Selecting fire and gas detectors for extreme environments:

Similar documents
Selecting fire and gas detectors for harsh and remote locations

Case Study. Selecting fire and gas detectors for harsh and remote locations. INSTRUMENTATION

Selecting fire and gas detectors for extreme environments

Integrating Fire and Gas Safety with Process Control Systems:

Smoke detection in hazardous areas:

Combustible and Toxic Gas Detection Solutions. Performance and Safety Beyond Compliance

The Most Versatile Flame Detectors in the World. Optical Flame Detection Solutions

Combustible and Toxic Gas Detection Solutions. Performance and Safety Beyond Compliance

Meeting NFPA standards for

The Most Versatile Flame Detectors in the World. Optical Flame Detection Solutions

Case Study. INTEGRATING Fire & GAS SAFETY WITH PROCESS CONTROL SYSTEMS

Fire protection in hazardous locations:

Fire and gas safety systems:

GAS DETECTORS. When every second counts

SAFEYE XENON 700. Hydrocarbons and ethylene detection. Heated optics. 10-year Warranty for the Xenon flash bulb. SIL 2 according to IEC 61508

SAFETY MANUAL. X2200 UV, X9800 IR, X5200 UVIR SIL 2 Certified Flame Detectors

SAFETY MANUAL. Multispectrum IR Flame Detector X3301

APPLICATION BULLETIN COMBUSTION TURBINE FACILITIES. Overview

Gas safety standards are changing in 2020:

SafEye OPEN-PATH GAS DETECTION SYSTEM XENON 700. We INVENTED it... We PERFECTED it! Patent No. US 5,281,816; US 6,061,141; EP

Instructions. Duct Mount Accessory Q Rev: 11/

SAFETY MANUAL. PointWatch Eclipse Infrared Hydrocarbon Gas Detector Safety Certified Model PIRECL

Gas safety standards are changing in 2020:

F&G detection system for LNG plants

Gas Detection in Process Industry The Practical Approach

Application Bulletin. LNG / LPG Facilities FLAME AND GAS DETECTION FOR LNG FACILITIES

Protect your people, assets and environment while ensuring operational performance.

SAFETY MANUAL. IR5000 Open Path Hydrocarbon Gas Monitoring System

Instructions. Explosion Proof Smoke Detector U Rev: 9/

Martin Huber 26September 2017 F&G SOLUTIONS FOR THE PROCESS INDUSTRY

FUNCTIONAL SAFETY MANUAL. Gassonic Observer-H and Observer-i Ultrasonic Gas Leak Detector

SAFETY MANUAL. Electrochemical Gas Detector GT3000 Series Includes Transmitter (GTX) with H 2 S or O 2 Sensor Module (GTS)

Explosion Protection Engineering Principles

INSTRUCTIONS. Eagle Quantum Premier (EQP) Addressable Smoke & Heat (ASH) Module EQ3750ASH. 5.1 Rev: 4/

Dräger Flame 2500 Flame Detection

Hazardous Locations Demand Superior Gas Detection! Quasar 900 provides the most reliable gas detection in all weather conditions!

FUNCTIONAL SAFETY MANUAL

FUNCTIONAL SAFETY MANUAL

Some types of gas detectors

Enhanced MRO Hangar Fire Protection

Autronica Fire and Security AS ID:

IEC TC31 (Explosive Atmospheres) Gas Detection as Method of Protection Jon Miller

DET-TRONICS. SPECIFICATION DATA Eagle Quantum Premier Fire and Gas Detection / Releasing System APPLICATION FEATURES

AVOID CATASTROPHIC SITUATIONS: EXPERT FIRE AND GAS CONSULTANCY OPTIMIZES SAFETY

Guide to Explosion Protection and Plant Safety

AVOID CATASTROPHIC SITUATIONS: EXPERT FIRE AND GAS CONSULTANCY OPTIMIZES SAFETY

Process Control PIP PCEA001 Fixed Gas Detection Guidelines

Dräger Polytron Pulsar 2 Detection of flammable gases and vapours

Protective & Marine Coatings Europe, Middle East, Africa & India

SafEye OPEN-PATH GAS DETECTION SYSTEM XENON 700S

DET-TRONICS SPECIFICATION DATA. Eagle Quantum EQ2200UVHT For Use With C7050B Continuous Duty High Temperature UV Flame Detector DESCRIPTION

ADDENDUM. xwatch Explosion-Proof Camera with X-Series Flame Detectors DESCRIPTION GENERAL APPLICATION INFORMATION

Using CFD to Analyze Gas Detector Placement in Process Facilities

SAFETY MANUAL. FL4000H and FL4000 Multi-Spectral Infrared Flame Detectors

Dräger Flame 2100 Flame Detection

Dräger Polytron Pulsar 2 Open Path Gas Detector

DELUGE SYSTEMS FALSE OPERATIONS

FUNCTIONAL SAFETY IN FIRE PROTECTION SYSTEM E-BOOK

FM Approved Fire & Gas Detection System

25W Hazardous Location Integrated LED Light Fixture Lumens - Low Profile - ATEX IEC CSA UL

Architectural and Engineering Specification for a Fence-Mounted Perimeter Intrusion Detection System. FlexZone

FT702LT Turbine control wind sensor gives durability a new meaning FT702LT. series

ommercial and military aircraft MRO operations play a huge role in keeping modern aircraft in service by taking on new tasks and

Guidance on Video Smoke Detection Technology (VSD)

INFRARED PRODUCTS FOR MONITORING SMOKELESS FLARES, PILOTS, AND FLAME INTENSITY

Safety Instrumented Systems The Smart Approach

Multi-Spectral, Digital, Infrared Electro-Optical. FSC Model No. s. Unitized, Two Stage, Quick Response Flame Detectors.

Flame Detection Jon Sarfas

Open-area Smoke Imaging Detector. Engineering Specification

120W Hazardous Location LED Fixture V DC - Modbus TCP/IP - Network Controlled - Dimmable

MSA Safety Solutions. for the Oil, Gas and Petrochemical Industry. Because every life has a purpose...

Model TL104 MANTL104. Test Lamp for Flame Detection

The Amerex Advantage - Quality Experienced Innovation Made in the USA

Eclipse Self-Check UV Scanner

INTERNATIONAL STANDARD

HOW LIMIT AND BASIC SWITCHES CAN STOP MACHINES FROM GOING BOOM. A Honeywell White Paper

Fire Safety Compliance

Overview of Standards for CO Detection Products

Fluke IR Windows Easier NFPA 70E compliance without compromising on product performance.

AUTROSAFE. An interactive fire detection system for larger vessels

GM Ultrasonic Gas Leak Detection Gas Detection at the Speed of Sound. How fast does your Gas Detection System detect leaks?

Guide to Intrinsically Safe Portable Radios

Fluke IR Windows Easier NFPA 70E compliance without compromising on product performance. Fluke-Direct.com

InstrumentationTools.com

GASSONIC Ultrasonic Gas Leak Detection. How fast does your Gas Detection System detect leaks? Because every life has a purpose...

SECTION ULTRASONIC TRANSIT TIME CLAMP-ON FLOW MEASURING SYSTEM

Instructions. Det-Tronics SmokeWatch Explosion Proof Smoke Detector U Rev: 3/

How Limit Switches Can Stop Machines from Going Boom

Instructions Dual Spectrum Infrared Flame Detector PM-5MPX. 4.1 Rev: 8/

Architectural and Engineering Specification for a Fiber Optic Perimeter Intrusion Detection System. FiberPatrol FP1150

SP METHOD 5320 Issue No: Test method for fire detection systems installed in engine compartments of heavy vehicles

DASPOS A/S Gammel Klausdalsbrovej Herlev Denmark Tel.: website: DASPOS USA, Inc NE 116th Street, PMB

Certificate of Compliance

2015 Honeywell Users Group Europe, Middle East and Africa

CERTIFICATE OF FIRE APPROVAL

SAFETY MANAGER SC Ensure safety, simplify operations and reduce lifecycle costs

Fiber Optic Pipeline Monitoring System Preventing and detecting leaks in real time

FIRE & SAFETY SPRING 2016 EDITION

Installation and Operation Manual

On-line Side Stream Oil in Water Analyser - Model OIW-EX 100 or OIW-EX 1000

Transcription:

WHITE PAPER Selecting fire and gas detectors for extreme environments: Functional safety in harsh and remote locations Liquid natural gas (LNG) facilities in the Russian Arctic. Drilling platforms in the swells of the North Sea. Pipelines that cross miles of heaving permafrost or blowing desert sands. These are some of the settings where industrial fire and gas detectors encounter extreme conditions and yet must perform accurately and dependably. Start with high-risk processes, add combustible or toxic liquids and gases, and then place these hazards in farflung locations and inhospitable environments. This is the real-world formula for industries most challenging fire and gas safety system applications. The components in these functional safety systems must be designed to handle a wide range of external challenges, from temperature extremes to violent rain and sand storms to vibrating or shifting ground. At the same time, the control systems that manage the detection, notification and mitigation functions must perform without failures or false alarms, and often, without a human for hundreds to thousands of miles. Today s advanced fire and gas detectors and system controllers include special features for safe and effective operation in harsh and remote environments. Below is an overview of the performance features to look for when selecting functional safety equipment, plus some installation and operation tips for applications in extreme settings. Flame detection and the role of optical technology Optical flame detectors provide speed and accuracy of detection that thermal detector types can t, and today s optical flame detectors are designed to perform in a wide range of sub-optimal conditions. Advanced infrared (IR) detectors offer superior signal processing that minimizes the potential for false alarms caused by IR emitted from hot process equipment. In addition to electronic design features, mechanical design options can also increase flame detection performance. Optical flame detectors can be fitted with weather shields that function like a hat brim to prevent rain and snow from collecting on the detectors optical surfaces. Detectors can also be designed with lens heaters to melt snow and ice, or in humid conditions, to prevent condensation from forming and accelerate the drying process. (Figure 1) Figure 1: Heavy wind, rain or snow can lead to weather-induced fault conditions for flame detectors because infrared radiation is absorbed by water molecules. To minimize the accumulation of moisture or condensation on detector optics, look for IR detectors with lens heaters and device shielding (as shown on the Det-Tronics X3301 Multispectrum IR detector above). Installation techniques can also help minimize the impact of precipitation on optical flame detector performance. Since detectors usually monitor processes at or below their level, users can aim detectors down 10 20 degrees.

White Paper Page 2 This provides more physical protection for the optics and also facilitates natural removal of precipitation via gravity. MICROPHONE NO SERVICEABLE COMPONENTS WITHIN SENSOR HOUSING. DO NOT OPEN. In areas where heavy rain is accompanied by strong winds, there is no physical way to prevent precipitation from accumulating on the detector s optics. Eventually, this accumulation will cause a significant reduction in the device s original detection range. Detectors equipped with a self-checking function can provide notification of a reduction in performance in the form of a fault. If this fault type occurs frequently at a site that experiences heavy windblown precipitation, some detectors allow users to adjust the time between automatic self-tests and increase the required number of consecutive failed tests (to allow the severe weather to pass) before a fault is triggered. An examination of the detector s event logs can help users determine the typical duration of an optical performance fault condition, as well as appropriate alternative fault settings. Gas detectors for challenging environments The ability to quickly and accurately detect leaks of volatile or flammable gas is critical, but again, extreme environments can challenge available gas detection technologies. For example, blowing sand can compromise an acoustic leak detector s performance by clogging its filter and/or damaging its sensor to the point of failure. In addition, problematic ultrasonic noise can be generated by high-velocity particles striking the sensor. These desert environment problems can be minimized by proper design of the acoustic detector s particulate filter. AIC ACOUSTIC SOURCE SENSOR COVER A2615 ATX10 TRANSMITTER AC100 SENSOR FOAM INSERT Figure 2: Acoustic gas leak detectors work by recognizing the unique sound fingerprints of various gases. However, the sound and impact of blowing sand particles can create nuisance ultrasonic noise and lead to possible fault conditions in windy desert environments. The Det-Tronics FlexSonic detector shown above uses a foam filter to eliminate ultrasonic noise due to particle impact with the microphone. Filters with large pore sizes can effectively block most direct particle impacts without trapping sand and causing it to build up on the sensor. (Figure 2) Acoustic gas-leak detectors should be tested to MIL-STD-810G, Method 510.5, Procedure II, which applies to all devices likely to be exposed to dry blowing sand. Shifting ground, a common issue for pipelines or processing plant installations in areas of permafrost, and vibration are environmental factors that can affect line of sight gas detector performance. In these settings, product specifiers should look for product features such as rigid mounting arms that do not attenuate vibration from a mounting surface, and optics designed with relatively large alignment tolerances to allow more misalignment between the detector s light source and receiver. Equipment standards for extreme environments Both flame and gas detectors should be factory tested to ensure that they will operate reliably and not trigger false alarms or faults at extreme temperatures and/or during large temperature shifts. Detection components should also be rated to perform in a wide temperature range or tested by the detector manufacturer to verify their ability to meet specified temperature requirements. While desert locations for oil and gas processing can see extreme annual temperatures as high as 47 degrees C (116.6 degrees F) and as low as 12.8 degrees C (55.04 degrees F), blowing sand can be even more of a problem for the performance of functional safety equipment. As for detector housings, extreme external conditions call for packaging that can withstand knocks and jolts, as well as protect internal components in wet, dusty, acidic and caustic environments. Ruggedized stainless steel or aluminum construction provides optimal environmental protection.

White Paper Page 3 Located above the Arctic Circle, Yamal is a ground-breaking project to develop the huge condensate gas fields in the Russian Yamal peninsula. Extreme cold and winds, long periods of darkness, snowfall that never melts, and fog and mist that accumulate and freeze on equipment combine to require high-performance technology such as the Det-Tronics flame and gas detectors specified for the application. (Photo originally used for the Yamal and Adjusting Territories Oil and Gas Investment Projects Report by Vostock Capital.) Class I locations and particularly those in extreme environments call for detector designs that take into account the explosive and flammable potential of surrounding hazardous substances. These devices need to meet the fire- and explosion-specific standards established by organizations such as Factory Mutual (FM), Underwriters Laboratories (UL) and International Electrotechnical Commission (IEC), which require that equipment designs be certified to remain explosionproof at the temperature range the manufacturer states the detectors can operate in. This means the detector housings must contain internal explosions so that hot gas and other byproducts cannot escape and ignite surrounding hazardous substances. For example, housings for explosion-proof detectors must be certified to ensure that they will not change in extreme temperatures, creating small gaps which may not contain an internal explosion. Other third-party certifications confirm that detectors will hold up to harsh marine conditions such as on oil drilling platforms or on the decks of floating liquefied natural gas production units (FLNGs). Standards for fire and gas detection in these applications have more stringent environmental and electromagnetic compatibility requirements. Agencies accredited to issue marine certifications include DNV GL, American Bureau of Shipping (ABS), Lloyds Register (LR) and the U.S. Coast Guard. Planning for remote locations Both offshore and onshore, extreme conditions and remote locations often go hand-in-hand, meaning that the flame and gas detection systems most severely tested by the elements are also those located in distant, hard-to-reach places. This makes it particularly important to specify durable, long-lived components for remote detection systems and also to keep plenty of spares at remote sites. Another key consideration for remote detection systems is how the system will operate with few if any people

White Paper Page 4 nearby who are knowledgeable about it. In cases like this, advanced communications can mitigate the downsides of remoteness. After receiving a leak, smoke or flame alarm from its component detectors, a remote detection system should be capable of notifying the appropriate personnel wherever they are located via an Internet connection. In addition, connected devices should have automatic self-test features that pull diagnostic information from the devices and make it available to remote personnel accessing the system. Systems design what about redundancy? For flame and gas detection systems in remote locations, redundancy should also be considered based on the anticipated impact of a component s failure. While a system may be able to continue functioning effectively despite the failure of a system component, failure of the managing controller could render the system useless unless it includes a backup controller that can take over automatically in such situations. In addition to redundant controllers, redundant detectors are sometimes deployed in remote facilities. A major rationale for using redundant flame detectors is to reduce the potential for false alarms that cause costly production shutdowns. This is done by implementing a voting scheme that involves installing multiple detectors in an area normally covered by only one. In this configuration, one fire alarm signal triggers notification of a potential threat and two (or more) fire alarm signals trigger executive action (shutdown and/or suppression). Functional safety system certification In addition to detector certifications, the overall fire and gas safety system should be certified by a third party to reflect the level of performance and reliability required by applications in extreme environments. Functional-safetyspecific standards are set by organizations such as the IEC and the International Society of Automation (ISA). Certification is a process that involves conducting an initial safety assessment, determining what actions need to be taken to create or upgrade the safety platform, and having the appropriate certifying companies and agencies evaluate the systems. The process also requires determining that components and sub-assemblies meet required codes and standards. Arctic gas-producing regions, which see temperatures as low as 60 degrees C ( 76 degrees F) and can be ice-bound for seven to nine months during the year, are isolated from oil and gas infrastructure and therefore demand equipment that operates reliably without human control.

White Paper Page 5 Companies offering to certify products for functional safety are numerous and include organizations such as exida, FM, SIRA, UL and TÜV Rheinland. These agencies should be accredited for the specific standards used for product and/or systems certifications. It is up to the owner or operator of a functional safety system to investigate and select the proper hazardous location classification ratings, and performance and functional safety parameters that best address a facility or process s specific needs and objectives, including performance in extreme environments. In summary More and more, today s high-risk industrial processes are taking place in isolated and inhospitable corners of the globe. These settings demand the functional safety provided by fire and gas detection and hazard mitigation systems, and specifically, they demand detectors and control systems that are up to the extreme challenges posed by weather, environment and remoteness. Disclaimer The content of this white paper is provided for informational purposes only and is not intended to provide professional services or substitute for the review and advice, in any given circumstances, of an appropriate professional. Det-Tronics makes every effort to provide timely and accurate information but makes no claims, promises, or warranty regarding the accuracy, completeness, timeliness, or adequacy of the information provided in this paper, and expressly disclaims any implied warranties and any liability for use of this white paper or reliance on views expressed in it. About Det-Tronics Det-Tronics is the global leader in fire and gas safety systems, providing premium flame and gas detection and hazard-mitigation systems for high-risk processes and industrial operations. The company designs, builds, tests and commissions a complete line of SIL 2 Capable, globally certified flame, gas and smoke safety products, including the X3301 Multispectrum Infrared Flame Detector and the Eagle Quantum Premier (EQP) Fire and Gas Safety Controller. 74-1010 Corporate Office 6901 West 110th Street Minneapolis, MN 55438 USA www.det-tronics.com Phone: 952.946.6491 Toll-free: 800.765.3473 Fax: 952.829.8750 det-tronics@det-tronics.com 2017 Detector Electronics Corporation. All rights reserved.