Managing Fungus Gnats in the Greenhouse

Similar documents
Fungus Gnats. Fungus Gnat Larvae. Fungus Gnat Adults

Greenhouse Pest Management. Greenhouse pests. Fungus gnat -damage by larvae

Integrated Pest Management Program Department of Plant Science and Landscape Architecture UConn Extension

Rungus gnats and shore

Black Root Rot (Thielaviopsis basicola) in the Greenhouse

Integrated Pest Management Program Department of Plant Science and Landscape Architecture UConn Extension

Predatory Mites. Neoseiulus = Amblyseius cucumeris & swirskii. What do they do? Consumes thrips eggs & immatures on foliage

Biocontrol Demonstrations; An Introduction to Greenhouse Pests and Biocontrols

Integrated Pest Management Program Department of Plant Science and Landscape Architecture UConn Extension. Aphid Banker Plants

Scheduling Biologicals

Drenches of Entomopathogenic Nematodes for Control of Fungus Gnats in Poinsettia Liners

101 Ways to Try to Grow Arabidopsis: Did Any Treatments Reduce Fungus Gnat Infestation?

Commercially Available * Biological Control Agents for Common Greenhouse Insect Pests

IPM and Biological Control for Ornamental Nursery Pests

Integrated Pest Management Program Department of Plant Science and Landscape Architecture UConn Extension

Using IPM in your Ag Program- Understanding Texas Laws

Greenhouse Peppers: Guidelines for Biological Control

Pepper CROP INFO-SHEET. olos

Integrated Pest Management Program Department of Plant Science and Landscape Architecture UConn Extension. Biological Control of Western Flower Thrips

Integrated pest management on vegetables for insect pests and vectors in South Texas

Welcome to the Iowa Certified Nursery Professional Training program Module 9: Managing Plant Diseases and Insects.

Effect of Monitoring Technique in Determining the Presence of Fungus Gnat, Bradysia spp. (Diptera: Sciaridae), Larvae in Growing Medium 1

Integrated Pest Management Program Department of Plant Science and Landscape Architecture UConn Extension

Using Sticky Cards to

Integrated Pest Management in the Home, Interior Plantscapes, Greenhouses, and Nurseries

Integrated Pest Management Program Department of Plant Science and Landscape Architecture UConn Extension

Floral Notes Newsletter

Common Insect Pests of Cucurbits

Biological Control - THRIPS

Potato Insects. Frank G. Zalom, Department of Entomology, UC Davis

BIOLOGICAL GROWING at Pioneer Gardens, Inc.

CHECKLIST WEED MANAGEMENT

Common Vegetable Pests

Managing Thrips. Resistance to Insecticides

Unit G: Pest Management. Lesson 4: Managing Insects

Fungus Gnat and Shore Fly Control in Greenhouses

Biological Control of Aphids

Bio-Fungicides. By Dr. Steve Nameth Professor and Associate Chairperson Department of Plant Pathology, The Ohio State University

Propagation. Pests and Diseases. Aphids

Plant Health Care. Kelley Andrew Sullivan IPM Plant Health Specialist Mount Auburn Cemetery s Greenhouses

IPM Treatment Strategies. Nebraska Extension

Sanitation! Cultural Components of GH IPM. A Softer Approach to Managing Diseases in the Greenhouse. Why biologicals /biorationals

Greenhouse TPM/IPM Bi-Weekly Report Central Maryland Research and Education Center Ellicott City, Maryland

Greenhouse Pest Management. Greenhouse Functions. Key production target dates (IN) Display. Production

Sanitation Segregate Plants

Pest Check. Whiteflies on Houseplants

Making Pest Management More Efficient -- The Bedding Plant IPM. Alliance

Non-Pests (Beneficials) of the Month: Predatory Ladybird Beetles

Tips on Managing Insects & Mites

Some selected fungicides labeled for use on herb bedding plants

BioWorks Products. Strawberry Production

Vegetable Gardening. MarciBeth Phillips

Japanese Beetle Control Options

Biological solutions for Chafer Grub and Leatherjacket control in turf

Effect of a Physical Barrier on Adult Emergence and Egg Survival Associated

1. E8 Integrated Pest Management (IPM) Action Plan

One way to assure constant presence of BCAs Apply fresh BCAs weekly or every other week 2/15/2017. Carol S. Glenister IPM Laboratories, Inc.

3. PLAN AND IMPLEMENT A CROP MONITORING PROGRAM

2014 Tri River Area Pest Management Workshop 307 Interior Plant Pests

Beneficial Insects. Your best buddies for pest control

Biology & Control Revised October 2006

EVALUATION OF INSECTICIDES FOR FUNGUS GNAT MANAGEMENT POINSETTIA TRIAL OCTOBER 2005

Farmers will increase yield and profit by taking care of the hot pepper from planting the seed to harvesting the fruit.

Pest Management in Vegetable Gardens. Pam Brown Extension Agent Emeritus, Gardening Coach Pampered Gardeners, LLC

Science of Life Explorations

Pests of Landscape Trees. Wizzie Brown Texas A&M Agrilife Extension

Integrated Pest Management. University of California Statewide IPM Program

Sciarid fly larvae in growing media - biology, occurrence, substrate and environmental effects and biological control measures

Pythium Root Rot on Hydroponic Lettuce

White Paper: Bioline/ICM

Late in 2006, and certainly during 2007,

Training Workshop on Plant Health

Greenhouse TPM/IPM Report Central Maryland Research and Education Center Ellicott City, Maryland

TURF. Recommendations for lawns and recreational areas not grazed by livestock.

Blueberry fruit fly: Rhagoletis mendax Curran

Rhododendron Insect Pests

Late Season Insects: Outdoor Invaders and other Creatures Around the Yard

Propagation. Pests and Diseases. Black twig borer (Xylosandrus compactus) Magnolia white scale (Pseudaulacaspis cockerelli)

Anthracnose Disease Symptoms Appearing in Landscape Trees John Hartman, Extension Plant Pathologist, Univ. of Kentucky. Volume X, Issue III.

We ask that when participants look for the invasive species covered in the workshops, that they do so in a systematic way (looking from the base of

Plant-Mediated IPM Systems

Protecting Your Dahlias From Bugs and Other Perils. Kevin Larkin Corralitos Gardens For The Monterey Bay Dahlia Society March 2012

Biological Control of Pythium Root Rot in Container Flower Production Using Microbial Inoculants

JAPANESE BEETLES Beneficial nematodes (Bt)

IPM and Plant Diagnostics

Biocontrol of thrips: From roadblock to cornerstone. Rose Buitenhuis Maryland Greenhouse Growers Association Aug 6, 2014

Information sources: 4, 6

Cottonwood. Pest Damage on. Plant Problem. September September 1 10 October September November November November 1 10

Diagnosing Plant Diseases of Floricultural Crops. is important for several reasons. Bacterial diseases are not controlled with fungicides,

Inputs seed, TC, cuttings Component, site, or stage of production Imported cuttings, bareroot, tissue culture

Pests of Ornamentals and Turfgrass

Entomopathogenic Nematodes: A Best Bio-control Agent For Insect Pest: Isolation And Identification Of Entomopathogenic Nematodes From Agricultural

Houseplant Problems. Purdue e-pubs. Purdue University. Paul C. Pecknold. Historical Documents of the Purdue Cooperative Extension Service

BIO BUZZ A GROWERS REFERENCE TO PEST MANAGEMENT. Tomatoes: 50 Hazelton St., Leamington, ON, N8H 3W

Insect Management for Peppers


EC Entomology : Lawn Insect Control

Cloud Mountain Farm 6906 Goodwin Rd., Everson, WA (360) voice, (360) fax,

Cucumber Beetle Biology and Control in Melons. Diane Alston Entomologist Utah State University Melon Growers Meeting Green River, UT January 31, 2006

Massachusetts IPM Berry Blast 6/21/11

Transcription:

Integrated Pest Management Program Department of Plant Science and Landscape Architecture UConn Extension Managing Fungus Gnats in the Greenhouse Fungus gnats (Bradysia spp.) commonly develop in the moist environments common in the greenhouse, especially in propagation houses and in newly planted plant material. IDENTIFICATION Adult fungus gnats are small (1/8 inch long), mosquitolike insects, with long legs and antennae. (figure1) Their two wings are delicate and clear with a Y-shaped vein in the wing pattern. (Figure 3) Adults are weak flyers and tend to fly in a zig-zag pattern. They may be observed resting on the growing media surface or moving across lower leaves. Adult females are attracted to fungi so might be observed near plants with Botrytis sporulation. Females lay their eggs nearby so the developing larvae have access to a fungal food source. Fungus gnat larvae are small, (approximately ¼ of an inch long when mature), translucent to white in color with a distinctive black head capsule (Figure 4). Both fungus gnats and shore flies are common in the greenhouse. However, it is important to distinguish between the two, because management strategies differ. Shore fly adults (approximately 1/8 of an inch long), resemble a small housefly with stockier bodies, plus shorter legs and antennae than fungus gnats. Shore flies also have five distinct white spots which fungus gnats do not have. Shore fly larvae are white, wedge-shaped and do not have a distinctive head capsule. Larvae may be found near algae, a primary food source. They do not feed on plants. FUNGUS GNAT DAMAGE Fungus gnat larvae feed on fungi and decaying organic matter, but also feed upon plant roots. This larval feeding is most damaging to seedlings, and young plants. Larvae also feed on the developing callus of direct stuck cuttings, delaying rooting. Fungus gnat larvae are general feeders. Plants with succulent stems, such as begonias, geraniums, sedum, coleus and poinsettias, are especially prone to injury and can

suffer serious losses. As the young feeder roots and stems are damaged, plants wilt and leaves turn yellow and drop. In laboratory studies, adult fungus gnats carried spores of Botrytis, Verticillium, Fusarium and Thielaviopsis as they moved from plant to plant. Spores have also been found in their droppings. It is unclear how important this disease transmission is in commercial greenhouses. LIFE CYCLE The fungus gnat's life cycle from egg to adult may be completed in 21 to 28 days depending on temperature. Eggs are laid in cracks and crevices in the media surface and hatch in four to six days. Fungus gnat larvae feed and develop for about two weeks at 72 o F. Pupation occurs in the soil. After four to five days, adults emerge. Overlapping and continuous generations make control difficult. SCOUTING Monitoring is especially crucial if you are planning using biological controls or insect growth regulators against the fungus gnat larvae. Inspect incoming plugs for fungus gnat larvae or their damage. Place yellow sticky cards in samples of growing media to monitor for any emerged adults. Yellow sticky cards, placed horizontally at the soil surface, can be used to detect fungus gnat adults. Check and change the cards weekly to detect early fungus gnat infestations. Use potato plugs (at least one inch in diameter) placed on the soil surface to monitor for fungus gnat larvae (Figures 5 and 6). When using potato plugs, place the plug so there is contact with the media to ensure that the potato plug does not dry out. To look for larvae, first check the growing media under the plug and then the surface of the potato itself. Check the potato plugs after 48 hours for the presence of larvae. Be sure to mark the locations where you placed the potato plugs, so you can easily find them! If not removed, potato chunks can "melt out," sprout

or be fed upon by mice. For smaller cuttings or plugs, potato slices, resembling a French fry can be placed in the growing media. CULTURAL CONTROLS Adults are attracted to newly planted crops, making it important to thoroughly clean the greenhouse before introducing new crops. Dry, level, weed-free, well-drained floors help eliminate breeding areas. Keeping cull piles away from the greenhouse and cleaning up any spilled media on the floor also helps eliminate breeding areas. Avoid overwatering and keep crops as dry as possible during production. Avoid having excess moisture to accumulate underneath greenhouse benches. Remove plant debris, weeds, and old growing media from inside and outside the greenhouse. Inspect incoming plugs for fungus gnat larvae or their feeding damage. Recent studies have shown that fungus gnats may be introduced into a greenhouse from soilless media or on rooted plant plugs. Adults are attracted to mixes with high microbial activity, or with high amounts of peat moss or compost or composted hardwood bark. Avoid using mixes with immature composts less than one year old. However, no potting mix is completely immune to fungus gnat infestations. Adult females prefer to lay their eggs in protected, humid crevices in the media. How the media is handled and stored may be more important than the type of growing media used. If the growing media is stored outside and stays moist, it may support more fungus gnat activity. Tears or openings in the bags enable resident, native fungus gnat populations to gain entry into the media bags. Store the media so that it stays dry. Covering the growing media with a layer of coarse sand or diatomaceous earth does not help prevent egg laying by the adult females. Diatomaceous earth absorbs moisture from the growing media so that cracks develop where larvae pupate and females lay their eggs. BIOLOGICAL CONTROLS Commercially available natural enemies include the soil dwelling predatory mite, Stratiolaelaps scimitus, the entomopathogenic nematode, Steinernema feltiae, and the rove beetle, Atheta coriaria. All should be used preventively and applied to moist growing media. Steinernema feltiae are beneficial, insect killing nematodes that are applied as a drench treatment against fungus gnat larvae. After entering the target insect through various openings, the nematodes multiply within the host and release a bacterium whose toxin kills the larvae. These beneficial nematodes reproduce within the fungus gnat larvae; exit the dead body and search for new hosts to infect. Fungus gnat larvae are killed in one to two days. (See Beneficial Nematodes: An Easy Way to Begin Using Biological Control in the Greenhouse for specific application tips).

A small, soil-dwelling predatory mite, Stratiolaelaps scimitus, feeds on fungus gnat larvae as well as thrips pupae and shore fly larvae. It is shipped in a vermiculite/peat carrier with all stages of the predatory mites. The vermiculite/peat carrier can be distributed over the media surface, especially when pots are placed close together. These predatory mites are best used when fungus gnat populations are low. The rove beetle is a generalist predator that feeds upon fungus gnat and shore fly larvae in the growing media. Adults are slender, dark brown or black and covering with hairs and have very short wing covers. Adults are nocturnal so are best released in the evening. Both adults and larvae tend to hide in cracks and crevices of the growing media. Bacillus thuringiensis var. israelensis, sold under the trade name of Gnatrol WDG, is most effective against the young first instar larvae. The bacteria must be ingested by the larva, after which a toxic protein crystal is released into the insect's gut. Larvae stop feeding and die. Gnatrol WDG is only toxic to larvae for two days. Repeat applications, i.e. two or three applications at high rates, may be needed to provide effective control. CHEMICAL CONTROLS Insect growth regulators, microbials, and other pest control materials may be applied to the growing media to manage fungus gnat larvae. Repeat applications may be needed. For wellestablished populations, applications of an adulticide may also be of benefit. For more information see the latest edition the New England Floricultural Crop Pest Management and Growth Regulations Guide: A Management Guide for Insects, Diseases, Weeds and Growth Regulators for more specific guidelines. Available from Northeast Greenhouse Conference and Expo and the UConn CAHNR Communications Resource Center. REFERENCES: Cabrera, A, R. Cloyd and E. Zaborski. 2003. Effect of Monitoring Technique in Determining the Presence of Fungus Gnat (Diptera: Sciaridae), Larvae in Growing Media. Journal of Agricultural Urban Entomology 20(1): 41-47. Cloyd, R. 2010. Fungus Gnat Management in Greenhouses and Nurseries. Kansas State University Agricultural Experiment Station and Cooperative Extension Service.MF-2937. Cloyd, R. and E. Zaborski. 2003. Fungus Gnats, Bradysia spp. (Diptera: Sciaridae) and other Arthropods in Commercial Bagged Soilless Growing Media and Rooted Plant Plugs. Journal of Economic Entomology. 97(2): 503-510. Cloyd, R., A. Dickinson, and K. Kemp. 2007. Effect of Diatomaceous Earth and Trichoderma harzianum T-22 (Rifai Strain KRL-AG2) on the Fungus Gnat Bradysia sp. nr. Coprophila (Diptera: Sciaridae). Journal of Economic Entomology 100 (4): 1353-1359.

Cloyd, R. 2015. Ecology of Fungus Gnats (Bradysia spp.) in Greenhouse Production Systems Associated with Disease-Interactions and Alternative Management Strategies. Insects. 6: 325-332. Ferguson, G., G. Murphy, and L. Shipp. 2014. Fungus Gnats and Shoreflies in Greenhouse Crops. Ontario Ministry of Agriculture and Food Fact Sheet 14-003. Lamb, E., B. Eshenaur, N. Mattson, and J. Sanderson. 2013. Practical Suggestions for Managing Fungus Gnats in the Greenhouse. Cornell University Ornamental IPM Factsheet. Meers, T. and R. Cloyd. 2005. Egg-Laying Preference of Female Fungus Gnat Bradysia sp. nr. coprophila (Diptera: Sciaridae) on Three Different Soilless Substrates. Journal of Economic Entomology. 98(6): 1937-1942. Stack, L. (ed.) 2017-2018. New England Greenhouse Floricultural Recommendations - A Management Guide for Insects, Diseases, Weeds and Growth Regulators. NE Floriculture, Inc. By Leanne Pundt, Extension Educator, UConn Extension, 1999. Revised January 2006. January 2013, Dec 2016 Disclaimer for Fact Sheets: The information in this document is for educational purposes only. The recommendations contained are based on the best available knowledge at the time of publication. Any reference to commercial products, trade or brand names is for information only, and no endorsement or approval is intended. UConn Extension does not guarantee or warrant the standard of any product referenced or imply approval of the product to the exclusion of others which also may be available. The University of Connecticut, UConn Extension, College of Agriculture, Health and Natural Resources is an equal opportunity program provider and employer.