Explosion prevention and explosion protection according to ATEX guidelines. Safe extraction and separation of explosive dust

Similar documents
Explosion prevention and explosion protection according to ATEX guidelines. Safe extraction and separation of explosive dust

TR-1 single separator for MQL and dry processes. Explosive dusts from dry processes or MQL extracted directly at the machine and separated safely

CLEACOM Engineered System Solutions. Established 24/7 technology for the separation of dust and fume during compounding processes

VARIO eco Dust Collector. For the highly effective, energy efficient collection of dust from industrial processes. Standard for clean air

NEW ENGINEERING GUIDELINE (VDI 2263 PART 7) ON DUST FIRES AND EXPLOSIONS PROTECTION IN SPRAY DRYING AND INTEGRATED EQUIPMENT

(Notices) NOTICES FROM EUROPEAN UNION INSTITUTIONS, BODIES, OFFICES AND AGENCIES EUROPEAN COMMISSION

A Global Leader in Explosion Protection

(Notices) NOTICES FROM EUROPEAN UNION INSTITUTIONS, BODIES, OFFICES AND AGENCIES EUROPEAN COMMISSION

Aluminum Dust Management in a Metallizing Facility

(Publication of titles and references of harmonised standards under Union harmonisation legislation) (Text with EEA relevance) (2015/C 335/02)

(Publication of titles and references of harmonised standards under Union harmonisation legislation) (Text with EEA relevance) (2016/C 126/02)

DUST EXPLOSION CODES AND STANDARDS: Ensuring Regional Compliance and Global Consistency

EXPLOSION PROTECTION MAES SAFETY PRODUCTS & SERVICES

Seat Ventilation offers an extensive range of ATEX certified products and is undertaking great efforts to extend this range even further.

INTRODUCTION TO DUSTS AND THEIR EXPLOSIVE PROPERTIES

Protecting Critical Facilities Against Explosions

(Publication of titles and references of harmonised standards under Union harmonisation legislation) (Text with EEA relevance) (2018/C 092/02)

Combustible Dust Issues

PRIMATECH WHITE PAPER PROCEDURE FOR DUST HAZARD ANALYSIS (DHA)

Combustible Dust Hazards- Awareness

Industrial Explosion Suppression Technology

Combustible Dust Booklet

ATEX, NOMENCLATURE AND CODING

Implementation of ATEX Guidelines

Combustible Dust Awareness. David McEwan Business Line Manager Configured Products

COMBUSTIBLE DUST SAFETY PROGRAM

Dust Explosions. by Clive de Salis. Telephone: +44 (0)

Protecting Facilities Against Explosions. Since 1956

Overview of Hazardous Locations as They Relate to Solenoid Valves

DUST COLLECTION TRAINING. Revision 2013

Fire Prevention Plan

Understanding. Combustible Dust Hazards: Basic Measures to Ensure the Safety of Combustible Dust Handling Operations

C 319/6 Official Journal of the European Union

RE: USE OF FIREPRO IN POTENTIALLY EXPLOSIVE ATMOSPHERES

Explosion-protected actuator Page 259 of 292

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Before proceeding with the selection process, let s briefly look at the various explosion protection options:

Fire Prevention Plan

There are always options in the management of explosion risks!

ATEX, NOMENCLATURE AND CODING

Guidelines for Market Surveillance of Equipment for Explosive Environments (Hazardous Locations)

Dust Explosion Hazard Overview

Industrial Dust Explosions Causes & Case Studies. Presented by Geof Brazier at Expocorma, Concepcion, Chile 10th November 2017

EtherCAT Box Modules (EPxxxx-xxxx)

Conducting a NFPA 652 Dust Hazard Analysis (DHA): Practical Tips & Approaches

FlexFilter EX A state of the art filter system to meet your current and future needs

Drive Technology \ Drive Automation \ System Integration \ Services * _0817* Inquiry Forms for Explosion-Proof Gearmotors

With CV Technology products and care, you ll be better protected from dust explosions.

Implementing a Combustible Dust Program. Presented by: Nick Miedema Amway EH&S For: Michigan Safety Conference

Solutions. Fire risk under control in welding fume extraction systems

Company Introduction. LET Meschede GmbH Auf m Brinke Meschede / Germany

ATEX Directive Filtering Separators

REGULATIONS EUROPEAN ATEX DIRECTIVE. INTERNATIONAL SCHEME: IECEx AREAS CLASSIFICATION DEFINED BY DIRECTIVE 1999/92/EC

Keller USA, Inc. Filtration of emissions. Capturing & extraction of process emissions. Return of clean air

EQUIPMENT INTENDED FOR USE IN POTENTIALLY EXPLOSIVE ATMOSPHERES (ATEX)

Official Journal of the European Union

AD.3.XG... Atex directive ch. I Page 22 Atex classification ch. I Page 23. Tab.1 Assembly ch. I Page 25

Industrial Dust Aspiration Solutions. For optimal protection of plant and environment.

INTERNATIONAL STANDARD

Fire is No Accident Fire is No Accident It can be prevented.

POSITION PAPER ON WATER MIST FOR FIRE FIGHTING APPLICATIONS

Products Solutions Services CT287. Hazardous Area Classifications and Protection Systems

Savard Labor & Marine Staffing, Inc. Fire Prevention Program Rev3/14

GEAPS Great Lakes Regional Conference 2017 Explosion Protection Overview & Market Drivers. April 6, 2017

Combustible Dust Resources OVERVIEW OF COMBUSTIBLE DUST. What is Combustible Dust? Where are Combustible Dusts found?

[ TECHNOLOGY ] and does this definition affect a burner.

ATEX Vacuum Pumps in Accordance with the Directive 94/9/EG (ATEX 95) Technical Information

ORIGA-SENSOFLEX Displacement Measuring System for Cylinder Series OSP-P

HazLoc Essential Guides:

Property risk solutions

IECEx Certification of Dust Collection System Assembly. IECEx 2018 International Conference Split, Croatia 23 rd April 2018

ATEX 137. What it means for motor users

Hazardous Areas - EXPLOSIONPROOF SOLENOIDS

NON ELECTRICAL EQUIPMENT IN HAZARDOUS AREAS

Prevention of Fires and Explosions in Wood Pellet Facilities. Allen Wagoner, FLAMEX, Inc.

Official Journal of the European Union

Dual certification! Air handling units for potentially explosive atmospheres

DuPont Formacel Z-2. Safety and Handling of DuPont Formacel Z-2: Thermoplastic* Foam Extrusion Applications FOAM EXPANSION AGENT TECHNICAL INFORMATION

The element is closed at one end and open at the other, and it s bolted onto the explosion vent opening on the equipment so that its open end overlaps

HazLoc Essential Guides:

LET S PLAY IT SAFE. robecco secure center (RSC) G.A.S. inert control (RIC) dust control (RDC) silo automation (RSA)

Beamex. Calibration White Paper. Calibration in hazardous areas

DSEAR - Requirements

AUTOMATIC FIRE SUPPRESSION SYSTEMS

Identifying and Preventing Dust Fire and Explosion Hazards

Safe installations are also cost effective installations

Ex Products Highest level of safety under the most difficult conditions

This policy applies to all Hot Work jobs performed on the Calhoun mill property by AbitibiAbitibiBowater employees.

White Paper EXPLOSION PROTECTION EXPLOSION PROTECTION SOLUTIONS FOR SANITARY HYGIENIC APPLICATIONS IN THE FOOD & PHARMACEUTICAL INDUSTRY

Fire Safety. Version 1.0

Operating instructions

EUROPEAN DIRECTIVES Explosive atmospheres ATEX 2014/34/EU

WHAT WHITE PAPER IS POTENTIALLY EXPLOSIVE ATMOSPHERE CERTIFICATION AND WHY YOU. June 2010

Passive fire protection. 6 Passive fire protection. 6.1 Fire compartmentation. Passive fire protection

1. Introduction Legal Basis Approach to the risk assessment Zone classification Product data, summary and meaning...

A guide to the use of electrical equipment in potentially explosive atmospheres To view this document in PDF format click here.

HAZARDOUS AREA CLASSIFICATION AND SELECTION OF EQUIPMENT FOR SAFE USE THEREIN FROM AN ELECTRICAL VIEWPOINT

Combustible Dust with FR Clothing June Service Experience Trust Quality Flexibility

User manual. Explosion-safe window air conditioning system Type series AR-054. II 3 G Ex ic nac h IIC T3 Gc

Aspects regarding assessment of protection by control of ignition sources at belt conveyors for bulk materials

Transcription:

Explosion prevention and explosion protection according to ATEX guidelines Safe extraction and separation of explosive dust Metallic dust Organic dust Paint and spray dust Comprehensive information concerning "Explosion prevention and explosion protection according to ATEX guidelines" can be found on our website www.exschutz.net

Extracted dust may create dust explosions A precondition for a dust explosion is an explosive environment A dust explosion does not occur by chance. Reactive substances with suitable mixing ratios will create a potentially explosive situation. Metallic, organic or paint and spray dusts can create an explosive combination in the presence of oxygen. A criterion for a dust explosion is dispersed dust consisting of a mix of dust particles of various sizes plus gas molecules. The differences in density generate a continuous circulation that creates a homogeneous mixture. As soon as a specific dust density is attained below certain particulate dimensions, an explosive environment is produced. However, in general, explosion limits are not limited just to a certain particle size of combustible dusts. Explosion limits (LEL, lower explosion limit) can only be detected by performing specific tests. Combustible dust Dispersion of dust (during the cleaning process) Oxygen (environmental) Ignition source Enclosure (filter housing) Dust explosions only occur under certain conditions. Organic and metallic dusts are prone to explosion Organic dusts Such as CFC, GRP, GMPU, including carbon, powder, cocoa, starches, lumber, fibers, feedstuff, as well as paint and spray dusts. Dusts from the treatment and processing of these products and substances are flammable and are assigned to dust explosion class St 1. Metallic dusts Typically, metallic dusts are minerals such as magnesium, aluminum and fine blasting dust such as steel. With a particularly small particle size (e.g., dust) even substances that are not normally combustible in solid form, can suddenly ignite. The very large surface area of metallic dust particles generates heat quickly and presents an explosion hazard. No ignition source no dust explosion A potentially explosive situation does not necessarily produce a reaction! To initiate an explosion, there must be an ignition source. This also includes the ability to self-ignite (automatic combustion). Combustible dust Dispersed dust (during the cleaning process) Oxygen (environmental) Ignition source Enclosure (filter housing) The Filter cleaning can lead to an explosive environment The risk of an explosion exists particularly during filter cleaning in a dry dust separator. An explosion can occur upon the precisely timed entry of an ignition source into the filter area. However, dry separation systems are obviously still a superior economic solution for many processes in the separation of emissions. To benefit from this advantage safely, mechanical and procedural precautions should be taken to prevent the entry of an ignition source into the filter area or to control the effects of a potential explosion. 2

Explosion protection according to EU guidelines ATEX 137 (operator guideline) defines the operator's responsibility Explosion protection guideline 1999/92/ EC (ATEX 137) contains basic safety requirements concerning hazards from "explosive atmospheres". Occupational safety is an important subject. However, the operator cannot always recognize potential explosion hazards and the corresponding need for action. Keller offers detailed recommendations. Although this topic does not always raise the necessary awareness, in the event of damage, the operator must provide a corresponding explosion protection document as proof. Dust sample provides confirming data A dust sample can provide verification of explosive potential and detect the existence of explosive parameters. If necessary, Keller offers to perform such tests as part of a service package at a fixed cost. (www.exschutz.net) Examples of explosion parameters: Explosion pressure and explosion severity The maximum explosion pressure pmax is influenced by the housing. The rapid pressure increase dp/dt reflects the potential severity of an explosion. It is defined as the primary origin in the deviation point of the pressure/time curve and used as parameter Kst-value for classification into dust explosion classes St 1, St 2 and St 3. Pressure curve of a dust explosion in 1 m 2 ball pressure tank. Dust explosion classifications The dust explosion classes are the basis for designing constructive protection measures in addition to the maximum explosion pressure pmax. Dust explosion class K St [bar m/s] St 1 0 200 St 2 201 300 Testing parameters to determine the Kstvalue and p max are defined in directives VDI 2263 sheet 1 guidelines, and EN 14034. St 3 > 300 3

Explosion parameters for evaluating risk of explosion Explosion parameters The opposite explosion parameters are examples from previously completed projects. An in-depth overview is provided in the GESTIS-DUST-EX database. The tolerances are basically relatively high (+/- 20 %). A distinction between K St 180 and K St 200, for example, is generally not useful. Type of dust p max [bar] K St [bar m/s] PVC 8,5 98 Polyethylene 8,8 131 Coal dust 8,2 135 Tin-Copperdust 4,5 80 Polyethylene dust < 8 < 100 Stitching and milling dust Plastics 7 113 Rubber milling dust 8,4 160 Aluminum milling dust 8,5 160 Paint overspray 8,2 162 Aluminum dust with aerosols from MQL 9 165 Fabric fibers (laminate residues) < 10 < 200 Zinc dust 9,5 250 Explosion protection document The operator is obligated to create an explosion protection document to determine suitable protective measures. The explosion protection document must be recorded and must include at least the following points: Probability and duration of the presence of explosive conditions. The explosion endangered areas will be classified into zones Probability of the existence, initiation and prevalence of ignition sources (including electrostatic discharges) Extent and effect of an explosion (explosion parameters) Mandatory actions to be taken for a potential explosion hazard Following clarification of the explosion risk, detection of explosive dust parameters such as ignition temperature, minimum ignition energy (MIE), lower explosion limit (LEL), K St value... the company is required to take steps according to ATEX 137. Critical safety measures: Zone division depending on the explosion risk Labelling hazardous areas Determine which protective actions to implement Operating instructions for employees Creating an explosion prevention document containing all available data and effective procedures The ATEX guideline is implemented nationally by Industrial Safety Regulation BetrSichV. The following regulations are mandatory: DGUV standard 113-001 (former BGR 104) TRBS 2152 / TRGS 720 TRBS 2152-1 / TRGS 721 TRBS 2152-2 / TRGS 722 TRBS 2153 / TRGS 727 4

Machinery Guideline and ATEX 114 Machinery Guideline 2006/42/EC Appendix 1, point 1.5.7. of the general machinery guideline: "Machinery must be designed and constructed in such a manner as to avoid any risk of explosion posed by the machinery itself or by gases, liquids, dust, fumes or other substances produced or used by the machinery." Download link for the application: http://www.exschutz.net/images/ machinery_guide.pdf ATEX 114 (product guideline) for products in explosion risk areas and applications The 2014/34/EU directive of the European Parliament and Council (generally known as ATEX 114) primarily applies to manufacturers. The guideline encompasses protective systems and all machinery and systems located in potentially explosive areas. Electrical and nonelectrical systems are also relevant since they possess their own potential ignition source. ATEX-Logo ATEX derives its name from French Atmosphère Explosive Manufacturer's obligation according to ATEX 114 Performing a risk evaluation of the product Clarification of intended use and operating conditions Classification into system categories Labelling on a printed plate EC-type evaluation by an authorized agency if an electrical system belongs to categories 1 or 2, a nonelectrical system to category 1, or if it is a matter of a protective measure. Category 1 2 3 Level of safety very high high normal Application in zone 0/1/2 20/21/22 1/2 21/22 2 22 Environment D G D G D Classification into system category 5

Coordinating between ATEX 114 and ATEX 137 Keller Lufttechnik offers experienced advice regarding this subject There is a mutual reliance between an operator's guideline and the manufacturer's guideline. It therefore necessitates the coordination of scheduled projects with essential clarifications between the operator and the system manufacturer. Keller Lufttechnik provides experienced advice ranging from the initial conception of emissions extraction while taking into consideration ATEX guidelines 114/137, to the coordination of fire protection measures, and to the possible inclusion of heat exchange facilities. We will be pleased to assist you in fulfilling all the mandatory requirements. Basic requirements for Operator (ATEX 137) Manufacturer (ATEX 114) Designating zones for a single system; selection of corresponding devices Zone 0 / 20 Zone 1 / 21 Zone 2 / 22 Compliance with applicable requirements for installation, commissioning and maintenance Performance of a risk analysis, requiring coordination Completion of an explosion protection document Continuous updating Location selection, specification of the system category/category Category 1: Category 2: Category 3: The systems must meet all requirements for occupation health and safety Performance of a ignition source analysis for the systems Completion of a declaration of conformity Adequate quality assurance Zone division according to ATEX The areas of operation must be divided into zones (ATEX 137/VDI 2263-6/ DGUV standard 113-001 (former BGR 104): Environment: Gas/mist/ fumes Concentration > = 100 % of LEL Zone 0 Concentration 50 99 % of LEL Zone 1 Concentration 20 49 % of LEL Zone 2 Environment: Dust Hazard if content is more than 50 % of the operation or continuous Zone 20 Occasional hazard if less than 50 % of the process Zone 21 No hazard during normal operation or rare and short-lived Zone 22 Classification into device categories according to ATEX 114 Device group I Includes systems for underground and surface mining Device group II Classification of all systems in remaining explosion prone areas. All the following information pertains to device group 2. Device category 1 Hazard potential: continuous, frequent or over an extended period of time Requirement: very strict safety procedures Device category 2 Hazard potential: occasional Requirement: strict safety measures Device category 3 Hazard potential: rare or short-lived Requirement: normal safety measures Range of applications according to product guidelines ATEX 114 In zone 20 use only device category 1D In zone 21, systems in device category 2D (+1D) are permissible. For zone 22, suitable device category 3D (+2D and 1D). Zone division VARIO red: Zone 20 green: green: Zone Zone 22 22 6

Explosion prevention Preventing an explosive environment Avoiding a potential explosion prevention seems to be an obvious safety measure however, it may not be suitable for all processes. Wet separation For this process, possible ignition sources are flushed with water, preventing the creation of an explosive atmosphere in the dust separator. Depending on the variety of processes, this technology is not universally applicable. Inertisation When using inertisation, the separator is supplied with inert material such as limestone powder to avoid the creation of an explosive atmosphere. The mixture ratio must ensure that the combination of inert material and explosive dust/air cannot set off an explosion in itself. The economic feasibility depends on the volume of dust created and the need for inert material. Ignition source free operation An explosion can only be set off in the presence of an ignition source (secondary explosion protection) Procedural measures This is to avoid common ignition sources such as welding, smoke and other sources of open flames. Eliminating ignition sources in the separation system Inadequate for especially ignitionsensitive dusts with MIE < 10 mj and hybrid mixtures. All components inside EX zones must be approved according to ATEX in order to be ruled out as an ignition source. If the entry of an ignition source from outside of the separation system can be prevented safely, grounding the system components is sufficient. Grounding prevents electrostatic spark discharge. Additional conductive and grounded filter elements can be installed. Combustible dust (light metals) Dispersed dust (during cleaning) Oxygen (environmental) Ignition source (glowing embers) Enclosure (filter housing) Explosion pentagon Despite an explosive environment, an explosion is impossible without an ignition source. Protection concept ProSens patented FSA-tested For dusts with MIE > 10 mj with rare ignition sources and low dust concentrations. Cleaning during system downtimes If the separation process is interrupted to clean the filter elements, no ignition sources exist. Ignition source monitoring The suction ductwork is monitored by a spark sensor. During the next scheduled filter element cleaning, the potential of an explosive situation can be thwarted by the control in case the entry of an ignition source has been detected. ProSens ignition source monitoring 7

Explosion protection Explosion protection If the above mentioned measures are inadequate to prevent an explosion and its effects, additional explosion protection methods can be installed. The standards describe the following protective measures: Explosion-proof construction Explosion pressure relief Explosion suppression Prevention of flame and explosion transfer Containment design Explosion pressure resistant Explosion pressure-surge resistant Designed for a maximum explosion pressure or a reduced maximum explosion pressure, the filter housing should withstand an explosion without any distortion. Explosion potential is rare if the system is designed according to this category, or to the maximum or reduced explosion pressure. As a general rule, basic safety measures are applied here. The housing might deform as a consequence of an explosion. Determining the pressure shock resistance to explosion Keller performed explosion tests for its filter housings at the German FSA (Research Centre for Applied System Safety and Industrial Medicine) to determine the pressure surge resistance. Depending on the application it is possible to design the housings with a pressure surge resistance of 0.2 bar or 0.4 bar excess pressure (in individual cases up to 2 bar). Testing the explosion potential of filter housing at the FSA facilities 8

Explosion protection pressure relief outdoors or to the outside Venting panels Explosion pressure relief for dust extraction systems outdoors or installed adjacent to the exterior wall of the plant. Safety range depends on the system size: 10-25 m. Effective relief surface: 0.5 m 2 Burst disk Filter unit with burst disks Reduction of the safety zone Outdoor installation: Burst channel To reduce the safety zone when using burst disks, it is possible to install burst channels, enabling burst disks to be placed vertically instead of horizontally. The flames are deflected by 90. Effective relief surface: 0.4 m 2 For indoor installation and relief through exterior wall: Targo-Vent The safety distance can be reduced by using Targo Vent for installation indoors and relief through outer wall. The funnelshaped enclosure deflects the flames by 45. Effective relief surface: 0.35 m 2 Burst channel Relief using Targo-Vent Example of safety zones for a VARIO 4 3 10 15 [m] distance with burst channels approx. 3 m with Targo-Vent approx. 10 m with burst disk > 15 m 9

Explosion protection with indoor installation For organic dust Flameless pressure relief through ProVent Explosion suppression Vario with ProVent The protection concept ProVent ensures flameless explosion pressure relief. The safety zone is 5 m and can be reduced to 0.5 m. Features: Maximum K St -Value: 200 bar x m/s Dust with MIE > 3 mj Safety distance: 5 m for people; 0.5 m for objects/walls Effective explosion surface: 0.35 m 2 Round filter with container for extinguishing agent Explosion prevention by automatic application of an extinguishing agent. A safety zone is not required. Suitable for reduced maximum explosion pressure. Perfect for toxic dust. Features: Approved for K St-Values up to 500 bar x m/s Ideally suited for installation in the workplace where toxic dust or gas explosion hazards may exist Explosion decoupling with extinguishing agent achieved with small additional step, since detection and control are already available For metal dust Tested according to DIN EN 14460 Flameless pressure relief by means of TR-1 ProVentPlus Flameless pressure relief by means of ProPipePlus patented 10 TR-1 ProVentPlus TR-1-ProVentPlus single separator ensures flameless pressure relief without a designated protective zone. ProPipePlus Patented ProPipePlus flame trap ensures safe explosion suppression inside closed rooms. The special stainless steel construction is approved for metal dusts, and since 2013 there is an additional design available in aluminum. Explosion suppressed by ProPipePlus It has been demonstrated that a safety zone is not required with this particular design.

Explosion decoupling Decoupling of dirty air ductwork Tested according to DIN EN 16447 patented Additional means with a ProFlap back pressure flap Dust extraction systems with explosionproof design and e. g., explosion pressure relief, must be decoupled from connected dirty air ductwork. ProFlap back pressure flap prevents the spread of explosion pressure and flames into other areas. Staff working at the collection points or suction-equipped components are thereby protected from the effects of an explosion. The downstream mounted back pressure flap is kept open by means of the air flow During an explosion inside the protected system, the flap is closed by the advancing pressure inside the ductwork Decoupling of clean air ductwork An example using filter elements With filter elements we assume adequate flame decoupling (not unusable as a protection system). Additional pressure decoupling may be required. Keller demonstrated the isolation of filters elements from the effects of an explosion. VARIO with KLR-Filter Decoupling of dust disposal An additional method is with rotary valves. The blocking function of a rotary valve can be used to stop an explosion from spreading. A modified design prevents ignition from materializing. A lock achieves the same result. As an alternative, pressure shock-proof design of the dust collection container is possible. Rotary valve 11

Explosion prevention and explosion protection according to ATEX guidelines Additional information Is my dust explosive? What types of measures can be taken? Answers and a quick solution can be located on our special website www.exschutz.net Project recommendations Our expert staff is pleased to be at your disposal for additional information. Feel free to benefit from our experience. Intercontinental Association of Experts for Industrial Explosion Protection e.v. (IND EX e.v.) Full member Explosion demonstrations We are full member of IND EX and participate in research work in the field of explosion protection. For this reason we always stay current with the technology. Our filtration systems are also used for explosion demonstrations during IND EX special events. Keller Lufttechnik - all rights reserved - subject to modifications. 05/2017