Salicylic Acid Treatment Extends the Vase Life of Five Commercial Cut Flowers

Similar documents
Salicylic and Citric Acid Treatments Improve the Vase Life of Cut Chrysanthemum Flowers

Former M.Sc. Student, Department of Horticulture, Shirvan Branch, Islamic Azad University, Shirvan, Iran 2

Influence of various preservative chemicals on postharvest life of cut roses (Rosa hybrida L.) cv. happiness

Extending the Vase Life of Gerbera (Gerbera hybrida) Cut Flowers Using Chemical Preservative Solutions

Study on Interaction Effects of Mechanical and Geranium Essential Oil Treatments on Vase Life of Cut Chrysanthemum (Dendranthema grandiflorum L.

Prolonging the Vase Life of Cut Carnation L. cv. Reina by Using Different Preservative Solutions

Effect of Ethanol and Essential Oils on Extending Vase-life of Carnation Cut Flower (Dianthus caryophyllus cv. Yellow Candy )

Postharvest Life of Cut Chrysanthemum Cultivars in Relation to Chemicals, Wrapping Material and Storage Conditions

Improvement of postharvest quality of cut tulip White Parrot by nano silver

Study on Effects of Ascorbic Acid and Citric Acid on Vase Life of Cut Lisianthus (Eustoma grandiflorum Mariachi Blue

Effect of Different Chemicals on the Microbial Growth during Vase Life Period of Cut Rose cv. First Red

Keeping Quality and Vase life of Carnation cv. Eskimo as Influenced by Different Chemicals

Advances in Environmental Biology

USDA-ARSARS 6/21/2010. Data from the California Department of Food and Agriculture total $31.7 billion. Fruits and nuts, $10.

How Important Are Bacteria for the Vase Life of Cut Gerbera Flowers?

Effects of Gibberellic Acid on the Vase Life of Cut Patumma (Curcuma alismatifolia Gagnep.) Chaing Mai Flowers

Quality and Logistics of Horticultural Products. Ernst Woltering WUR AFSG. Fresh produce Innovations

Effect of Different Levels of Pulsing Concentrations on Vase Life of Gladiolus (Gladiolus grandiflorus L.)

Department of Horticultural Science. Rasht Branch, Islamic Azad University, Rasht, Iran. 2

The Effects of Different Floral Preservative Solutions on Vase life of Lisianthus Cut Flowers

Pre- and post-harvest treatments to maintain quality and control diseases of greenhouse and nursery crops species

Effect of nitric oxide and production location on vase life of cut Eucomis 'Sparkling Burgundy' flowers

HAVE YOU or someone you know received cut

EFFECT OF DIFFERENT PACKING MATERIALS ON THE POST HARVEST LIFE OF ROSE

The effects of Acetyl CoA as a chemical preservative on postharvest life of gerbera cut flowers

Effects of Flower Preservatives on the Vase Life of Gerbera (Gerbera jamesonii H. Bolus) Flowers

Ornamental Industry. The postharvest problems. Value of California s agriculture. Postharvest science 6/19/2013

VASE WATER EFFECTS ON POSTHARVEST LONGEVITY AND WATER RELATIONS OF Gladiolus grandiflorus WHITE PROSPERITY

Pelagia Research Library. Effect of some essential oils on postharvest quality and vase life of gerbera cut flowers (gerbera jamesonii cv.

Standardization of Vase Solutions for Maximum Buds Opening and Longer Vase-Life of Gladiolus Flower cv. Nova Lux

Evidence for Physiological Vascular Occlusion in Stems of Cut Gerbera cv. Hongyan

Effect of pulsing on improving the vase life of cut chrysanthemum (Dendranthema grandiflora Tzevelev.) cv. White Double

Effect of Wall Colors and Nanosilver Treatment on the Vase Life of Cut Carnation "Express"

Non-decorative Floral Organs Largely Contribute to Transpiration and Vase Life of Cut Hydrangea Flowers with Lacecap Inflorescence

Effect of Thidiazuron and Salicylic Acid on the Vase Life and Quality of Alstroemeria (Alstroemeria hybrida L.cv. `Modena`) Cut Flower

Specialty cut crops are most commonly

Pre-harvest calcium sulfate application improves postharvest quality of cut rose flowers

Comparison of Different Salicylic Acid Application Ways as a Preservative on Postharvest Life of Gerbera Cut Flowers

Evaluation the effect salicylic acid and benzyladenine on enzymic activities and longevity of gerbera cut flowers

Prolonging of the Vase Life of Gerbera Jamesonii Treatment with Sucrose Before and, During Simulated Transport.

Effects of Nano-Silver and Sucrose applications on Cut Flower Longevity and Quality of Tuberose (Polianthus tuberosa)

Treatment with Essential Oils Extends the Vase Life of Cut Flowers of Lisianthus (Eustoma grandiflorum)

Benzyladenine and Gibberellins Improve Postharvest Quality of Cut Asiatic and Oriental Lilies

Conditioning and Storing Cut Flowers and Greens

Effect of Growth Conditions on Post Harvest Rehydration Ability of Cut Chrysanthemum Flowers

Research Update. Maintaining plant visual appearance and vigor in the retail environment

Efficiency of Benzyladenine reduced ethylene production and extended vase life of cut Eustoma flowers

World Journal of Pharmaceutical and Life Sciences WJPLS

Quality management of cut carnation 'Tempo' with 1- MCP

Sunflower Sunbright and Sunbright Supreme Culture

Impact of Different Plant Growth Retardants on Growth Behavior of Young Peach Plants

Vase Life Extension of Rose Cut Flowers (Rosa Hybirida) as Influenced by Silver Nitrate and Sucrose Pulsing

Project Report ROOT GROWTH DURING SOD TRANSPLANTING. Bingru Huang, Associate professor

Received: 28 th Feb-2014 Revised: 29 th March-2014 Accepted: 30 th March-2014 Research article

Effect of Leaf Extract Sirih (Piper betle L.) and on Future Soaking Time Freshness of Flowers Rose (Rosa sinensis L.)

Review on the impact of different vase solutions on the postharvest life of rose flower

Ola A. Amin. Volume : 06 Issue : 01 Jan.-Mar Pages: Middle East Journal of Agriculture Research ISSN

Response of Tuberose (Polianthes tuberosa) to potassium and planting depth

EFFECT OF FOLIAR SILICIC ACID ON GROWTH AND YIELD ATTRIBUTES OF ROSE CUT FLOWERS (ROSA HYBRID)

CARE & HANDLING. Optimal Relative Humidity (RH) should be between 75% 90%. Wet pack and dry pack flowers can both be stored at the same RH.

139 Arab Univ. J. Agric. Sci., Ain Shams Univ., Cairo, 24(1), , 2016

Using Gibberellins to Prevent Leaf Yellowing in Cut Lilies

Special Research Report #452: Innovative Packaging Technologies to Enhance the Quality of Fresh Cut Flowers

Impact of salicylic acid and jasmonic acid on keeping quality of rose (cv. Angelina ) flowers

Effect of Some Chemical Treatments on Keeping Quality and Vase Life of Chrysanthemum Cut Flowers

Standardization of Tinting Techniques in China aster cv. Local White

Predicting Rose Vase Life in a Supply Chain

The Effects of Precooling Temperatures and Durations on Forcing of Lilium longiflorum, Nellie White

Lilies and gladioli are among the

Response of hybrid lilies development to the date of bulb removal

Postharvest Quality Studies in Tuberose (Polianthestuberosa cv. Peril) Cut Flower as Preservative Solutions

THE COMPARISON OF ANTIMICROBIAL EFFECTS OF SILVER NANOPARTICLES (SNP) AND SILVER NITRATE

Influence of preservative solutions on vase life and postharvest characteristics of rose (Rosa hybrid) cut flowers

Evaluation the Effect of Nanosilver with Salicylic Acid and Benzyladenine on Longevity of Gerbera Flowers

Sibgol Khoshkam 1*, Azam Salari 2

INFLUENCE OF SUCROSE AND ALUMINIUM SULPHATE VASE LIFE OF CUT HIPPEASTRUM FLOWER

Post Harvest Handling of Cut Flowers

Effect of Nitrogen and Potassium on Growth and Development of Curcuma alismatifolia Gagnep.

Causes of Quality Loss of Cut Flowers - a Critical Analysis of Postharvest Treatments

Evaluation of Botrytis cinerea isolates for virulence on rose cut flowers in greenhouse condition in Iran

ALSTROEMERIA ANTHURIUMS

Salinity stress effects changed during Aloe vera L. vegetative growth

Evaluation the effect of sucrose and GA 3 treatment on vase life carnation cut flower (Dianthus caryophyilus var Yellow)

Effects of Reduced Nutrient and Water Availability on Plant Growth and Post-Production Quality of Hibiscus rosa-sinensis

Effect of pre soaking of bulbs in plant growth regulators on flowering and vase life of tuberose (Polianthes tuberosa Linn.)

Treatments to Enhance Resistance of Cut Rose Flowers to Botrytis Disease

Received: February 10, 2014; Accepted: March 27, 2014

Influence of Different Protected Conditions on Growth and Yield of Parthenocarpic Cucumber (Cucumis sativus) Hybrids

Propagation of Potato (Solanum tuberosum L.) by Seedlings

OPTIMIZING FERTIGATION FREQUENCY FOR ROSA HYBRIDA L.

Postharvest Biology Overview

Effects of Greenhouse Conditions on the Quality and Vase Life of Freesia 'Yvonne'. A Nursery Comparison

Role of Plant Hormones on Vegetative Growth of Tomato (Lycopersicon esculentum Mill.)

Performance of Different Tomato Genotypes in the Arid Tropics of Sudan during the Summer Season. II. Generative Development

EFFECT OF GROWING MEDIA ON THE CORMELIZATION OF FREESIA UNDER THE AGRO-CLIMATIC CONDITIONS OF PESHAWAR

Comparison of Silver Nanoparticles and Other Metal Nanoparticles on Postharvest Attributes and Bacterial Load in Cut Roses var.

EFFECT OF INDOLEBUTYRIC ACID (IBA) AND PLANTING TIMES ON THE GROWTH AND ROOTING OF PEACH CUTTINGS

on growth and flowering regulation of in vitro raised hybrid gerbera under shade net

International Journal of ChemTech Research

Effect of harvesting time and moisture on mechanical properties of garlic (Allium sativum L.) skin

Transcription:

Electronic Journal of Biology, 17, Vol.13(1): 67-72 Salicylic Acid Treatment Extends the Vase Life of Five Commercial Cut Flowers Hassan Bayat*, Mohammad Hossein Aminifard Department of Horticultural Science, College of Agriculture, University of Birjand, Birjand, Iran. *Corresponding author. Tel: 98915115; E-mail: hassanbayat@birjand.ac.ir Citation: Bayat H, Aminifard MH. Salicylic Acid Treatment Extends the Vase Life of Five Commercial Cut Flowers. Electronic J Biol, 13:1 Received: November, 16; Accepted: January, 17; Published: February 6, 17 Research Article Abstract To evaluate the efficacy of Salicylic Acid (SA) ( as control,, and mg/l) to extend flower vase life, a completely randomized design with 5 most important cut flowers across the world Alstroemeria peruviana, Gerbera jamesonii, Lilium asiaticum, Rosa hybrida and Polianthes tuberose with 4 replicates and 3 samples for each replicate was conducted. Increasing SA concentrations enhance the vase life to noticeable values and the highest for all cut flowers was observed in mg/l SA treatment. The addition of mg/l SA to clean distilled water extended the vase life of Alstroemeria peruviana, Gerbera jamesonii, Lilium asiaticum, Polianthes tuberose and Rosa hybrida by, 67, 21, 71 and 56%, relative to controls, respectively. Salicylic acid treatments increased average petal water content of all cut flowers by 34% in comparison to control. The beneficial effects of salicylic acid are associated with the plant regulating and anti-stress properties of salicylic acid. Results of this experiment provide support for wider use of SA as natural, cheap, safe and biodegradable compound, as a vase solution preservative for prolonging the postharvest longevity of cut flowers. Keywords: Biodegradable compound; Postharvest; Salicylic acid; Relative fresh weight; Vase life. 1. Introduction Cut flowers are valuable products of horticulture. The post-harvest longevity of cut flowers is of critical importance in determining the value of the crop. Many investigations on the vase life and quality of cut flowers have been conducted by adding various preservatives to the vase water causing in cut flower senescence being delayed considerably [1-7]. Floral preservative usually contain germicides, ethylene synthesis inhibitors, growth regulators, some mineral compounds and carbohydrates that are essential to extend the vase life of cut flowers [8]. Flowers maintaining their physiological functions very actively even after harvest and the beginning of their senescence very often depends on ethylene action [9]. There are three limitations which will affect the flower senescence: the water balance, the amount of carbohydrates and the susceptibility to ethylene [7,-12]. The most important deteriorating factor in cut flower is the blockage of xylem vessels by air and microorganism which caused vascular blockage and thus reduced the vase life of cut flower [13]. Salicylic Acid (SA), a natural plant hormone has important role in abiotic and biotic stress [14]. Salicylic acid is qualified as a plant hormone due to its physiological and biological roles in plants [15]. It has also been suggested as a signal transducer or messenger under stress conditions [16]. Salicylic acid has potential to reduce ph of water and consequently, the proliferation of bacteria was reduced [5,17,18]. It is reported that SA suppresses ACC synthase and ACC oxidase activities and biosynthesis of ethylene in kiwi fruit [19]. Moreover, SA has been shown to restrict with the biosynthesis and/ or action of ethylene in plants []. Addition of SA and sucrose to vase solution of cut roses caused a significant reduction in respiration rate, alleviation of the moisture stress and improved the vase life [21]. Moreover, it has been shown that treatment with SA improved postharvest life of different cut flowers [5,]. Therefore, this experiment was conducted to investigate the effect of SA as components of the vase solution on the vase life of five major economic cut flowers namely Alstroemeria peruviana, Gerbera jamesonii, Lilium asiaticum, Rosa hybrida and Polianthes tuberose. 2. Materials and Method 2.1 Plant material and treatments Flowering stems of 5 economically important cut flower species namely Alstroemeria peruviana, Gerbera jamesonii, Lilium asiaticum, Rosa hybrida and Polianthes tuberose were supplied from a standard hydroponic greenhouse in Mashhad (36 17 44 N and 59 36 2 E), Iran. Upon arrival in the laboratory, flower stems free of visible damage were trimmed to 45 cm-length using cutters. Leaves on the bottom cm of stems that would otherwise be submerged in vase water were removed by hand. Stems were then immediately assigned at random to treatments, ISSN 18-3122 - 67 -

Electronic Journal of Biology, 17, Vol.13(1): 67-72 depending upon the particular experiment. Glass ml capacity vases were prepared and filled with ml of deionized water and,, and mg/l SA. Sucrose at 4% was added in all treatments as a base solution. The opening of each vase was covered in order to limit vase solution evaporative loss and to allow determination of the uptake by stems of the different preservatives and pollution from falling flowers and leaves. Stems were maintained in a controlled environment room at 21 ±.5ºC and % relative humidity under continuous fluorescent light (47 µmol m 2 s 1 ). 2.2 Vase life determination Vase life of 5 cut flowers used in this experiment was determined according to the Table 1 [1]. 2.3 Petal water content Petal water content from each sample was determined on the end of control treatment vase life for each cut flower studied. For this purpose, 1 g of petals from all replications and each sample were taken as FW and then dried at 7ºC for 24 h and their DW was recorded. Petal Water Content (WP) was then determined with the below equation [22]: %WP=(FW-DW/DW) 2.4 Cut flower water content Water contents of the examined cut flowers were similarly determined as petal water contents. 2.5 Fresh weight Fresh weight of cut flowers was measured every day through the experiment from day 1 to 9. 2.6 Experiment design and data analysis This experiment was conducted as a completely randomized design with SA at (,,, mg/l) with 4 replicates and 3 samples (individual flowers) for each replication. Data were analyzed as completely randomized design ANOVA using JMP8 software. Where significant (P.5) treatment effects were determined by ANOVA, data means were separated by the LSD test. 3. Results 3.1 Vase life According to the results shown in Table 2, SA as a preservative significantly increased the vase life of all 5 cut flowers (P 5%). Increasing SA concentrations enhance the vase life to noticeable values and the highest for all was observed in mg/l SA treatment. The addition of mg/l SA to clean distilled water extended the vase life of Alstroemeria peruviana, Gerbera jamesonii, Lilium asiaticum, Polianthes tuberose and Rosa hybrida by, 67, 21, 71 and 56%, relative to controls, respectively. Gerbera jamesonii, Rosa hybrid and Polianthes tuberosa showed a greater effect among others. Lilium asiaticum nearly showed the least increasing effect and it seems that senescence goes on with anther release and SA is not able to control this event properly. 3.2 Petal water content Results from petal water contents showed significant difference in SA treatments over control (P 5%). SA treatments with 34% increase by average compared to control, showed the highest petal water content in applied treatments (Figure 1). SA levels were also different significantly for some cut flowers like Rosa hybrida. The lowest amount was measured in control treatment while the highest are differently spread in higher concentrations of ( or mg/l) within cut flower samples (Figure 1). Table 1: Criteria used to determine end of flower vase life. Species End of vase life characteristics Alstroemeria peruviana Wilting and/or drop of >% of petals Gerbera jamesonii Drooping of flower and/or moderate wilting of petals Lilium asiaticum Senescence of all buds on a stem Rosa hybrida Wilting, bluing, disease of petals and/or drooping of flower Polianthes tuberosa Wilting and/or petal burning Table 2: Vase life (day) of tested cut flower species in salicylic acid (SA) treatments. SA concentrations (mg/l) Species Alstroemeria peruviana 18.44c * 22.bc 24.11ab 26.a Gerbera jamesonii.22c 11.67bc 14.b 17.11a Lilium asiaticum 15.55b 18.a 18. 67a 18.92a Rosa hybrida 4.96b 6.11b 7.14a 8.51a Polianthes tuberosa 9.77c 13.b 14.89a 15.33a * Means in each rows followed by at least one letter in common are not significantly different statistically using LSD test (P.5) ISSN 18-3122 - 68 -

Electronic Journal of Biology, 17, Vol.13(1): 67-72 92 9 88 86 9 7 A 9 7 B C 35 15 5 E D Figure 1: Petal water content of different cut flowers studied A) Alstroemeria peruviana B) Gerbera jamesonii C) Lilium asiaticum, D) Rosa hybrida and E) Polianthes tuberosa (Bars show ± standard error). Water content (%) Water content (%) 94 93 92 91 9 89 88 87 86 83 81 A SA Concentration (mm) C Water content (%) Water content (%) 89 78 76 75 72 9 88 86 B D 79 Water content (%) E 7 SA Concentration (mm) Figure 2: Water content of different cut flowers studied A) Alstroemeria peruviana B) Gerbera jamesonii C) Lilium asiaticum D) Rosa hybrida and E) Polianthes tuberosa (Bars show ± standard error). ISSN 18-3122 - 69 -

Electronic Journal of Biology, 17, Vol.13(1): 67-72 3.3 Cut flower water content Placement of cut flowers in vase water containing SA, significantly increased water content at the end of the experiment (P 1%). The highest amount of this trait was observed in higher concentrations of SA ( or mg/l) (Figure 2). Alstroemeria peruviana and Lilium asiaticum responded better to the treatments whereas Gerbera jamesonii and Rosa hybrid do not show a regular scheme (Figure 2). 3.4 Fresh weight Effect of SA was highly significant in this trait (P 1%) and the SA mg/l which had the highest effect among other treatments, even increased the fresh weight in day 14 of the experiment for Alstroemeria peruviana, while a noticeable reduction was observed in control for all cut flowers especially Lilium asiaticum and Polianthes tuberosa (Figure 3). The rate of weight reduction between days to 16 were significantly different in treatments used compared to control. Weight reduction was observed all in cut flowers of this experiment and within higher concentrations as the time to this event goes further on and it happens later. Rosa hybrida lost its weight earlier than others and was only measured to day 8 when the vase life ended (Figure 3). 4. Discussion A large number of factors such as pre-harvest conditions, packaging and postharvest handling and storage, interfere with the vase life. Salicylic acid has been found to play a key role in the regulation of plant growth and in the responses to environmental stresses [15,,23]. Salicylic acid treatments extended vase life in association with inhibition of ethylene production [9,,24]. Pathogens also affect vase life due to vascular blockage [12]. Salicylic acid has a ph of 2.4 and acidic solution inhibits bacteria growth and proliferation [15,18,,26]. The addition of SA to vase water has previously been shown to extend the longevity of cut Rosa flowers [18,21]. Water constitutes a large proportion of horticultural products weight. In addition to water, carbohydrates are the other major constituent of these products. These products are commonly take water and other materials from the mother plant, but when cut of, they rapidly move into senescence and death which take place in water loss and weight reduction. This reduction is much higher in stress conditions. Salicylic acid can 55 45 35 75 7 65 55 45 A 2 4 6 8 12 14 16 C 2 4 6 8 12 14 16 2 4 6 8 65 E 55 ppm ppm 45 ppm ppm 35 2 4 6 8 12 14 16 ppm ppm ppm ppm ppm ppm ppm ppm 15 15 B 2 4 6 8 12 14 16 D ppm ppm ppm ppm ppm ppm ppm ppm Figure 3: Fresh weight of treated cut flowers in different SA levels A) Alstroemeria peruviana B) Gerbera jamesonii C) Lilium asiatic um D) Rosa hybrida and E) Polianthes tuberosa. ISSN 18-3122 - 7 -

Electronic Journal of Biology, 17, Vol.13(1): 67-72 modulate plant responses to a wide range of oxidative stresses and prevents cell wall degradation [27,28]. As an apparent result in this experiment, in SA treatments after days, no fresh weight reduction is observed and a small increase is even, observed. Petals of a cut flower are the main ornamental parts and turgidity of this part is important for a good looking product. Petal turgidity depends largely on water uptake and maintenance in treatments used. Results of this experiment showed a significantly higher water uptake and maintain the water in cut flowers which increases the cut flower fresh weight, subsequently. The increases in water uptake and subsequently cut flower fresh weight, is apparently due to the acidifying and stress alleviating properties of SA [5,29]. According to the present results, we can generally discuss that, the major part of the water uptake is gathered in the petals which in fact helps to have a better visual quality in SA treated cut flower samples. 5. Conclusion In conclusion, the present study demonstrates that the inclusion of - mg/l SA in clean vase water can significantly extend the display life of five commercial cut flower species (i.e., Alstroemeria peruviana, Lilium asiaticum, Rosa hybrida, Gerbera jamesonii and Polianthes tuberosa). Higher concentrations showed better effects, although sometimes stem browning was observed at higher concentrations. The present findings provide support for wider testing and use of the natural, cheap, safe and biodegradable compound, SA as a vase solution additive for extending the postharvest longevity of flower species that are susceptible to vascular blockage of bacteria and ethylene. References [1] Abreu ME, Munné-Bosch S. (8). Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: a case study in field-grown Salvia officinalis L. plants. Environ Exper Bot. 64: 5-112. [2] Alaey M, Babalar M, Naderi R, et al. (11). Effect of pre- and post-harvest salicylic acid treatment on physiochemical attributes in relation to vase-life of rose cut flowers. Postharvest Biol. Technol. 61: 91 94. [3] Alverez AL. (). Salicylic acid in machinery of hypersensitive cell death and disease resistance. Plant Mol Biol. 44: 429 442. [4] Babalar M, Asghari M, Talaei A, et al. (7). Effect of pre-and post-harvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Food Chem. 5: 449-453. [5] Bleeksma HC, van Doorn WG. (3). Embolism in rose stems as a result of vascular occlusion by bacteria. Postharvest Biol Technol. 29: 334-3. [6] Capdeville GD, Maffia LA, Finger FL, et al. (3). Gray mold severity and vase life of rose buds after pulsing with citric acid, salicylic acid, calcium sulfate, sucrose and silver thiosulfate. Fitopatol Bras. 28: 3-385. [7] Elgimabi MN, Ahmed OK. (9). Effects of bactericides and sucrose-pulsing on vase life of rose cut flowers (Rosa hybirda). Botany Research International. 2: 164-168. [8] Gerailoo S, Ghasemnezhad M. (11). Effect of salicylic acid on antioxidant enzyme activity and petal senescence in Yellow Island cut rose flowers. J Fruit Ornam Plant Res. 19: 183-193. [9] Gonzalez L, Gonzalez-Vilar M. (3). Determination of relative water content. In: Handbook of plant ecophysiology techniques. Springer. The Netherlands. 7 212. [] Hayat Q, Hayat S, Irfan M, et al. (). Effect of exogenous salicylic acid under changing environment: A review. Environ Exper Bot. 68: 14-. [11] Kang G, Wang C, Sun G, Wang Z. (3). Salicylic acid changes activities of H 2 O 2 -metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ Exper Bot. : 9-15. [12] Kazemi M. (12). Effect of cobalt, silicon, acetylsalicylic acid and sucrose as novel agents to improve vase-life of Argyranthemun flowers. Botany Research International. 2: 164-168. [13] Macnish AJ, Leonard RT, Nell TA. (8). Treatment with chlorine dioxide extends the vase life of selected cut flowers. Postharvest Biol Technol. : 197-7. [14] Mayak S, Halevy H. (19). Flower senescence. In: Senescence in plants. Thiman KV. (ed.), CRC, Boca Raton, Florida, USA. 131-156. [15] Michael S, Wu MJ. (1992). Ethylene and flower senescence. Plant Growth Regul. 11: 37-43. [16] Petridou M, Voyiatzi C, Voyiatzis D. (1). Methanol, ethanol and other compounds retard leaf senescence and improve the vase life and quality of cut chrysanthemum flowers. Postharvest Biol Technol. 23: 79-83. [17] Popova L, Pancheva T, Uzunova A. (1997). Salicylic acid: Properties, biosynthesis and physiological role. Bulg J Plant Physiol. 23: 85-93. [18] Raskin I. (1992). Salicylate, a new plant hormone. Plant Physiol. 99: 799-3. [19] Redman PB, Dole JM, Maness NO, Anderson JA. (2). Postharvest handling of nine specialty cut flower species. Sci Hort. 92: 293-3. [] Roein Z, Hassanpour Asil M, Rabiei B. (9). Silver thiosulphate in relation to vase life of narcissus cut flowers (Narcissus jonquilla). Hortic Environ Biotechnol. : 8-312. [21] Senaratna T, Touchell D, Bunn E, et al. (). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul. : 157-161. [22] Shirasu K, Nakajima H, Rajasekhar VK, et al. (1997). Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell. 9: 261-27. [23] Solgi M, Kafi M, Taghavi TS, et al. (9). Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. Dune ) flowers. Postharvest Biol Technol. 53: 155-158. ISSN 18-3122 - 71 -

Electronic Journal of Biology, 17, Vol.13(1): 67-72 [24] Srivastava MK, Dwivedi UN. (). Delayed ripening of banana fruit by salicylic acid. Plant Sci. 158: 87-96. [] Vahdati Mashhadian N, Tehranifar A, Bayat H, et al. (12). Salicylic and citric acid treatments improve the vase life of cut chrysanthemum flowers. J Agr Sci Tech. 14: 879-887. [26] van Doorn WG, Zagory D, de Witte Y, et al. (1991). Effects of vase-water bacteria on the senescence of cut carnation flowers. Postharvest Biol Technol. 1: 161-168. [27] Zencirkiran M. (5). Effects of sucrose and silver thiosulphate pulsing on stem-base cracking and vaselife in Leucojum aestivum flowers. J Hortic Sci biotech. : 332-334. [28] Zencirkiran M. (). Effect of 1-MCP (1-Methyl Cyclopropene) and STS (Silver thiosulphate) on the vase life of cut Freesia flowers. Sci Res Essays. 5: 29-2412. [29] Zhang Y, Chen K, Zhang S, et al. (3). The role of salicylic acid in postharvest ripening of kiwi fruit. Postharvest Biol Technol. 28: 67-74. ISSN 18-3122 - 72 -