Technical Manual. Thermo Siphon System. Solar Energy

Similar documents
Solar water heating system

Installation, Operating and Servicing Instructions

EVACUATED TUBE SOLAR HOT WATER SYSTEMS OWNERS MANUAL JULY 2013 BROCMISC100.1

1 Exam Prep Solar Water and Pool Heating Manual (UCF) Questions and Answers (Plumbing Contractor)

So far, we have covered the basic concepts of heat transfer and properties.

Installation, Operating and Servicing Instructions

Solar collectors. Speaker

Trade of Plumbing. Module 2: Domestic Hot and Cold Water Service Unit 10: Hot Water Supply Phase 2

Apricus Solar Hot Water Owner s Operating and Maintenance Manual For Electric Hot Water Tanks (Solar-Ready)

Apricus Solar Hot Water Owner s Operating and Maintenance Manual For Domestic Hot Water Systems

Apricus Solar Hot Water Systems

INDIRECT SYSTEM FOR FROST LOCATIONS

Adelaide Homes Design Guide 4 - Winter warming

Solar Water Heaters. Bastián Acevedo Bustos. Electronic Engineering Student, Tarapacá University. Environmental Studies Student, York University

STORAGE WATER HEATERS

Owner s Guide and Installation Instructions Air Sourced 310 Heat Pump Water Heater

CodeNotes. Solar Water Heating Systems Based on the 2018 International Solar Energy Provisions (ISEP ) Introduction OFFICIAL

CENTRA-COIL QUALITY HOT WATER SERVICE

USER MANUAL INSTALLATION INSTRUCTIONS WARRANTY REGISTER

Section 2: Solar Water Heating Systems focuses primarily on the common solar system design types.

Daikin Water Cooling, Heating, and High Capacity Booster Coils

Operating Guide. Termix Solar A+/B+ 1.0 Table of Contents. 1.0 Table of Contents

WH-TD20B3E5 WH-TD30B3E5

Solar Hot Water Heating Systems

SOLAR TECHNIQUE ATTACK SOLARTHERM, VAKUUMTHERM

Installation & Operation Manual Models: TSU

SOLAR WATER HEATING DIRECT SYSTEM FOR FROST-FREE LOCATIONS DOMESTIC SOLAR WATER HEATERS, SOLAR COLLECTOR PANELS & SOLAR VACUUM TUBES

SOLARHOT. SuperVox. Description / Applications System Overview. Installation/ Owner s Manual

Plumber Level 3 Rev. May 2011

CodeNotes. Solar Water Heating Systems Based on the 2015 International Solar Energy Provisions. Introduction. Solar Water Heating System Designs

AGS 2 SOLAR PUMP STATION FOR SOLAR DOMESTIC HOT WATER SYSTEMS UK/IE

Soak in the Sunshine. Solar Hot Water

Owners Guide and Installation Instructions

OWNER S MANUAL SOLAR WATER HEATERS

ACTIVE SOLAR DESIGN ALTERNATIVE ENEGRY SOURCES

General System Layout Sketch

General safety precautions English

HW 22 District heating substation for indirect heating and domestic hot water systems

ELECTRIC BOILERS FOR CENTRAL HEATING

INSTALLATION INSTRUCTIONS OWNERS GUIDE & WARRANTY STATEMENT

Operating Guide. Termix Compact 28 VX-FI / HWP / HWS. 1.0 Table of Contents. 1.0 Table of Contents

For our present, For their future. Version 11.04

Residential Solar Water Heater

INDIRECT WATER HEATERS

ENAMELED INDIRECT WATER HEATERS

UNIT 5 COOLING SYSTEMS OF IC ENGINES

Owner s Guide and Installation Instructions

Components for solar heating systems

Solar heating systems

SOLAREKS. Natural Circulated Closed Loop System SOLAREKS

Operation and Maintenance Manual Sondex All-Welded Heat Exchangers (SAW)

25 per cent of energy used in the home is used to heat water.

SOLAR WATER HEATING SYSTEM VERSOSUN THERMAL SOLUTIONS

Design and Construction Standards SECTION PLUMBING EQUIPMENT

Conventional methods NEW GENERATION SOLAR HYBRID HOT WATER SOLUTIONS

INSTALLATION AND OPERATING INSTRUCTIONS

USER S INFORMATION MANUAL Model: HSE 125 N/P, HSE 145 N/P Gas-fired, Condensing Boiler and Instantaneous Water Heater

Typical damages to Boilers & Economizers

HIGH OUTPUT. Skin design RANGE

Operation / Installation Manual

OPERATING AND INSTALLATION MANUAL

Decentralised ventilation units

POWERFLOW Series. Unvented Electric Storage Water Heaters. Installation & Operating Instructions Manual

SOLAREKS. Natural Circulated Open Loop System SOLAREKS

General safety precautions English

Products catalogue THERMODYNAMIC SOLUTIONS FOR EFFICIENCY CHALLENGES

TECHNICAL DOSSIER LATEST GENERATION THERMODYNAMIC SOLAR COLLECTOR

Installation Instructions and Operation & Maintenance Guide

Frequently Asked Questions Solar Collector G24

Residential Gas Condensing Boiler Greenstar ZBR16/21/28/35/42-3A... ZWB28/35/42-3A...

Technical Checklist - Plumbing and Heating Fittings - UK Sizes

INSTALLATION INSTRUCTIONS

Installation and Operation Manual IDRA PLUS DS. Solar Solar storage cylinder. Installation and Operation Manual

OWNER S MANUAL SOLAR WATER HEATERS. Solahart Industries Pty Ltd ABN

Solar Thermal Energy

SOLAR HEATING SYSTEMS

WL Instantaneous water heater

Glass Door Merchandiser. Model RM-49

PROVIDES TEPID WATER FOR EMERGENCY SHOWER

For latest prices and delivery to your door visit MyTub Ltd

User s Information Manual

PASSIVE HEAT EXCHANGER ANTI-FOULING FOR SOLAR DHW SYSTEMS

S T O R E R A N G E C Y L I N D E R & G R A N T FEATURES: GRANT MONOWAVE UNVENTED DIRECT AND INDIRECT SINGLE-COIL CYLINDERS

Aqua Balance. User s Information Manual. WMB-155C Wall Mount Gas-Fired Combination Boiler Heating and Domestic Hot Water

FREQUENTLY ASKED QUESTIONS

PRE INSTALLATION PROCEDURES

CHAPTER I INTRODUCTION. In the modern life, electronic equipments have made their way

SUN EQUINOX HEATING SYSTEMS

Owner s Guide and Installation Instructions

9. Cooling Water System

1ST SUNFLOWER RENEWABLE ENERGY

Simply renewable A ++ A +++ ROTEX air-to-water heat pump

Installation Manual. Instrucciones de instalación y manual de usuario 1

Modern Auto Tech Study Guide Chapters 39 & 40 Pages Cooling Systems 43 Points. Automotive Service

EASY$ TIP SHEETS. Energy Advice Saving Yukoners Money. How hydronic heating systems work

unvented indirect & sealed heating systems unvented direct system & electric space heating Hot and cold water supply to all outlets at mains pressure

User s Information Manual

Design and Installation of Solar Water Heater Applications in Pakistan

Owner s Guide and Installation Instructions

When considering the purchase of a walk-in you most likely will be looking for the following things.

Transcription:

Technical Manual Thermo Siphon System Solar Energy This manual is for exclusive use of Bosch installers and technicians of the authorized service partners. Page 1 of 42

1) Introduction Solar thermal systems collect heat from the sun for heating water, for different purposes, as for central heating, swimming pool heating, or domestic hot water consumption. The aim of this manual is to give guidelines and best practices recommendations on domestic hot water use, to Bosch Service Partners and Installers, on Solar Thermo Siphon Systems for DHW Domestic Hot Water production for sanitary purposes. The manual gives also an overview of the main changes on the actual TSS System from Bosch, in order to comply with some of the main request given during 2 nd generation of product. 1.1) General Variants of Thermo Siphon Systems Pict.1 Direct system representation (source Caleffi) Pict.2 Indirect system representation (source Caleffi) Page 2 of 42

1.2) Thermo siphon working principle One of the most common system designs is the thermo siphon system. It is perhaps the most widely used system design in the world. It is based on the natural convection to collect the heat from the sun and store it in an insulated tank for later end user need. The sun rays are absorbed by the collector absorber, which heats the fluid inside the collector tubes. When the fluid is heated inside the collector tubes, its density decreases and, naturally, the fluid goes up and enters inside the tank, which is on the top of the collector. After transferring its energy, the cooler fluid from the tank drops down into the bottom of the collector and the cycle continues, as long as the sun is able to heat the fluid in the collector. Insulation in the back and sides of the collector and the glazing in the front of the collector allow it to collect heat during the day, at much higher temperatures than the surrounding ambient air. The insulated tank reduces heat losses, so the heated water can be stored for long periods of time until it is consumed. The roof structure must be able to support the whole system weight or, an alternative installation area must be considered. In order to ensure a natural convection effect to work in a thermo siphon system, the storage tank must always be installed at a level above the top header of the collector. Pict.3 Example of solar thermo siphon system Page 3 of 42

2) Installers Brief The largest market for solar thermal installers has traditionally been in retrofit situations. In retrofit settings, the installer takes whatever conditions they find and makes things work. During the construction of new residences, the emphasis should be on systems integration, optimal design, and interaction with other trades. Nevertheless, best practices and good conduct will help the installers in new contracts and installations, leaving a good image of the Brand and it s after sales organization. Use specialized knowledge to educate constructors. New construction provides an opportunity to optimize the equipment and installation process; Work with site supervisors, roofers, plumbers, and other specialists, to determine the best installation sequence and schedule what materials should be provided, in order to optimize working sequence and to avoid unnecessary work, roof penetrations, etc; Confirm solar exposure before mounting any equipment on the roof, to avoid shadows from vents, trees and/or buildings; Provide quality assurance inspections and maintenance contracts with end users; Select packages that preserve floor space and maintain a tidy appearance; Use quality assurance techniques to avoid problems; Work with the constructor to develop inspection protocols; Correct any installation problems immediately, in order to ensure a good image and sense of respect and professionalism from the brand, to the end user; Protect pipe circuit from other trades that may also need access to the same spaces or that may need to create circuits of their own; Label and fix pipe circuits, so that they are not pushed up and out of the way, creating water traps and freeze hazards. It may be necessary to ensure having teams to do pre-installations, collector installations, and interior component installations. Different teams may do these tasks simultaneously, Page 4 of 42

or one team may have different jobs at different times. Be clear with the site supervisor about demands for teams intervention time. Work with site supervisors, roofers, plumbers, and others to determine the best time to schedule and what materials to provide. Pay attention to other trades that will be working in the same space. For the operations of pre-installation check, installation or maintenance, take care always of the necessary devices and tools for safety assurance. Workers must be protected from difficulties or obstacles in the field, in order to avoid accidents. A safety check-list is recommended in order to ensure, before the beginning of work activities, that all the necessary equipment of protection and installation are available. 2.1) Identification of risks during works on the roof by service partner or installer Installation of heavy objects; Execution of works on the roof or higher positions; Protection of fragile materials; Presence of plumbing pipes (gas or others fluids); Proximity to high voltage wires or other electrical cables; Atmospheric conditions (wind speed, rain, etc); Pict.4 Identification of risk areas in installation and servicing of TSS systems Page 5 of 42

2.2) Identification of the equipment and safety material needed a) Equipments for collective protection - Railings - The scaffolds (fixed or not) - Fixed stairs - Motorized elevation platform - Motorized platform to elevate material without damages; Pict.5 Example of collective protections (scaffolds and stairs) Pict.6 Example of elevation platforms for material / persons Page 6 of 42

b) Equipment for individual protection - Helmet - Safety Shoes - Protective gloves - Harnesses - Safety glasses - Hearing Protectors Pict.7 Example of individual protections c) Complementary equipments of protection - Stop losses - Locking Solo - Pole attachment - Temporary Lifeline - Anchor Point Roof - Belt Tools Pict.8 Example of complementary safety tools Page 7 of 42

Attention: The installer is responsible to install the equipments properly, the do the connection and interface with existent backup heating appliances and / or accessories and the start up of the system, ensuring correct and proper working. The technician is responsible for check Installation system, repair and inform end user of an eventual correction need by the Installer, ensuring safety and a proper operation of the system supplied by Bosch. At the end of the installation activities, the system documentation should be given and explained to the end user and a maintenance contract should be done in order to prevent any system problems. 3) General Concepts On a clear day, solar radiation is most intense at solar noon (e.g., that time of day when the sun reaches its highest position in the sky and directly above a polar north/south line). Before striking the earth s atmosphere, solar radiation travels in straight paths. This is called the direct solar radiation. On a clear day, the majority of solar radiation striking the earth s surface is direct radiation and, because of travelling in straight lines, direct radiation is easy to reflect. If there was no atmosphere, nearly all the solar radiation that would reach the earth surface would be direct radiation, however, the gas and vapour molecules in the atmosphere create a very different scenario. They reflect a significant portion of the incoming direct radiation in every direction. The result is called diffuse solar radiation. Its presence is the reason why we see the sky and objects around us in a very different way as they could be seen in space, without atmosphere. The majority of solar radiation reaching the earth surface on cloudy days is diffuse radiation and this one cannot be easily focused. Page 8 of 42

Pict.9 Overview of solar energy incidence in Europe 3.1) Solar Orientation The orientation of the solar collectors should be always facing sun position and trajectory according to the solar diagram of its localization. We have so: - North hemisphere orientation facing South - South hemisphere orientation facing North Pict.10 Example of orientation and solar trajectory (source Caleffi) Page 9 of 42

However, and in order to adapt to a real situation or to avoid sun obstacles, short deviations to east or west are acceptable without a big decreasing of system efficiency, with a maximum recommended deviation of ± 20º. Deviation until - 20º East Deviation until + 20º West Pict.11 Collector orientation to South in North Hemisphere Deviation until - 20º East Deviation until + 20º West Pict.12 Collector orientation to North in South Hemisphere 3.2) Collector Inclination The solar collector angle is usually the correspondent one with the latitude of the installation place, nevertheless, in the thermo siphon system in flat roof, the angle is fixed and in the on roof installation, generally is used the roof tilting to support system. As a general rule, the following consideration can be taken in consideration: Page 10 of 42

Thermo siphon system with flat roof support system: - Fixed angle of the support structure Thermo siphon system on roof: 1. Inclination = Latitude of location 15º Note: This situation is better to improve Domestic Hot Water (DHW) production in summer; 2. Inclination = Place latitude 5º Note: This situation is better to have in a installation working during whole year (ideal for TSS); 3. Inclination = Latitude of location + 15º Note: This situation is better to improve DHW production in winter 1 2 3 Pict.13 Example of different collector inclinations Pict.14 Collector inclination adaptation Page 11 of 42

3.3) Shadows The existence of buildings, trees or other obstacles in front of a solar system can be a problem and reduce the system efficiency, decreasing the number of sun exposition hours to the available solar energy. These situations must be verified before installation with the correspondent solar diagram of the location, and communicated to the end user, in order to know the consequences of a solar fraction reduction. Solution can be the increase of the solar area exposition or the adaptation of an adequate backup solution. Pict.15 Example of obstacle to a solar system for latitude N 40º Page 12 of 42

Pict.16 Example of solar diagram for a location at latitude of 40º N Pict.17 Example of a solar diagram for 40 N latitude and obstacle influence indication Also the obstacles in the installation place should be considered, for example in case of walls or other systems that might provoke shadows on the collector. Page 13 of 42

Pict.18 Example of formula to calculate distance between rows of solar systems Pict.19 Example of simplified formula to calculate distance until the nearest wall 4) Solar System Solar water heaters differ from conventional water heaters in two fundamental characteristics. The first and most obvious is that, most of the primary energy used to heat the water is provided free by the environment in which the heater is placed. The second difference is that the input to this primary source of energy varies from season to season. Often, the annual variation ranges from low levels of solar energy at times of higher need to excessive level for times of less energy need. Not only does the primary energy source vary with the seasons, but it often varies widely from day to day. If this free energy component is to be maximised under these circumstances, the storage capacity and insulation properties of a solar water heater need to be greater than those of a conventional hot water system. This way, it is possible Page 14 of 42

to accumulate some residual energy from a previous good day to one for which the solar input may be not sufficient. Solar hot water systems also require auxiliary energy supplies. These are usually provided by a heating element as an electric resistance immerged in the water, or using an instantaneous gas water heater installed in series with the solar system. To ensure that an auxiliary element does not waste energy on heating water more than required, the element is located in the centre of the vessel. In this way, the element heats only the upper part of the stored water, however and as we are talking about big storage tanks, it s recommended the use of a backup appliances of instantaneous gas water heaters with adequate accessories, in order to heat only when hot water consumption is needed, avoiding extra heating consumption of electricity, when there is no tapping and with a possible re-heating by the free energy of the sun. Pict.20 Cut view of Bosch solar tank 4.1 Storage Tank enamelled vitreous The internal surface of the vessel is treated with a coat of enamelled vitreous. This treatment is applied to protect the steel surface of the vessel against corrosion attack and, is considered to be one of the the best corrosion protection methods for steel vessels, from the point of view of hygienic purposes for domestic hot water applications and durability. The reasons are the following: - resistance to corrosion. - resistance to permanent scale deposition Page 15 of 42

- resistance to high temperatures. The enamel comprises a mixture of silica and clays that, when fused, has a coefficient of expansion comparable to the one of the steel. The vessel and clay mixture are heated till 860 C and the resultant enamel melts and fuses covering the steel surface. When cooling, the steel vessel contracts at a slightly greater rate than the enamel and it s therefore, under a slight compressive stress at low temperature. (Glass is extremely strong in compressive strength). In normal operation, the vessel can be heated up to 99 C and will therefore tend to relieve only some of the pre-stressed compression. In practice, large and sudden temperature variations between the enamel lining and the vessel wall do not occur. Pict.21 Internal view of the vessel tank Water has considerable thermal inertia, (time required for a temperature change with application or withdrawal of heat). The intimate bond of the enamel with the vessel prevents temperature gradients between the glass lining and the steel body. The enamelling process is essential for the long life under the high temperature conditions that might occur on solar hot water systems, even with large collector areas and higher performance collectors. Page 16 of 42

4.2) Magnesium anode and corrosion protection The storage tank is fitted with a replaceable magnesium anode. The use of an anode in corrosion protection is known as a cathode protection system. The anode is protects all non covered enamel lining areas. Pict.22 Anode and its accessibility The time life of the anode depends on different factors such as: - type of anode (material); - type of water (conductivity and ph); - temperature of the water. Essentially the life of the anode is determined by its natural solubility in the water where it is immerged. For this reason, the life of the anode is quite variable. Due to the time life variation, we strongly recommend a yearly inspection and than, the replacement according to the results from the firs inspection: Note: the replacement of the anode is much less expensive than replacing the vessel. Page 17 of 42

Attention: In areas with bad water quality, the anode may need to be changed very frequently. Pict.23 example of different corrosion level of the anodes Corrosion is a chemical reaction that takes place on the surface of a metal. The worse common reaction in the rusting of iron is the reaction with water and dissolved oxygen. The severity of the corrosion attack from fresh water on metal varies widely, depending on the dissolved salts and gases in the water. The principal corrosive agents are chlorides, sulphur compounds, iron compounds and calcium salts. The enamelling protection has advantages when compared with stainless steel, because is not totally stainless and is susceptible to various insidious forms of corrosion such as stress and crevice corrosion. This is particularly prevalent when, in the presence of high temperatures, the metal is subject to high operational stress and high chlorides. Corrosion occurs by a number of mechanisms, however in the case of water heater cylinders they are mainly: - Pit and Crevice Corrosion - Stress Corrosion - Corrosion Fatigue. - Galvanic Corrosion Water hardness is defined by the concentration of calcium ions (Ca++) and magnesium (Mg ++) responsible by the deposition of calcaire in the interior of pipes and tanks, provoking problems as decrease of water flow and / or temperature exchange. Page 18 of 42

This hardness is generally indicated in ºF (French degrees). 1 F Water Hardness = 4 mg/l de Ca++ = 2.4 mg/l de Mg++ = 10 mg/l de CaCO 3 The water is : Soft when hardness is 0 à 18 F, Mid-hard when hardness is 18 à 30 F, Hard when hardness is + de 30 F. As reference, the following values can be used as indicative for good water for domestic purposes: Water Quality Type of Measurement Limits ph 6,5 à 9 Conductivity 400 µs/cm à 20 C Chlorides 0,1 mg/l Temperature 15 C Water Hardness 4 à 8 F 4.3) Water stratification The baffler plate in the inlet of water prevents the mixture of the cold water entering in the vessel with the hot water already inside the tank. This promotes thermal stratification of the vessel contents. The device achieves this through a combination of its shape and inverted outlet slot. The velocity of the incoming water is dropped and the inertia, dissipated by the device. The cold inlet water drops from the baffler plate through the inverted outlet slot and lies on the bottom of the vessel. The temperature of the hot water already in the tank is therefore not diluted which results on an enhanced hot water delivery capacity of the system. Page 19 of 42

The water inlet: - Effectively removes inertia from water without pressure reduction; - Allows incoming cold water to be placed in the bottom of the vessel, without mixing or disturbing the hot water layer; Pict.24 Cold water inlet baffler plate 4.4) Storage tank insulation The vessel is fully encased in pressure injected polyurethane foam with very low thermal conductivity, when compared for example with fibreglass. Because we have always some losses, in manual is indicated the thermal dissipation of the tank and under, extreme conditions, this will ensure a heat dissipation preventing over-heating of the system. 4.5) Cold water pressure relief valve The cold water relief valve is the main safeguard for excessive internal tank pressure. The cold water relief valve is set for 10 bar and the system can also have a pressure and temperature relief valve on other strategic point in the tank. The cold water relief valve relieves pressure build up in the vessel arising from the expansion of water as it is heated. Under normal circumstances, the cold water relief valve can relieve between 5 and 30 l/day (depending on hot water usage, solar energy availability and booster operation), Page 20 of 42

however, this can also be avoided in case of the installation of an optional accessory as a membrane expansion vessel. The actual valve keeps same functions (non-return, pressure relief and cut) but was modified in dimensions and is installed in Horizontal position leaving more space, especially for installations on roof. Pict.25 Cold water pressure relief valve 4.6) Storage tank heat exchanger The solar energy collected by the solar collectors is transferred to the water in the vessel over the steel wall of the vessel. The large heat exchange wall area, combined with a low heat exchange rate, assures that the glazed inside surfaces are not excessively heated. This minimises the build-up of scaling inside of the vessel. Solar fluid inside the outlet jacket Sanitary water inside the tank Pict.26 Cut section of a heat exchanger (double jacket type) Page 21 of 42

4.7) Solar Circuit The solar fluid available is manufactured to comply with strict health and water authority regulations under food-grade conditions. The solution is supplied for direct use and will protect the system against freeze damage till -14 C. Polypropylene glycol is safe in case of possible ingestion or absorption through the skin. The application of the solar fluid will prevent the collector from damages caused by freeze. Pict.27 Glycol used by Bosch is Tyfocor L type Pict.28 Solar liquid (Glycol) circuit between collector and heat exchanger Page 22 of 42

In order to prevent abnormal temperature and pressure reactions in the closed loop, a pressure relief valve is installed in the top of the tank as indicated in picture 28. It will be activated around 2,5 bar, however the solar collector is tested and proved until 6 bar. Pict.29 Solar circuit pressure relief valve In this closed loop, the solar fluid is in normal circulation due to the density difference, however, after some time, the fluid can degrade, depending on some conditions as excessively sun exposition or long periods of stagnation temperatures. In order to prevent degradation of solar fluid, the technician or installer should use for maintenance purposes, the following tools: Bosch WTI part PH control strips Bosch WTP part density level control Pict.30 WTI and WTP tools for solar fluid controls Following image, gives the indication of the correspondent hydraulic connections and accessories. Page 23 of 42

Pict.31 Solar thermo siphon system connections 1 Solar storage tank (double jacket type); 2 Cold water inlet (cold water pressure relief valve connection); 3 Solar circuit return from heat exchanger to collector; 4 Cap; 5 Return pipe; 6 Way pipe; 7 Hot water outlet (thermostatic valve installation); 8 Solar circuit way connection to the heat exchanger; 9 & 10 Solar circuit pressure relief valve connection and filling connection. 5) Integration on existent installation place In case of integration of the solar system with existing appliances as backup, the working conditions must be known, in order to prevent and install the adequate accessories to avoid water scalding or damages on the appliance. Page 24 of 42

Pict. 32 Solar Installation examples with integration on roof or flat with existent appliances For these situations, installer should be informed of the type of appliance, in order to advice the correct complementary backup solution to install, or the accessory to adapt to the existent solution. Nevertheless, backup system must be always considered, as the solar radiation intensity is always dependent on weather conditions. Examples of backup solutions: - Appliance in serial connection with the solar system, in order to start working when the temperature from solar is not enough. Usually instantaneous gas water with enough power to assure that the instantaneous heating is adequate, however and for safety reasons an adaption accessory might be needed. - Electric heating element controlled by a thermostat connected with the water inside of the tank This solution is not so efficient as the previous one and takes more time to ensure the desired temperature. The protection of the appliances and / or users from high hot water supply, mainly during high sun radiation period can be done by different accessories: Page 25 of 42

- Solar kit (in combination with mechanical gas water heaters, which means, non thermostatic); - Thermostatic mixing valve (in combination with boilers or gas water heaters with temperature control) ; Pict.33 Bosch solar kit adjusted to an outlet temperature of 45ºC Hot Water supply from solar tank Cold Water supply Mixed hot water at constant consumption temperature Pict.34 Example of a thermostatic mixing valve Page 26 of 42

Pict.35 Example of an adjustable selector of mixing valve and correspondence between position and temperature of outlet hot water 5.1) Backup with gas water heater The solar kit will prevent the entry of high temperature to the appliance, and deviate the hot water (> 45ºC) to a second valve (mixing) in order to ensure the desired outlet temperature of 45ºC. In case of insufficient water temperature from solar, the first valve deviates the hot water from solar to the gas water heater in order to heat it up and then, in the second valve (mixing), it ensures the outlet water temperature of 45ºC Attention: These are only general indications, but before any further use, the correspondent manual of solar kit must be read. Advantages: avoid damages on the appliance due to high temperatures; avoid scalding of end user; avoids the use of a thermostatic gas water heater; the backup appliance will only operate when the hot water temperature from solar is less than 45ºC; Page 27 of 42

less water heater maintenance costs, due to less working periods. Pict.36 Example of an installation scheme of thermo siphon with gas water heater Pict.37 Working principle when water from solar is higher than 45º Page 28 of 42

Pict.38 Working principle when water from solar is lower than 45º 5.2) Backup with boiler In case of combination of solar system with temperature control appliances as wall hang boiler, a thermostatic mixing valve must be assembled in the outlet of the system for prevention of high hot water temperatures Pict.39 Installation scheme of thermo siphon with wall hang boiler Page 29 of 42

5.3) Backup with electric heating element In some cases, where instantaneous gas appliances can not be used, the direct heating through an electric resistance is possible with an available accessory as indicated in picture 39. The working principle is similar to the one of a normal electric storage tank that, when the thermostat control detects a need of heating, the heating element is electrically connected and starts warming the water inside the tank. At the same time, the temperature control thermostat is a safety element acting as a temperature limiter. Pict.40 Electric resistance and detail of temperature adjustment in thermostat ATTENTION: - Read the resistance installation manual 6 720 680 229 - The correspondence between electric power and water volume must be 10 W/l (e.g.: don t install a resistance of 3000 W in a tank of 200 l, it should have a maximum of 2000W) - The cable area must be 2,5 mm 2 Pict.41 Installation scheme of a system with electric resistance and thermostatic valve Page 30 of 42

6) Solar system maintenance It is strongly recommended a dedicated and specialized maintenance program in order to ensure the time life of the system and avoid consequences to the end user. As good practice, Bosch recommends the Installer to make a visit within 6 or 12 months after the start up of the system and help the end user on establishing a maintenance program contract with the official Bosch after sales partner. Technician and / or Installer should advice the end user about the importance of having the solar collector glass clean (when system is accessible to end user), and contact him immediately, in case of detecting any type of leakage in the system. The table 1 shall be consider as a guideline with the most important points to be checked and with a safe recommendation of inspection time; however, it will be acceptable by Bosch the adaptation of this tasks by specialized technicians, after sales or installers according to their own field experience with similar products. Component Type of Frequency intervention (months) Collector Inspection 12 Collector - glass Cleaning 12 Collector - absorber Inspection 12 Structure Inspection 24 12 Sanitary Inspection water pipes 24 Solar circuit pipes Inspection 12 Comments Visual inspection to detect internal condensation and other defects. In case of condenses, clean air vent holes in the collector and check sealing joint by all surface and structure. Ensure Cleaning of the glass and in case of need use water and soap to clean superficial dirtiness. Make this operation in a time Schedule where sun is not too Strong (morning or end of the day). Check for corrosion or deformation in the black chrome copper surface. In case of damaged absorber, replace collector. Check all parts and its fixation and avoid corrosion formation in the fixing elements. Check if screws are tightened. Check the existence of leakages in the inlet and outlet of domestic water and in case of need replace gaskets or other sealing material used. In case of existence of insulation, check its good status in all pipe way. Check the existence of leakages in the tank and collector connections. Replace pipes in case of damaged pipes, restricted or Page 31 of 42

blocked and use always new fixation clips. Test 12 Check by manual activation, the correct working of the pressure relief valve avoiding the blocking of the safety device due to no Storage Tank activation. Open visit trap and check insulation and presence of calc or Inspection 12 sediments inside of the tank. In case of need, clean internal tank of sediments deposition with a vacuum cleaner. Solar Fluid Test 12 Check density and PH of solar liquid with appropriate device (see table 3) Magnesium anode Inspection 12 Check visually the status of the magnesium anode (see table 2) Table 1 Suggestion of a maintenance program 6.1) Structure control The new TSS 3rd generation has include some changes in the aluminum structure in order to reduce complexity, but keeping the same robustness. The following key points should be checked during maintenance in order to be sure that system is correctly attached to roof supports. Pict.42 Structure of a thermo siphon and important fixing points (TSS 3 rd Generation) Page 32 of 42

6.2) Magnesium anode control The criteria for the control of the magnesium anode is checking its visual aspect and when possible, checking its diameter, weight and dimension. In order to help service, the following table gives an indication of the minimum values to be considered. Model Weight Weight Diameter Diameter Length Length (Initial) (minimum) (Initial) (minimum) (Initial) (minimum) TSS 150 422 g 280 g 20 mm 13 mm 600 mm 400 mm TSS 200 422 g 280 g 20 mm 13 mm 600 mm 400 mm TSS 300 531 g 354 g 25 mm 16 mm 1120 mm 740 mm Table 2 Minimum control values for the magnesium anode Pict.43 Corroded anode in a tank 6.3) Solar liquid control Before filling the solar fluid in the system, ensure that the Glycol of direct use, is well mixed in the supplied recipient and before use, shake the vessel to ensure good mix. Attention: Solar collectors must be cold before and during filling process for the system. Page 33 of 42

Pict.44 Cover the collector to fill with solar fluid, keeping it cold Pict.45 PH control with WTI and density control with WTP device The following table, give to the service man the indication of the recommended values of the two parameters of the solar fluid. Inspection Frequency Value PH control PH between 7 and 9 Every year Density Protection control until -14 ºC Maximum value (limit) Replace if PH < 5 or > 9 (acid or basic fluid) Replace if value is > -5 ºC Comments Even with acceptable values, replace solar fluid every 4 years (after 60 months) Table 3 Solar fluid control Page 34 of 42

6.4) Pipe Work Inspection Insulation must be in good conditions to reduce thermal dissipation and efficiency decreasing, especially in the accessories of connection. In case of existence of pipes, crossing areas with personal movement, the pipes must have mechanical protection. Pict.46 Missing Items: mechanical protection in cold water pipe and thermal insulation in hot water pipe Pict.47 Correct insulation of connections of solar circuit Page 35 of 42

Attention: For guarantee activation, installer should communicate serial number and manufacturing date visible in the sticker on the protection cover of the resistance and on the side of the solar collector. Pict.48 Type plates and product identification Example from collector 8370 Plant identification; 004 Manufacturing date (FD); 000016 Counter number; Example from tank 8370 Plant identification; 004 Manufacturing date (FD); 000005 Counter number; Annex Modifications included in TSS 3 rd generation: 1) Changes on TSS Structure a. Flat Roof reduction of number of parts, reducing complexity b. On Roof improve of double ended screw support and reduction of complexity in model TSS300 (independent collector installation and separation of the structure fixation of the tank) Page 36 of 42

2) Introduction of new solar collector FCB and FCC on TSS Systems (please check FPI of SKW Project for details concerning collector) Pict.49 Detail of FCB / FCC collector 3) New Pressure relief valve a. Horizontal Installation b. Smaller dimensions Pict.50 System TSS200 with FCC Collector Page 37 of 42

In terms of Installation, the following situations are accepted by after sales 1) Complete TSS system with Hooks only (please check) Pict.51 System installed with Hooks from image above Page 38 of 42

2) Complete TSS system with double ended screw only (please check) Pict.52 System installed with double ended screws from image above Page 39 of 42

3) TSS system installed with hooks in the collector area and double ended screw in the storage tank support. Pict.52 System installed with both accessories and overview of change done in TSS 3 rd generation with the separation from collector fixation and tank Pict.53 System installed with double ended screw on tank structure and hooks in collector area Page 40 of 42

Pict.54 For TSS300, collector profile support is with one length only as image shows Pict.55 Introduction of change in the double ended screw support in order to keep profile in place Page 41 of 42

Pict.56 Overview of system installation Pict.57 Detail of change of TSS flat roof structure Bosch, Termotecnologia, S.A TT-GEH/STI International Training and Technical Support Aveiro Plant - Portugal Page 42 of 42