Separation Processes: Drying

Similar documents
All rights reserved, Armando B. Corripio, PhD, PE, Solid Dryer Design Introduction Continuous Dryer Design...

Drying rate 1. Section B to C of the curve, known as the constant rate periods, represents removal of unbound water from the product.

Thermo-physical properties found on most psychrometric charts

Chapter 8 Balances on Nonreactive Processes PSYCHROMETRIC CHART

Lecture # 5: SOLVED PROBLEM

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3

ME Mechanical Engineering Systems Laboratory. Experiment 3 - Mass and Energy Balances in Psychrometric Processes

ME 410 MECHA ICAL E GI EERI G SYSTEMS LABORATORY

Chapter 14, Problem 27.

Psychrometrics. Outline. Psychrometrics. What is psychrometrics? Psychrometrics in daily life and food industry Psychrometric chart

For an ideal gas mixture, Dalton s law states that the sum of the partial pressures of the individual components is equal to the total pressure.

Downstream Processing Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras. Lecture - 36 Drying

s. Properties for R134a are as follows : Saturated R-134a Superheated R-134a

Drying principles and general considerations

Introduction to Material and Energy Balance

THE PSYCHROMETRIC CALCULATOR By: Stanley F. Gallos, The Bastian-Blessing Company INTRODUCTION PROPERTIES OF THE RSES CALCULATOR

FS 231: Final Exam (5-6-05) Part A (Closed Book): 60 points

14 Drying. I Basic relations and definitions. Oldřich Holeček, Martin Kohout

Week 4. Gas-vapor mixtures Air conditioning processes. ME 300 Thermodynamics II 1

There are (at least) four reasons why you need to understand moisture and humidity in building physics:

MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS

2How does a vibratory fluid-bed dryer work?

Gandhinagar Institute of Technology Mechanical Engineering (Thermal Engineering) Semester II. Design of Heat Exchange Equipments [ ]

OURSE TITLE : MASS TRANSFER OPERATIONS 1 COURSE CODE : 5071 COURSE CATEGORY : A PERIODS/ WEEK : 4 PERIODS/ SEMESTER : 52 CREDIT : 4 TIME SCHEDULE

Pressure Enthalpy Charts

AND AIR-CONDITIONING. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Evaporation System: Types and Design Aspects

PERFORMANCE OF FORCED CONVECTION EVACUATED TUBE SOLAR GRAIN DRYER. BOOKER ONYANGO OSODO B. Ed.(TECH); M. Phil (Tech. Ed) (J98/25749/2011)

Scientific Principals and Analytical Model. Charcoal Cooler. Lisa Crofoot MECH 425, Queens University

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics

Unit Operations in Food Processing Drying-2: Drying Rate

Dehydration. Robert H. Driscoll School of Chemical Engineering, The University of New South Wales, Sydney, Australia. 4.

Analysis of Energy Consumption for Biomass Drying Process

5 Separation Processes

AR/IA/UP 241 Lecture 5: Psychrometrics

3.4 Humidity. Types of instruments

Numerical Stability Analysis of a Natural Circulation Steam Generator with a Non-uniform Heating Profile over the tube length

UNIT-III PSYCHROMETRY. Though there are many psychometric terms, yet the following are important from the subject point of view :

CHAPTER 8 EVAPORATION. The basic factors that affect the rate of evaporation are the:

SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU DEPARTMENT OF MECHANICAL ENGINEERING ETD-II. Model Short Answer Questions And Answers

COMPARING AIR COOLER RATINGS PART 1: Not All Rating Methods are Created Equal

Heat Pump Assisted Drying - Freeze Drying Technology

VISUAL PHYSICS ONLINE THERMODYNAMICS WHAT HAPPENS WHEN SOMETHING IS HEATED? LATENT HEAT

Physical Mechanism of Convection. Conduction and convection are similar in that both mechanisms require the presence of a material medium.

Chapter 14 GAS VAPOR MIXTURES AND AIR-CONDITIONING

Theoretical Performance Analysis Of Direct Evaporative Cooler In Hot And Dry Climates

Moisture in the Atmosphere. GEOG/ENST 2331 Lecture 9 Ahrens: Chapter 4

A/C Cooling Load calculation and measurement

UNIT - 3 Refrigeration and Air - Conditioning

CE311 Fall 2016 Mid-Term Exam 1

Heat pump and energy recovery systems

Title of the paper: Principles of Food Processing F04PF21 FREEZE DRYING AND ROTARY DRYING PROCESS Dr. P. Suganya

MIXING RATIO AND ABSOLUTE HUMIDITY

Thermodynamics II Chapter 6 Mixtures & Psychrometry

Feasibility of Controlling Heat and Enthalpy Wheel Effectiveness to Achieve Optimal Closed DOAS Operation

Water in the Atmosphere

HVAC (Heating, Ventilating, and Air Conditioning)

DRYING OF MILK SPRAY DRYING

Homework Chapter2. Homework Chapter3

EXPERIMENTAL STUDY OF AIR FLOW RATE EFFECTS ON HUMIDIFICATION PARAMETERS WITH PREHEATING AND DEHUMIDIFICATION PROCESS CHANGING

Exhaust. a) For an arbitrary ambient temperature develop an expression for Q chiller in terms of M amb and M total.

There are a number of factors in a process which may result in liquid entrainment. Some of the commonly observed causes are discussed below.

CE311 Fall 2016 Mid-Term Exam 1

R07. Answer any FIVE Questions All Questions carry equal marks *****

Air Conditioning Clinic

ENSC 388: Engineering Thermodynamics and Heat Transfer

THE GATE COACH All Rights Reserved 28, Jia Sarai N.Delhi-16, ,-9998

Experiment 5 Liquid Diffusion Coefficient

Mechanical Engineering Department Sheet (1)

Psychrometrics: The Science of Moisture in Air. Presented by Tom Peterson, CEO and Founder. Climate by Design International

EXPERIMENTAL AND CFD STUDIES ON SURFACE CONDENSATION

OIL AND GAS INDUSTRY

Cassava Chip Drying by Using a Small-Scale Hot-Air Microwave Oven

Hygrometry. The art or science of humidity observation

Importance of solar drying

Reducing energy consumption of airconditioning systems in moderate climates by applying indirect evaporative cooling

Chapter 14. At temperatures below the critical temperature, the gas GAS VAPOR MIXTURES AND AIR-CONDITIONING. Objectives

Fluidised-Bed Paddy Drying

UNIT 1 AIR CONDITIONING 1. Write the various psychometric processes? Explain any four processes with neat sketches?

[1] Lecture 2 Particulate emission control by mechanical separation & wet gas scrubbing

MASS TRANSFER. Theory and Practice. N. ANANTHARAMAN Professor Department of Chemical Engineering National Institute of Technology Tiruchirappalli

Evaporation is a unit operation that separates a liquid

Fundamentals of Psychrometrics. By James L. Murphy, Colorado Building Environments Sales Engineer

4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015)

DryingMate A/S. Energy aspects and practical challenges. Ebbe Nørgaard, Director. DryingMate A/S

PhEn-602 Pharmaceutical Facility Design. Notes #7 J. Manfredi

Use this Construction/HVAC Glossary to answer the questions below.

Paper No. : 04 Paper Title : Unit Operations in Food processing Module 11 : Principles of Refrigeration

c. 13,000 gallons/minute to m3/day

Experimental Analysis of Open, Simple and Modified Greenhouse Dryers for Drying Potato Flakes under Forced Convection

Performance analysis of two industrial dryers (cross flow and rotary) for ligno-cellulosic biomass desiccation

Cork Institute of Technology Higher Certificate in Engineering in Building Services Engineering Award

NEW CD WARP CONTROL SYSTEM FOR THE CORRUGATING INDUSTRY

S.A. Klein and G.F. Nellis Cambridge University Press, 2011

Compendium DES July 2016, CARN

Experimental Investigation of a Heat Pump Assisted Fluidized Bed Dryer

Mechanical Engineering Laboratory

DESIGN OF A SOLAR/LPG DRYER UNIT

Basic Principals of Air conditioning By Dr. Esam Mejbil Abed

Research Article Design and Evaluation of Solar Grain Dryer with a Back-up Heater

Transcription:

Separation Processes: Drying ChE 4M3 Kevin Dunn, 2013 kevin.dunn@mcmaster.ca http://learnche.mcmaster.ca/4m3 Overall revision number: 288 (December 2013) 1

Copyright, sharing, and attribution notice This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, please visit http://creativecommons.org/licenses/by-sa/3.0/ This license allows you: to share - to copy, distribute and transmit the work to adapt - but you must distribute the new result under the same or similar license to this one commercialize - you are allowed to use this work for commercial purposes attribution - but you must attribute the work as follows: Portions of this work are the copyright of Kevin Dunn, or This work is the copyright of Kevin Dunn (when used without modification) 2

We appreciate: if you let us know about any errors in the slides any suggestions to improve the notes All of the above can be done by writing to kevin.dunn@mcmaster.ca or anonymous messages can be sent to Kevin Dunn at http://learnche.mcmaster.ca/feedback-questions If reporting errors/updates, please quote the current revision number: 288 3

References used (in alphabetical order) Geankoplis, Transport Processes and Separation Process Principles, 4th edition, chapter 9. Perry s Chemical Engineers Handbook, 8th edition, chapter 12. Richardson and Harker, Chemical Engineering, Volume 2, 5th edition, chapter 16. Schweitzer, Handbook of Separation Techniques for Chemical Engineers, chapter 4.10. Seader, Henley and Roper, Separation Process Principles, 3rd edition, chapter 18. Uhlmann s Encyclopedia, Drying, DOI:10.1002/14356007.b02 04.pub2 4

Background We consider drying of solid products here. Remove liquid phase from solid phase by an ESA = thermal energy It is the final separating step in many processes, especially after a filtration step pharmaceuticals foods crops, grains and cereal products lumber, pulp and paper products catalysts, fine chemicals detergents Why dry?) packaging dry product is much easier than moist/wet product reduces weight for shipping preserves product from bacterial growth stabilizes flavour and prolongs shelf-life in foods provides desirable properties: e.g. flowability, crispiness reduces corrosion: the corrosion triangle : removes 1 of the 3 5

The nature of water in solid material At 20 C Material, when exposed to air with a certain humidity, will reach equilibrium with that air. [Richardson and Harker, p 902] 6

The nature of water in solid material 1. Bound moisture adsorbed into material s capillaries and surfaces or in cell walls of material its vapour pressure is below water s partial pressure at this T 2. Free moisture water in excess of the above equilibrium water [Seader, Henley and Roper, p 749] 7

Drying: the heat and mass transfer view points Both heat and mass transfer occur simultaneously Mass transfer Bring liquid from interior of product to surface Vapourization of liquid at/near the surface Heat transfer from bulk gas phase to solid phase: portion of it used to vapourize the liquid (latent heat) portion remains in the solid as (sensible heat) Transport of vapour into the bulk gas phase Key point: heat to vapourize the liquid is adiabatically provided by the air stream. Air is cooled as a result of this evaporation The H vap is a function of the temperature at which it occurs: 2501 kj/kg at 0 C 2260 kj/kg at 100 C Linearly interpolate over this range (small error though) 8

Terminology [Wikipedia File:Phase diagram of water.svg] 9

Terminology Partial pressure, recall, is the pressure due to water vapour in the water-air mixture Vapour pressure, is the pressure exerted by (molecules of liquid water in the solid) on the gas phase in order to escape into the gas [a measure of volatility] ethanol s vapour pressure at room temperature: 6000 Pa water s vapour pressure at room temperature: 2300 Pa Moisture evaporates from a wet solid only when its vapour pressure exceeds the partial pressure Vapour pressure can be raised by heating the wet solid 10

Psychrometric chart [Geankoplis, p568; multiple internet sources have this chart digitized] 11

Terminology Dry bulb temperature: or just T db = temperature the horizontal axis on the psychrometric chart Humidity = ψ [ = mass of water ] vapour per kilogram of dry air kg water vapour units are kg dry air called H in many textbooks; always confused with enthalpy; so we will use ψ units do not cancel, i.e. not dimensionless the vertical axis on the psychrometric chart Maximum amount of water air can hold at a given T : ψ S = saturation humidity move up vertically to 100% humidity Percentage humidity = ψ 100 ψ S Partial pressure we said is the pressure due to water vapour in the water-air mixture mass of water vapour ψ = = 18.02 p A mass of dry air 28.97 P p A pa = partial pressure of water in the air P = total pressure = 101.325 kpa in this psychrometric chart 12

Terminology Dew point: the temperature to which you must cool the air/vapour mixture to just obtain saturation (100% humidity), i.e. condensation just starts to occur. Example: Air at 65 C and 10% humidity has a dew point temperature of 25 C. This parcel of air contains 0.021 kg of water per kilogram of dry air. 13

Terminology Humid heat: amount of energy to raise 1kg of air and the water vapour it contains by 1 C c S = 1.005 + 1.88ψ [ ] kj cs has units [ (kg dry air)(k) ] kj 1.005 is heat capacity of dry air [ (kg dry air)(k) ] kj 1.88 is heat capacity of water vapour (kg water vapour)(k) [ ] kg water vapour ψ is the humidity kg dry air 14

Terminology: adiabatic saturation Consider a stream of air at temperature T and humidity ψ. It adiabatically contacts fine water droplets long enough to reach equilibrium (i.e. saturation). We expect outlet gas temperature = T S < T and outlet humidity of ψ S > ψ. Energy to evaporate liquid water into the outlet air stream comes from the air. 15

Terminology: adiabatic saturation Quantify it: do an enthalpy balance at T ref = T S i.e. we can disregard water; and at T s water is in liquid phase Enthalpy of vapour phase entering: c S (T T S ) + (ψ)( H vap ) Enthalpy of vapour phase leaving: c S (T S T S ) + (ψ S )( H vap ) y-axis change x-axis change = ψ ψ S = T T S c S H vap = 1.005 + 1.88ψ H vap These are the diagonal sloped lines on the psychrometric chart: adiabatic saturation curves. 16

Adiabatic saturation temperature 17

Exercise An air stream at 70 C and carrying 55 g water per kg dry air is adiabatically contacted with liquid water until it reaches equilibrium. The process is continuous and operating at steady-state. Air feed is 1 kg dry air per minute. 1. What is the percentage humidity of the incoming air stream? 2. What is the percentage humidity of the air stream leaving? 3. What is the humidity [mass/mass] of the air stream leaving? 4. What is the temperature of the air stream leaving? 5. If the contacting takes place in a unit shown below, what is the mass of inlet make-up water required at steady-state operation? 18

Exercise An air stream at 70 C and carrying 55 g water per kg dry air is adiabatically contacted with liquid water until it reaches equilibrium. The process is continuous and operating at steady-state. Air feed is 1 kg dry air per minute. 1. What is the percentage humidity of the incoming air stream? [20%] 2. What is the percentage humidity of the air stream leaving? 3. What is the humidity [mass/mass] of the air stream leaving? 4. What is the temperature of the air stream leaving? 5. If the contacting takes place in a unit shown below, what is the mass of inlet make-up water required at steady-state operation? 18

Exercise An air stream at 70 C and carrying 55 g water per kg dry air is adiabatically contacted with liquid water until it reaches equilibrium. The process is continuous and operating at steady-state. Air feed is 1 kg dry air per minute. 1. What is the percentage humidity of the incoming air stream? [20%] 2. What is the percentage humidity of the air stream leaving? [100%] 3. What is the humidity [mass/mass] of the air stream leaving? 4. What is the temperature of the air stream leaving? 5. If the contacting takes place in a unit shown below, what is the mass of inlet make-up water required at steady-state operation? 18

Exercise An air stream at 70 C and carrying 55 g water per kg dry air is adiabatically contacted with liquid water until it reaches equilibrium. The process is continuous and operating at steady-state. Air feed is 1 kg dry air per minute. 1. What is the percentage humidity of the incoming air stream? [20%] 2. What is the percentage humidity of the air stream leaving? [100%] 3. What is the humidity [mass/mass] of the air stream leaving? [66g/kg] 4. What is the temperature of the air stream leaving? 5. If the contacting takes place in a unit shown below, what is the mass of inlet make-up water required at steady-state operation? 18

Exercise An air stream at 70 C and carrying 55 g water per kg dry air is adiabatically contacted with liquid water until it reaches equilibrium. The process is continuous and operating at steady-state. Air feed is 1 kg dry air per minute. 1. What is the percentage humidity of the incoming air stream? [20%] 2. What is the percentage humidity of the air stream leaving? [100%] 3. What is the humidity [mass/mass] of the air stream leaving? [66g/kg] 4. What is the temperature of the air stream leaving? [45 C] 5. If the contacting takes place in a unit shown below, what is the mass of inlet make-up water required at steady-state operation? [(66 55) = 11 g per min] 18

Wet-bulb temperature [Wikipedia: http://en.wikipedia.org/wiki/wet-bulb temperature] I I I the temperature a parcel of air would have if it were cooled to saturation by evaporation of water into it, with the latent heat being supplied by the parcel Calculated in a manner similar to adiabatic saturation temperature (use the same slopes - for water only!) the temperature we consider evaporation to be occurring at, right on the particle s surface 19

Humid volume Equivalent to the inverse density 1/ρ of moist air. Derived from the ideal-gas law and simplified here: v H = [ 2.83 10 3 + 4.56 10 3 ψ ] [ T db ψ is humidity in [kg water per kg dry air] T db is the recorded dry bulb temperature in [K] m 3 kg moist air ] For example, 350K and ψ = 0.026 kg/kg, then v H = [ 2.83 10 3 + 4.56 10 3 (0.026) ] (350) = 1.03 m 3 kg moist air 20

Psychrometric chart [Geankoplis, p568; multiple internet sources have this chart digitized] 21

Example Air at 55 C and 1 atm enters a dryer with a humidity of 0.03 kg water per kg dry air. What are values for: the recorded dry-bulb temperature percentage humidity dew point temperature humid heat humid volume wet-bulb temperature 22

Example Air at 55 C and 1 atm enters a dryer with a humidity of 0.03 kg water per kg dry air. What are values for: the recorded dry-bulb temperature [55 C] percentage humidity [26%] dew point temperature [ 31 C] [ ] kj humid heat c S = 1.061 (kg dry air)(k) humid volume [T = 328K; v H = 0.973m 3 /(kg moist air) ] wet-bulb temperature [ 36 C] 22

Equipment Multiple dryer types are commercially available: each have relative advantages and disadvantages our purpose is not to cover their details in practice: you would work in consultation with vendors in practice: plenty of trade literature on the topics (SDL!) Some major distinctions though: mode of operation: batch (low volume) vs continuous how the heat is provided: direct heat: convective or adiabatic; provides heat and sweeps away moisture indirect heat: non-adiabatic, i.e. by conduction or radiation; e.g microwave (for flammables/explosives) degree of agitation stationary material fluidized or mixed in some way 23

How to choose the equipment* Strongly dependent of feed presentation solid, slurry, paste, flowing powder, filter cake, fibrous, etc Heating choice: temperature-sensitive if convective heat is directly applied Agitation: produce fines (dust hazard) or fragile material good mixing implies good heat distribution stationary product: can form hot-spots in the solid General choices are between: 1. shelf/tray dryers 2. continuous tunnels 3. rotary dryers 4. drums 5. spray dryers 6. fluidized beds * See Schweitzer; See Perry s; See Seader, Henley and Roper 24

Some equipment examples: Continuous tunnel dryer [Geankoplis, p 561] 25

Some equipment examples: Rotating dryer [Schweitzer, p 4-161 and 4-162] 0.3 to 7 m in diameter 1.0 to 30 m in length 5 to 50 kg water evaporated per hour per m 3 dryer volume Residence time: 5 minutes to 2 hours Link to a video 26

Some equipment examples: Drum dryers [Richardson and Harker, p 932] Splash feed Double drum, top feed Drums heated with condensing steam Dried material is scraped off in chips, flakes or powder 27

Some equipment examples: Spray dryers Also called atomizers Produce uniformly shaped, spherical particles e.g. milk powder, detergents, fertilizer pellets [Seader, Henley and Roper, p 737] Link to a video 28

Some equipment examples: Fluidized bed dryer [Richardson and Harker, p 972] upward flowing air stream (elutriation) turbulent mixing: good heat and mass transfer uniform solid temperature solids are gently treated solids are retrieved via gravity and cyclones fluidizing air scrubbed before vented 29

Drying profiles Solid drying is phenomenally complex for different materials. Observe it experimentally and plot it: [Seader, Henley and Roper, p 751 and 752] A B: initial phase as solid heats up B C: constant-rate drying C D: first falling-rate drying D end: second falling-rate drying 30

Drying profiles mass of water removed Water flux = = m s dx (time)(area) A dt = 1 A X = mass of water remaining per mass dry solid A = surface area of solid exposed m s = mass of dry solid m w = mass of water evaporated out of solid d(m w ) dt We are most interested in the constant drying-rate period: rate-limiting step: heat and mass transfer through boundary layer at the solid surface the solid is able to provide water to the surface a fast rate 31

Heat transfer during constant drying In constant-rate drying region the wet surface continually supplies moisture. Assumes: all the heat provided is only used to evaporate liquid (Moisture flux)( H vap ) = Heat flux 1 d(m w ) H vap = A dt driving force resistance = (T air T solid surface ) 1/h d(m w ) dt = (h)(a)(t db T wb ) H vap mw,f m w,0 d(m w ) = M water = tf (h)(a)(t db T wb ) t 0 H vap dt ( M water )( H vap ) (h)(a)(t db T wb ) = time to remove M water 32

Some heat-transfer correlations for h In constant-rate drying region the wet surface continually supplies moisture Heat-transfer coefficients derived that are independent of solid type! In all cases: G = 3 600 ρv avg where v and ρ are in SI units and G is in [kg.hr 1.m 2 ] already 1. Parallel flow to surface: Air between 45 to 150 C G = 2 450 to 29 300 kg.hr 1.m 2 This corresponds to a velocity of v = 0.61 to 7.6m.s 1 h = 0.0204G 0.8 [W.m 2.K 1 ] G has non-si units here! 2. Perpendicular flow (impingement) Air between 45 to 150 C G = 3 900 to 19 500 kg.hr 1.m 2 This corresponds to a velocity of v = 0.9 to 4.6m.s 1 h = 1.17G 0.37 [W.m 2.K 1 ] See textbooks for h when using pelletized solids (e.g packed bed) 33

h = a(g) b = a(ρv) b 34 Why these equations makes sense ( M water )( H vap ) (h)(a)(t db T wb ) = time to remove M water

Wet basis and dry basis 1. Wet basis = (mass of water)/(mass of wet solids) For example, if we have 200 kg of wet solids, that contains 30% moisture (wet basis) 30% of that is moisture = 0.3 200 = 60 kg of water 70% of that is solid = 0.7 200 = 140 kg of dry solid 2. Dry basis = (mass of water)/(mass of dry solids) For example, if we have 200 kg of wet solids, that contains 30% moisture (dry basis) Consider a 100 kg amount of moist dry solids, and ratio against it 30 kg water 200 kg wet solids 30 kg water + 100 kg solid 30 Moisture amount = 200 = 0.231 200 = 46.2 kg water 130 100 Solids amount = 200 = 153.8 kg dry solid 130 35

Filter cake drying example [Flickr, CC BY 2.0] [Flickr, CC BY 2.0] Consider 100kg of cake, discharged at 30% moisture (wet basis). Air to dry the cake at 75 C is used, 10% humidity, with a velocity of 4 m/s parallel to the solids in a tray dryer; the tray holds 2 m 2. The aim is to achieve a 15% (dry basis) cake which can be milled and packaged. Estimate the drying time. 36

Some equipment examples: Shelf/tray dryer We will see more equipment examples next. [Seader, Henley and Roper, p 728] 37

Filter cake drying example 1. What is the humidity of the incoming air stream? 2. What is the wet-bulb temperature of this air stream? 3. What is the humid volume of the drying air stream? 4. Estimate the heat transfer coefficient. G = 3 600 ρvavg = 3 600(1.048) 1 4 = h = 0.0204(13 740) 0.8 = 5. Substitute into the constant-drying rate expression to find: drying time = ( M water)( H vap ) ha(t db T wb ) = (19.5)(2401 1000) (41.7)(2)(75 41.3) = Water initially = 30 kg; dry basis = 0.15 = 30 M water 70 kg dry solids So M water = 19.5 kg We need the H vap at T wb (why?) 2501 kj/kg at 0 C 2260 kj/kg at 100 C 38

Filter cake drying example 1. What is the humidity of the incoming air stream? [ψ = 0.04 kg water/kg dry air] 2. What is the wet-bulb temperature of this air stream? [T wb 41.3 C] 3. What is the humid volume of the drying air stream? [T db = 348K, v H = 1.048m 3.kg 1 ] 4. Estimate the heat transfer coefficient. G = 3 600 ρvavg = 3 600(1.048) 1 4 = 13 740 kg.hr 1.m 2 h = 0.0204(13 740) 0.8 = h = 41.7 W.m 2.K 1 5. Substitute into the constant-drying rate expression to find: drying time = ( M water)( H vap ) (19.5)(2401 1000) = ha(t db T wb ) (41.7)(2)(75 41.3) = drying time = 4.6 hrs Water initially = 30 kg; dry basis = 0.15 = 30 M water 70 kg dry solids So M water = 19.5 kg We need the H vap at T wb (why?) [2401 kj.kg 1.K 1 ] 2501 kj/kg at 0 C 2260 kj/kg at 100 C 38

Example: extended What if we used a perpendicular (impinged) flow of air at 4 m/s? h will change! Use an alternative correlation, but check it s validity first. h = 1.17G 0.37 h = 1.17(13 740) 0.37 = 39.74 W.m 2.K 1 So slightly longer drying time required. No real benefit of perpendicular flow. What if we created spherical pellets of particles first? if N Re < 350, then h = 0.214 G 0.49 d 0.51 p if N Re 350, then h = 0.151 G 0.59 dp 0.41 d p is equivalent spherical particle diameter in m N Re = d pg µ, but G is in SI units now, and µ 2 10 5 kg.m 1.s 1 39