50 Potassium 1.50-3.00 2.40-3.90 3.20-4.10 1.40-3.00 Calcium 0.20-0.50 0.76-1.00 1.50-2.50 0.80-1.50 Magnesium 0.15-0.50 0.36-0.49 0.49-0.54 >0.30 Sulfur 0.15-0.40 ppm Boron 25-50 40-70 25-75 Copper 5-25 7-20 7-20 3-50 Iron 40-150 50-100 40-100 Manganese 22-100 30-250 30-250 30-250 Molybdenum 0.2-0.3 Zinc 15-70 45-250 30-200 25-100 Nutrient Strawberry plants Tall Fescue Timothy Turnips % Nitrogen 2.50-4.00 3.20-3.80 0.53-1.68 3.50-5.00 Phosphorus 0.21-1.00 0.34-0.45 0.11-0.18 0.33-0.60 Potassium 1.30-3.00 2.80-4.00 1.14-1.70 3.50-5.00 Calcium 1.00-2.50 0.09-0.35 1.50-4.00 Magnesium 0.25-1.00 0.06-0.25 0.30-1.00 Sulfur >0.15 ppm Boron 23-50 1-10 30-100 Copper 6-50 7-45 6-25 Iron 50-200 22-54 40-300 Manganese 70-200 11-35 40-250 Zinc 20-200 24-62 20-250 1 Standard values are for plant parts and growth stages specified in Table 1. 5

Table 3. Sufficiency levels for nitrate, phosphate, and potassium in petioles and leaf midribs of selected crop plants. Crop Stage of Plant part Nitrate- Phosphate- Potassium Growth N (ppm) P (ppm) (%) Broccoli Mid-growth Midrib of YML 1 >9000 >4000 >5.0 First buds >7000 >4000 >4.0 Brussels Mid-growth >9000 >3500 >5.0 sprouts Late growth Midrib of YML >7000 >3000 >4.0 Chinese Heading Midrib of >9000 >3500 >4.0 Cabbage wrapper leaf Carrot Mid-growth Petiole of YML >10000 >4000 >6.0 Cauliflower Head forming Midrib of YML >9000 >5000 >4.0 Celery Mid-growth Petiole of YML >9000 >5000 >6.0 Near mature >6000 >3000 >5.0 Head Heading Midrib of >8000 >4000 >4.0 Lettuce Harvest wrapper leaf >6000 >2500 >2.5 Potato Early-season Petiole of fourth >19000 >2000 >12.0 Mid-season leaf from the >15000 >1600 >9.0 Late season growing tip >8000 >1000 >6.0 1 YML - youngest mature (fully expanded) leaf. Nutritional diagnoses can give important information about the condition of a crop; however in the case of an annual crop, it may be too late to effectively remedy nutritional problems. Nevertheless, even when irreparable damage has been done, diagnostic nutritional information can be extremely valuable. If tissue analyses reveal shortages of nutrients routinely applied in a fertilization program (nitrogen, phosphorus or potassium), this may be an indication that the fertilization regime being used is inadequate for that crop. The next time the crop is grown at that location, fertilizer application rates should be adjusted. If tissue analyses reveal shortages of secondary or micronutrients, soil test information should be consulted and consideration should be given to various means of correcting the problem before the field is planted again. When dealing with perennial crops, adjusting fertilization practices can be made at almost any time. Action taken late in the season may not improve that season s yield, but performance in subsequent years should be enhanced. Information from plant tissue tests cannot replace that from soil tests; the two practices provide complementary data. By combining information from the two sources, one gets a clearer picture of the ability of a soil to provide adequate nutrition and of the crop to use nutrients. Both should be considered integral parts of a complete nutrient monitoring program. 6

References The information contained in Tables 1-3 was derived from the following publications: Dow, A.I. 1980. Critical nutrient ranges in Northwest crops. Western Regional Extension Publication No. 43. Evanylo, G.K. and G.W. Zehnder. 1988. Potato growth and nutrient diagnosis as affected by systemic pesticide growth stage. Communications in Soil Science and Plant Analysis 19:1731-1745. Gardner, B.R. and J.P. Jones. 1975. Petiole analysis and the nitrogen fertilization of Russet Burbank potatoes. American Potato Journal 52:195-200. Geraldson, C.M. and K.B. Tyler. 1990. Plant analysis as an aid to fertilizing vegetables. In Soil Testing and Plant Analysis, ed. R.L. Westerman. Madison, WI: Soil Science Society of America. Jones, J.B. Jr., B. Wolf, and H.A. Mills. 1991. Plant Analysis Handbook. Athens, GA: Micro-Macro Publishing, Inc. Kelling, K.A. and J.E. Matocha. 1990. Plant analysis as an aid to fertilizing forage crops. In Soil Testing and Plant Analysis, ed. R.L. Westerman. Madison, WI: Soil Science Society of America. Sanchez, C.A., H.W. Burdine, and V.L. Guzman. 1989. Soil testing and plant analysis as guides for the fertilization of celery on histosols. Soil and Crop Science Society of Florida Proc. 49:69-72. Sanchez, C.A., G.H. Synder, and H.W. Burdine. 1991. DRIS evaluation of the nutritional status of crisphead lettuce. HortScience 23:274-276. Walworth, J.L., R.G. Gavlak, and J.E. Muniz. 1990. Effects of potassium source and secondary nutrients on potato yield and quality in Southcentral Alaska. University of Alaska Fairbanks, Agricultural and Forestry Experiment Station, Research Progress Report No. 18. Westfall, D.G., D.A. Whitney, and D.M. Brandon. 1990. Plant analysis as an aid in fertilizing small grains. In Soil Testing and Plant Analysis, ed. R.L. Westerman. Madison, WI: Soil Science Society of America. Williams, C.M.J. and N.A. Maier. 1990. Determination of the nitrogen status of irrigated potato crops. I. Critical nutrient ranges for nitrate-nitrogen in petioles. Journal of Plant Nutrition 13:971-984. Kleinkopf, G.E. and D.T. Westermann. 1982. Scheduling nitrogen applications for Russet Burbank potatoes. University of Idaho Current Information Series No. 367. MacKay, D.C., J.M. Carefoot, and T. Entz. 1987. Evaluation of the DRIS procedure for assessing the nutritional status of potato (Solanum tuberosum L.). Communications in Soil Science and Plant Analysis 18:1331-1353. Redshaw, E.S. 1990. Plant tissue testing. Agri-fax, Alberta Agriculture. Agdex 100/08-1. 7

www.uaf.edu/ces or 1-877-520-5211 Steven Seefeldt, Extension Faculty, Agriculture and Horticulture. This publication was originally prepared by James L. Walworth, former Soil Scientist, University of Alaska Agriculture and Forestry Experiment Station, Palmer. Published by the University of Alaska Fairbanks Cooperative Extension Service in cooperation with the United States Department of Agriculture. The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution. 2016 University of Alaska Fairbanks. 3-92/JW/11-16 Reviewed June 2015