MOTORCYCLE ANTI-THEFT SYSTEM (MATS) MUHAMAD ALIF BIN ABU

Similar documents
IMPROVEMENT OF BUS ROOF SECTION

AIR CONDITIONING STUDY FOR AUTOMOTIVE APPLICATION ALAUDDIN HAFIZ BIN YUSOF UNIVERSITI MALAYSIA PAHANG

SMART GARDEN SYSTEM NURSHAHNEEM BINTI MOHD SAID

A SIMPLE ID DETECTION USING INFRARED SENSORS NOOR FARHANA HALIL BT ABDUL RAZAK

ANALYSIS AND MEASUREMENT FIBER OPTIC FAULT BY USING OPTICAL TIME DOMAIN REFLECTROMETER (OTDR) AKWANIZAM BIN AZMI

GSM MOBILE CAR ALARM SYSTEM NURHAZWANI BT SALEH

WIRELESS SECURITY SYSTEM UKASYAH BIN MAHAMOD

GAS LEAKAGE MONITORING OVER THE NET WITH RASPBERRY PI MOHD FAEZ BIN AHMAD RAZLI

FENCE INTRUDER DETECTION SYSTEM (FIDS) CHUINK BENG CHEONG

Development of Anti-Theft Door System for Lecturer s Room

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

STORAGE WATER TANKS CLEANING ROBOT AFIZRUL IMAN BIN MOHAMED

UNIVERSITI TEKNIKAL MALAYSIA MELAKA. Improving of Cool Air Evacuation Process for Home Application

Design and Fabrication of Solar Assisted Drying Machine

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PENGARUH KEDUDUKAN DAN KEADAAN TAPAK KE ATAS KOS PEMBINAAN TAPAK TELEKOMUNIKASI SURYYANY BT ABD RANI UNIVERSITI TEKNOLOGI MALAYSIA

A COMPARISON BETWEEN TRADITIONAL PAVEMENT REHABILITATION METHOD AS COMPARED TO RECYCLING METHOD SITI MAZZUANA BINTI SHAMSUDDIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

POROSITY ARCHITECTURE IN ECOLOGICAL DESIGN TAN KWON CHONG

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Samsiah binti Mohamad

APPLICATION OF BIM IN EARLY STAGE DESIGN COST ESTIMATION

Design and Development of Prototyping High Pressure and High Temperature Steam Cleaning Jet

GEOGRAPHICAL ANALYSIS OF LIBYAN AIRPORTS AND THEIR POTENTIAL AS A HUB OF AIR TRANSPORTATION FOUAD D S ABDULWAFI UNIVERSITI TEKNOLOGI MALAYSIA

VISUAL REPRESENTATION OF NATURE IN THE LIBRARY SOMAYEH ROUSTAEI SADRY UNIVERSITI TEKNOLOGI MALAYSIA

ASSESSMENT OF PARKING DEMAND IMPACT ON ADJOINING ROADWAY NETWORK WAN NUR ALIFFA WAN RAMLI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

IDENTIFICATION OF AUDIO AND ROOM PARAMETERS FOR OPTIMUM SPEECH INTELLIGIBILITY IN ROOM NG TSING CHUN UNIVERSITI TEKNOLOGI MALAYSIA

A STRUCTURED CRITICAL SUCCESS FACTORS MODEL FOR THE IMPLEMENTATION OF GREEN RETROFIT PROJECTS REHMAASHINI JAGARAJAN UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ASSESSMENT OF URBAN GREEN SPACE BASED ON LANDSCAPE ECOLOGICAL PRINCIPLES SITI SYAMIMI BINTI OMAR

EFFECT OF FINE AGGREGATE ANGULARITY ON RUTTING RESISTANCE OF ASPHALT CONCRETE AC10

EVALUATION OF CRACK RELIEF LAYER FOR ROADS AND HIGHWAYS KHAIRUL HAFIZ BIN MUSTAFA

ANALYSIS OF HEAT GAIN AGAINST COOLING CAPACITY AT OCCUPIED BUILDING KOH KELVIN

GREEN HIGHWAY ECOLOGY AND ECOSYSTEM PRESERVATION AND RESTORATION MUDATHIR OMER ADAM ARBAB

NAZANEEN AHMED NASROULLA

A Suitable Development Trend in Linear City Based On Smart Growth A Case Study in Lanzhou Urban Area ZHOU WEI

DYNAMIC ANALYSES OF COMPOSITE FOOTBRIDGES EXCITED BY PEDESTRIAN INDUCED LOADS FARAZ SADEGHI UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Final Year Project Report

FLOOD MAPPING FOR SUNGAI BUNUS MOHD IRSYAM NOORFAWANA BIN MASRI

SISTEM PBNGUJIAN TAPAK CADAI\IGAN BINAAN HALIZAH BINTI AHMAD

UNIVERSITI PUTRA MALAYSIA INTEGRATING PUBLIC ART IN MALAYSIAN URBAN LANDSCAPE

FIRE ALARM WITH SECURITY SYSTEM MOHAMED FAIZ BIN MOHAMED MUSA

STUDY OF INTERNAL HEAT EXCHANGER EFFECTS ON CAR AIR CONDITIONING SYSTEM CHAN HONG KET

PHYSICAL ATTRIBUTES ON PLACE ATTACHMENT IN MALAYSIAN URBAN PARKS HADI EBADI UNIVERSITI TEKNOLOGI MALAYSIA

SUSTAINABILITY ASSESSMENT OF COMPACT-CITY DEVELOPMENT USING GEODESIGN APPROACH AHMED ABDULHAFEDH OWAID UNIVERSITI TEKNOLOGI MALAYSIA

DESIGN OF A RECYCLE BIN TIN CAN CRUSHER MUHAMMAD HANIS BIN MUHAMMAD ZULKIFLI

LANDFILL SITE SUITABILITY USING GEOGRAPHIC INFORMATION SYSTEM AND ANALYTICAL HIERARCHY PROCESS

UNIVERSITI PUTRA MALAYSIA

AQUAPONIC SYSTEM FOR SELF-SUSTAIN LIVING YAN YEN QUN

.,- '. '.. I.. \ " ; \. " / [i IlilrJII~'~ri1l1~m i ~:III'j'11 II. II ' ' ..' 1-- '. _.:"". h, ".,'.".

HEDGES USED IN BACKGROUND OF THE STUDY SECTIONS OF ENGLISH DEPARTMENT THESES: A CASE STUDY AT DIAN NUSWANTORO UNIVERSITY THESIS

Kuliah 1 : Pengenalan Kepada Teknologi Maklumat & Komunikasi

DESIGN FACTORS THAT INFLUENCE THE EFFECTIVE USE OF MEYDAN IN IRAN REIHANEH SADAT HAJMIRSADEGHI UNIVERSITI TEKNOLOGI MALAYSIA

ANALYSIS PERFORMANCE OF WAJA CAR AIR-CONDITIONING SYSTEM MUHAMAD AMIRUDIN BIN KAMALRUL BADRI

PROPOSE AND DESIGN A CANVAS SHOES CLEANER MACHINE NUR SYAFIQAH BINTI ISMUINI

NAZANEEN AHMED NASROULLA

THE RELEVANCE OF TRANSIT-ORIENTED DEVELOPMENT FOR TRANSIT STATION COMMUNITY IN MALAYSIA ZAINUDDIN BIN AB RAHMAN

DESIGN AND ANALYSIS OF ELECTRICAL IRON USING BOOTHROYD DEWHURST DFMA METHODOLOGY MOHD HAZUAN BIN MOHD ZAWAWI

WIRELESS Temperature Monitoring System for Blood Bank using Zigbee. Keywords: Temperature monitoring system; ZigBee; LabVIEW; internet; alarm

PLACENESS BAGI PASAR BESAR DAN BAZAR DI KAMPUNG JAWA, MELAKA AHMAD AMZAR BIN ABDULLAH

FIBER NETWORK CABLING. By: Abdul Hak Bin Mahat (ILPS)

RDG 334 Theory and History of Design (Sejarah dan Teori Seni Reka)

HEAT TRANSFER CHARACTERISTICS OF A HEAT EXCHANGER JAMIATUL ADAWIAH BT AB. SIDEK UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS TESIS

SIMULASI MESIN PELARIK BERASASKAN TEKNOLOGI AUGMENTED REALITY MUHAMAD IKRAM BIN ABDUL KARIM DR. SYAIMAK ABDUL SHUKOR

ANALYZE ThJ SPRINKLER SYSTEM IN tjw LECTURE ROOM USINO CID (COMPUTATIONAL FLUID DYNAMICS) ANALYSIS. WJHAMAD KHUMAJM fin r,jzaiman

Model: M30. Owner s Operation Manual. For correct operation, please read this manual to familiarise yourself with the features.

THERMAL PERFORMANCE OF POTTED PLANTS IN MITIGATING INDOOR TEMPERATURE IN TROPICAL CLIMATE SHAHRUL BIN CHE ON UNIVERSITI TEKNOLOGI MALAYSIA

SECTION A : 50 MARKS BAHAGIAN A : 50 MARKAH INSTRUCTION: This section consists of TWO (2) structured essay questions. Answer ALL questions.

NEW CONCEPT OF FURNITURE DESIGN BY USING SPACE SAVING APPROACH TAN BOON CHAI UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MUIHAMAD RUSYDI BIN AL!

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

AMX 68 Owner's Manual 12/29/97

APPROVAL. Signature : Supervisor name : Date : Signature : Panel name : Date :

DESIGN AND DEVELOPMENT OF FOOD WASTE COMPACTOR ROZAIDI BIN ROZMAN

ANTI SLEEP ALARM INTRODUCTION

URBAN REGENERATION ISSUES OF SECTION 13 PETALING JAYA KHAIRUL NISA BINTI HARON UNIVERSITI TEKNOLOGI MALAYSIA

EARHTHING PERFORMANCE OF HV/MV SUBSTATION AND ITS EFFECT ON NEARBY STRUCTURES NORNIKMAN BIN RAHIMIN

ASSESSING GREENWAY NETWORK CONNECTIVITY FOR UNIVERSITY CAMPUS NORAINI BT BAHARI

DETERMINATION OF WARNING DETECTION PARAMETERS BASED ON DATA PORTAL DETECTION OF RADIATION IN PORT KLANG, MALAYSIA

UNIVERSITI TUN HUSSEIN ONN MALAYSIA PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

KOLEJ UNIVERSITI TEKNOLOGI TUN HUSSEIN ONN BORANG PENGESAHAN STATUS TESIS SISTEM KA WALAN BANJIR DENGAN MENGGUNAKAN MIKROPENGA WAL

UNIVERSITI PUTRA MALAYSIA DESIGN OF RADIX-4 SINGLE PATH DELAY FAST FOURIER TRANSFORM PROCESSOR WITH GENETIC ALGORITHMS OPTIMIZATION

COMPLEXITY OF THE FLORAL PATTERN IN VENTILATION PANEL OF TIMBER BUILDING IN KELANTAN AND TERENGGANU

MEGA WAY LCD 4-CHANNEL MOTORCYCLE ALARM SECURITY SYSTEM. Operation Manual MEGATRONIX CALIFORNIA, U.S.A. MEGA 3100 OPERATE 1

BORANG PENGESAHAN STATUS TESIS

CENTRE OF STUDIES FOR BUILDING SURVEYING FACULTY OF ARCHITECTURE, PLANNING AND SURVEYING UNIVERSITI TEKNOLOGI MARA

BORANG PENGESAHAN STATUS TESIS

ENFORCER OWNER'S MANUAL. SLI 840 / SLI 840C (315 MHz) SLI / SLI 840C-4 ( MHz) Remote Controlled Keyless Entry System with Alarm

UNIVERSITI TEKNOLOGI MARA IMPLICATION OF NIGHT-TIME LEISURE ACTIVITIES TOWARDS PLACE IDENTITY OF URBAN PUBLIC PARK IN SHAH ALAM AND PUTRAJAYA

FMNA SYSTEM (FORGET ME NOT ALERT SYSTEM) SHARON BOON KHAI YEN

PETRONAS LESEN MEMBEKAL PERALATAN/MEMBERI PERKHIDMATAN KEPADA SYARIKAT-SYARIKAT CAIUGALI DAN PENGELUAR MINYAKIGAS DI MALAYSIA

DESIGN AND CONSTRUCTION OF A MICROCONTROLLER BASED UNDER AND OVER VOLTAGE PROTECTION DEVICE WITH ALARM NAT BEREGHA EREMIEMI (2006/24462EE)

Salam Pengenalan F2F Pertama - pelajar KOM3305 (PJJ)

UNIVERSITI PUTRA MALAYSIA CRITERIA AND INDICATORS FOR MALAYSIAN GARDEN CITY OF PUTRAJAYA

USCI. PHYSICS Workshop Success is depend on your mind and your will. You are the one, who decide it. PROVE IT!! Speaker : Thong KS

SISTEM PENILAIAN KENAIKAN PANGKAT PENSYARAH SECARA SISTEMATIK BERASASKAN SISTEM BANTUAN KEPUTUSAN BERKUMPULAN SITI NURBAYA BINTI ISMAIL

ALAT ANALITIK UNTUK SISTEM SOKONGAN UNIVERSITI. Nur Amalin Mohd Rosdi Mohd Zakree Ahmad Nazri

Transcription:

MOTORCYCLE ANTI-THEFT SYSTEM (MATS) MUHAMAD ALIF BIN ABU This report is submitted in partial Fulfillment of Requirement for Bachelor of Electronic Engineering (Industrial Electronic) with Honours Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka April 2010

UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II Tajuk Projek : MOTORCYCLE ANTI-THEFT SYSTEM (MATS) Sesi Pengajian : 2009/2010 Saya MUHAMAD ALIF BIN ABU mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut: 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka. 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi. 4. Sila tandakan ( ) : SULIT* (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) TERHAD* (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan) TIDAK TERHAD Disahkan oleh: (TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA) Alamat Tetap: No 40 JALAN BAYAN 34, TAMAN MEGAH RIA 81750, MASAI, JOHOR Tarikh:.. Tarikh:..

iii I hereby declare that this report is result of my own effort except for quotes as cited in the references. Signature Name Date : : MUHAMAD ALIF BIN ABU :...

iv I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics) with Honours Signature Supervisor s Name Date : :... :

v I am dedicating this credit to my lecturer Mdm. Afifah Maheran Bt. Abdul Hamid, my parents Mr. Abu Bin Daros and Mdm. Masita Bt.Abd Majid, my family, and all my fellow friends for helping me directly or indirectly in this project.

vi ACKNOWLEDGEMENT I would like to express my sincere appreciation to my supervisor, Mdm. Afifah Maheran Bt. Abdul Hamid for the permission and acknowledgement to undergo Projek Sarjana Muda for one (1) year and had given valuable information, support and guidance to me. I would like to dedicate my special thanks to my family for supporting me and make me more confident to complete this project and report. To my entire friend, thank you for all the comment and information to give me a lot of ideas to complete this project and report. My appreciation is to a network of people who have helped me in this project and report but do not wish their names to be mentioned. Thank you anyway.

vii ABSTRACT This project is about motorcycle anti-theft system which is a system that can prevent a motorcycle from being stolen. Alarm systems that have in the market nowadays are very sensitive and make many false alarms. Also, the current system, use a vibrate sensor or shock sensor as a main sensor. The false alarm will increase because if anyone touches the motorcycle, the alarm will trigger easily even though they do not have any senses of stealing. So, by doing this project, the motorcycle anti-theft system will reduce the false alarm as main objective. To do so, first is a research about the alarm system for motorcycle was done. The main component in the alarm circuit and sensor that will be used to achieve the objective was studied. After that, the circuit was constructed and the testing was done to make sure the system is running well. In this motorcycle anti-theft system, the main sensor is mercury tilt sensor. This system will trigger when the mercury touch their two lids and the buzzer will ON. The mercury tilt sensor will place on the bike s center stand, side stand and on the handle. For the best result, is on the double stand because the change of degree for the mercury can be more accurate at the double stand. Then, the alarm will just trigger when the stand is lift up or the handle is being turn out. From this method, it will reduce the false alarm.

viii ABSTRAK Projek ini adalah berkaitan sistem anti-kecurian motosikal yang merupakan sistem yang boleh menghalang sesebuah motosikal daripada dicuri dengan mudah. Sistem penggera yang kini di pasaran, terlalu sensitif dan mengakibatkan peningkatan kepada penggera palsu. Sistem ini juga menggunakan sensor bergetar atau sengatan sensor sebagai sensor utama. Penggera palsu akan meningkat kerana walaupun apabila seseorang yang tidak mempunyai niat untuk mencuri, menyentuh motosikal itu, penggera akan berbunyi dengan segera. Jadi, dengan menjalankan projek ini, sistem anti-kecurian motosikal ini akan mengurangkan penggera palsu sebagai objektif utamanya. Untuk melakukannya, pertama adalah membuat kajian tentang sistem penggera motosikal yang sedia ada di pasaran. Carian dan kajian mengenai litar penggera, komponen utama dalam litar penggera itu, dan sensor yang akan digunakan untuk mencapai objektif utama telah dilakukan. Setelah itu, litar dibangunkan dan ujian dilakukan untuk memastikan sistem berjalan dengan baik. Dalam sistem anti-kecurian motosikal ini, sensor utama adalah merkuri sensor kemiringan. Sistem ini akan berfungsi apabila merkuri menyentuh dua kaki sensor itu dan menyebabkan penggera berbunyi. Sensor merkuri itu akan ditempatkan pada dua kaki berdiri motosikal, kaki tunggal motosikal dan pada pegangan motosikal. Hasil yang terbaik, adalah di dua kaki berdiri motosikal kerana perubahan darjah merkuri beralih adalah lebih sempurna. Kemudian, penggera hanya akan berbunyi apabila dua kaki berdiri motosikal dialihkan ke kedudukan asal. Dari kaedah yang dijalankan ini, akan dapat mengurangkan penggera palsu.

ix CONTENTS CHAPTER TITLE PAGE PROJECT TITLE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK CONTENTS LIST OF FIGURES LIST OF ABREVIATIONS LIST OF APPENDIX i iii v vi vii viii ix xii xiv xv I PROJECT OVERVIEW 1.1 Introduction 1 1.2 Objective 2 1.3 Problem Statement 3 1.4 Project Scope 3

x CHAPTER TITLE PAGE II LITERATURE REVIEW 2.1 Introduction 4 2.2 Tilt switch or mercury switch 9 2.3 Relay 11 2.4 Starter 14 2.5 NAND gate 16 2.5.1 IC 7400 Quad NAND Gate 17 2.5.2 NAND Gate Application 18 III PROJECT METHODOLOGY 3.1 Introduction 19 3.1.1 Stage 1 21 3.1.2 Stage 2 24 3.1.3 Stage 3 25

xi CHAPTER TITLE PAGE IV RESULTS AND DISCUSSION 4.1 Introduction 26 4.2 Simulation 27 4.3 Developed Circuit 30 V CONCLUSION 5.1 Conclusion 34 REFERENCES 36 APPENDIX A 37 APPENDIX B 44 APPENDIX C 46 APPENDIX D 56

xii LIST OF FIGURES NO TITLE PAGE 2.1 Mercury Tilt sensor 9 2.2 Movement of mercury tilt sensor 9 2.3 Relay 12V (DEG SRUDH-SS-112D1) 11 2.4 Works of relay 12 2.5 Starter diagram 14 2.6 Quadruple 2-input NAND Gate (HD14011BP) 16 2.7 Combinational of NAND gate 17 2.8 Truth table and Pin arrangement 17 2.9 Application design in integrated circuit 18 3.1 Flowchart 20 3.2 Circuit diagram 22 3.3 Simulation of the circuit 23 3.4 Automatic immobilizer circuit diagram 24 3.5 Circuit on a strip board (first model) 25 4.1 System is triggered 27 4.2 Digital output from buzzer 28 4.3 Digital outputs from buzzer after 28 times 28 4.4 System reset 29

xiii NO TITLE PAGE 4.5 Schematic diagram of circuit on strip board 30 4.6 Full circuit (second model) 31

xiv LIST OF ABREVIATIONS IC - Integrated Circuit

xv LIST OF APPENDIX NO TITLE PAGE A Datasheet HD14011B 37 B Datasheet Mercury tilt switch 43 C Datasheet BC546; BC547 44 D Datasheet SRUDH series 53

1 CHAPTER 1 PROJECT OVERVIEW This chapter will explain briefly about the project background, objectives to be achieved, problem statement and scope of work. 1.1 Introduction Nowadays we heard so many cases about the loss motorcycle. It is not just the cases that have been reported but they are also many cases that is not been reported. There are many kind of alarm system for motorcycle available in the market such as an alarm in a lock and a vibrate circuit. Most of the current alarm systems are too sensitive, so the false alarm is going higher. Of course we want our security alarm to be sensitive but if the sensitive increase a false alarm, it not too practical.

2 By doing this project that using tilt switches which is mercury, it will trigger the alarm when the steering is moved or when the bike is lifted off its side-stand or its centre-stand. Of course this kind of alarm unable to catch the thief 100% but it prevents the motorcycle from being stolen easily. Despite the suspect can broke the key place at ignition starter without trigger an alarm, the motorcycle still cannot be stole easily because the system has locked at the ignition circuit until one of the reset switch has been pressed. This project will control the false alarm because it is not only about vibrate or just touch the motorcycle, but it will trigger when the lid at mercury switch is contacted by the mercury. This project, cover the application of mercury sensor, ignition circuit, relay, and NAND gate. 1.2 Objectives The objectives of this project are as the following: - i. To make the system more accurate to sense the suspect. It is because when the system accurate it can make the suspect stops willing to steal the motorcycle and also the false alarm will reduce. That is the reason we use a mercury tilt switch. ii. iii. iv. To make the motorcycle will not easily to turn ON without switch off first the system. If the suspect still trying to cut the wire or other else, they still do not disturb the system To make the alarm triggered after the mercury switch ON the system. To get the neighbors alert when the motorcycle try to be stolen. So that, we construct the circuit of this alarm system with the siren or buzzer that sound loudly.

3 1.3 Problem Statements Nowadays, there are many cases about the motorcycle theft. At the market currently, just have the conventional lock or the simple alarm system. The conventional alarm system functions when the motorcycle has been shacked and touched. It might not too accurate because whoever touches it, the alarm will ON immediately. The alarm s ringing just a few second that is too shorts in alert others. 1.4 Project Scope Components such are a buzzer or siren, tilt switch (mercury), relay, and logic IC will be used to develop the motorcycle anti-theft system. For the first step, the theory about this system should to be research. When all the components are ready, we will combine it in one circuit. The alarm should be able to generate loud sound and stop after 30seconds. The ignition starter on the motorcycle has been modified so that whenever the thief attempt to steal the motorcycle, they cannot steal it easily because the ignition circuit is still breakdown until the reset button is pressed on the system.

4 CHAPTER 2 LITERATURE REVIEW This chapter describes about the literature review involved to gather information about the project. This study is focused especially on the application related to the project. 2.1 Introduction There are many inventions on the security system. The most common vehicle equipped with this kind of system is car. On the other hand, there is still less invention in the market for motorcycle. This project is focused on motorcycle security system. It will use alarm, some sensors, and doing some modification at the starter of the motorcycle. The main objective of this project is to minimize a false alarm.

5 Some security system that using such a Remocon unit is accident operated by the driver or a passenger whiles the vehicle is being driven, thereby bringing the security system into an active state. When the system is armed while the vehicle is in motion, a vehicle vibration sensor or a noise sensor in the system immediately detects vehicle vibrations or noise. As a consequence, the siren suddenly sounds, the vehicle headlights are flashed, the starter is cut off or the supply of fuel to the vehicle is cut off to thereby stop the vehicle, causing great danger [1]. While, an electronic control system for the starter motor of a vehicle which includes a novel key-controlled means actuable to energize a series of gates that control the flow of electrical current from the ignition switch through related components to the starter motor switch. The system also includes lock means enabling one to render the electrical system operable in selected instances when the key is removed [2]. The early transistor control boxes, unfortunately, were extremely sensitive to electrical disturbances such as radiation and electrical storms. These early transistor control boxes often called the fox too many times, and the police became very disturbed. Customers began receive bills after a few false alarms [3]. Whichever alarm build, the circuit board and switches must be protected from the elements. Without the terminal blocks, the board is small. Ideally, try to find a siren with enough spare space inside to accommodate it. Fit a 1-amp in-line fuse as close as possible to the power source. The fuse is there to protect the wiring not the circuit board. Instead of using a key-switch, hidden switch also can be used; or use the normally-closed contacts of a small relay. Wire the relay coil so that it's energized while the ignition is on. Then every time the ignition is turned off, the alarm will set itself. When the alarms are not sounding, the circuits use no current. This should make them useful in other circumstances where a power supply is not readily available. Powered by dry batteries with the relay and siren voltages chosen to suit the alarms could be fitted almost anywhere [4].

6 If a security device is to be convenient to the owner, it must be unobtrusive in the normal used of the vehicle by the owner or authorized user, as in starting the motorcycle, traveling thereon, getting off, and in maintenance. Unfortunately, if the normal use of the ignition circuit is employed by owner to disable the security alarm device, then a thief hotwiring the ignition in the engine area of the motorcycle can disable the security alarm device too. Moreover, when the motorcycle is undergoing maintenance with ignition off, the owner himself or herself can be annoyed by false alarms [5]. The external or axial force applied to the active sensing portion of the force sensor chip made of a semiconductor substrate or the like can be dampened to a required level by providing a dampening or buffering mechanism that dampens the external force and applies a part of the external force to the force sensor chip. Considerable external force can thereby be detected. The dampening mechanism that has an external force buffering effect functions as a principal component of the buffering device in a force sensor. Such a buffering device can be manufactured in the form of a cube, cylinder, disc, rod, or other modified shape in accordance with the shape and structure of the dampening mechanism. As a result, a force sensor having such a buffering device can itself be manufactured in various shapes and forms. Force sensors having a large number of variations can expand the range of use and application, and force sensors having an optimal shape and other features can be mounted in the intended location [6].

7 One other issue that desirably could be corrected is the wasting of electricity and the wasting of space when a motorcycle is an alarm system or other theft deterrent device in addition to the basic electronic control unit (ECU). While physical locks are functional, they require storage space or complicated mechanical structure. Thus, alarms are preferred from the standpoint of space and simplicity of design. One drawback to alarm systems, however, is the proliferation of electrical components required for such alarm systems and the consequent difficulty in manufacturing an OEM-optional alarm device. In other words, motorcycle manufactures need to reduce the number of variations in base components, such as circuit boards. Providing an alarm system as an option has heretofore been undesirable due to the need to provide different circuitry for alarm equipped motorcycles and for non alarm equipped motorcycles, respectively. As an alternative, the circuitry could be designed with most of the components necessary for the alarm already present and active on the circuit but the alarm device and other related components not present. This is undesirable, however, because of the increased power consumption that would result. Accordingly, a simple but energy efficient alarm option is desired [7]. Motion sensors and each one of the referenced items, however, suffer from one or more of the following disadvantages. Motion sensors are expensive to purchase, to install and to maintain especially motion sensors utilizing microwave technology, passive infrared light technology, and photo electric technology. Motion sensors are susceptible to a high rate of false alarms due to malfunction, children, pets, wind moving objects into the motion sensor s view, and other false triggers. Motion sensors must be permanently mounted to a fixed object and can only protect a predefined specific area. Outdoor motion sensors deteriorate quickly from constant exposure to the elements.

8 Other references employ the use of a flexible conduit containing an electrical alarm circuit. These references also suffer from several disadvantages. First, the length of the conduit cannot be adjusted to fit varying conditions. As such, the conduit must protect the same sized element in the same general location all the time. Second, the end of the flexible conduit must be returned to a fixed receptacle in order to complete the electrical circuit. When securing a movable object that is far away from the receptacle, or when securing a group of movable objects, the conduit must be long enough and flexible enough to thread through the objects being secured and still be long enough to plug into the fixed receptacle and complete the circuit. Third, it is simply inconvenient and cumbersome to have to loop the flexible conduit through each object being secured and have to plug the end of the conduit back into the fixed receptacle [8].

9 2.2 Tilt Switch or Mercury Switch Figure 2.1: Mercury Tilt sensor Figure 2.2: Movement of mercury tilt sensor Tilt switches contain a conductive liquid and when tilted this bridges the contacts inside, closing the switch. They can be used as a sensor to detect the position of an object. Some tilt switches contain mercury which is poisonous. A mercury switch (also known as a mercury tilt switch) is a switch whose purpose is to allow or interrupt the flow of electric current in an electrical circuit in a manner that is dependent on the switch's physical position or alignment relative to the direction of the "pull" of earth's gravity, or other inertia. Mercury switches consist of one or more sets of electrical contacts in a sealed glass envelope which contains a bead of mercury. The envelope may also contain air, an inert gas, or a vacuum. Gravity is constantly pulling the drop of mercury to the lowest point in the envelope. When the switch is tilted in the appropriate direction, the mercury touches a set of contacts, thus completing the electrical circuit through those contacts. Tilting the switch the opposite direction causes the mercury to move away from that set of contacts, thus breaking that circuit [see Figure 2.3]. The switch may contain multiple sets of contacts, closing different sets at different angles allowing, for example, Single-Pole, Double-Throw (SPDT) operation.