SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS UNIT OBJECTIVES UNIT OBJECTIVES 3/22/2012

Similar documents
SECTION 5 COMMERCIAL REFRIGERATION UNIT 21 EVAPORATORS AND THE REFRIGERATION SYSTEM UNIT OBJECTIVES 3/22/2012 REFRIGERATION

SECTION 7 AIR CONDITIONING (COOLING) UNIT 40 TYPICAL OPERATING CONDITIONS

SECTION 7 AIR CONDITIONING (COOLING) UNIT 40 TYPICAL OPERATING CONDITIONS UNIT OBJECTIVES

Section 1: Theory of Heat Unit 3: Refrigeration and Refrigerants

CTI Sponsored Educational Program

Refrigeration Systems and Accessories


Midwest Industrial Initiative Webinar: Industrial Refrigeration

Technical college/ Baghdad 4th Year Week No. :- 11. The objectives of this lesson are to: Introduction:

The Saturation process

SECTION 7 AIR CONDITIONING (COOLING) UNIT 41 TROUBLESHOOTING

Energy Use in Refrigeration Systems

REFRIGERATION CYCLE Principles of Mechanical Refrigeration Level 2: Cycle Analysis

Instructors: Contact information. Don Reynolds Doug McGee Factory Tech Support

HVAC Systems What the Rater Needs to Know in the Field CALCS-PLUS

Thomas J Kelly. Fundamentals of Refrigeration. Sr. Engineering Instructor Carrier Corporation. August 20, Page number: 1.

Checking the Charge on a Heat Pump in the Winter

Evaporative Condenser Engineering Manual

Air-Cooling Evaporators

Alfa Laval Wet Surface Air Coolers (WSAC ) FAQs

Technical Development Program

MECHANICAL ENGINEERING ME.2017 FUNDAMENTAL OF REFRIGERATION AND AIR CONDITIONING. Sample Questions and Answers

Refrigeration/Troubleshooting Manual

AIR CONDITIONING. Carrier Corporation 2002 Cat. No

Refrigeration Basics from a Brewery Perspective

Pressure Enthalpy Charts

SECTION 2 SAFETY, TOOLS AND EQUIPMENT, SHOP PRACTICES UNIT 10 SYSTEM CHARGING

Evaporative Condensers

Closed Circuit Cooling Towers

Appendix 13. Categories of Cooling and Heating systems

Technical Development Program

Math. The latent heat of fusion for water is 144 BTU s Per Lb. The latent heat of vaporization for water is 970 Btu s per Lb.

HEAT EXCHANGERS Maximize Thermal Efficiency with LaZerWeld Plate Heat Exchangers. For Industrial Refrigeration

terminal units only provide sensible cooling, a separate dehumidification system is usually needed.

Air Conditioning Inspections for Buildings Condensers

JCseries EVAPORATIVE CONDENSER. engineering data

Performance Optimization of the Evaporative Condenser Design

AND AIR-CONDITIONING. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Superheat charging curves for technicians

YOUR BASIC REFRIGERAION SYSTEM SVASD MAY 26, 2011

Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad B.Tech (III II SEM) MECHANICAL ENGINEERING

DX Units. Ranging from 15 to 750 tons and 1,000 to 300,000+ CFM

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road AUTONOMOUS QUESTION BANK (DESCRIPTIVE) UNIT I

CO2 TRANSCRITICAL BOOSTER SYSTEMS

To accomplish this, the refrigerant fi tis pumped throughh aclosed looped pipe system.

Heat Pumps SA SERIES. Vertical Self-Contained Unit Water-Source Heat Pumps (23-70 tons) Features:

S.A. Klein and G.F. Nellis Cambridge University Press, 2011

Series 6, Vertical Floor-Mount Units

Evaporative-Cooled vs. Air-Cooled Chillers: Kirtland AFB Case Study

How about Savings in Time, Money, Energy and Longer Life?

Heat Pumps SA SERIES. Vertical Self-Contained Unit Water-Source Heat Pumps (23-70 tons) Features:

Chapter 14 GAS VAPOR MIXTURES AND AIR-CONDITIONING

Chiller Plant Design. Julian R. de Bullet President debullet Consulting

INTRODUCTION HVAC BASICS AND HVAC SYSTEM EFFICIENCY IMPROVEMENT SECTION O 4/19/2012

HVAC Fundamentals & Refrigeration Cycle

Service Step by Step Trouble-Shooting Check-List

Air Conditioning Clinic

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division

Compressed Air System Products That Save Energy & Improve Operations. Dry, Clean Air for Sensitive Equipment. Refrigerated Air Dryers

Method to test HVAC equipment at part load conditions

energydesignresources

7 THERMAL APPLICATIONS

62DA,DB,DC,DD,DE,DF07-38

MAXIMIZING FACILITY PERFORMANCE WITH INNOVATIVE HVAC & IRRIGATION SYSTEMS

c o n d e n s e r Glossary of Terms

Refrigeration Technology in Building Services Engineering

Air Conditioning Clinic. Absorption Water Chillers One of the Equipment Series TRG-TRC011-EN

Dhulapally, Secunderabad Subject: REFRIGERATION AND AIR CONDITIONING QUESTION BANK

FLD = Furnished by Trane U.S. Inc. / Installed by Equipment Submittal Page 3 of 13

SECTION 8 AIR SOURCE HEAT PUMPS UNIT 43 AIR SOURCE HEAT PUMPS

AC SYSTEM CONFIGURATION- CENTRAL CHILLER PLANT

MECHANICAL SCIENCE Module 2 Heat Exchangers

How Much Energy is Really Being Wasted?

RSES Technical Institute Training Manual 3 72 hours, 72 NATE CEHs, 7.2 CEUs

R07. Answer any FIVE Questions All Questions carry equal marks *****

Thermodynamics II Chapter 6 Mixtures & Psychrometry

Class 1: Basic Refrigera0on Cycle. October 7 & 9, 2014

INSTITUTE OF AERONAUTICAL ENGINEERING

MH fluid cooler HYBRID DESIGN. HIGHER PERFORMANCE.

Emerging Technologies: VFDs for Condensers. Douglas T. Reindl Director, IRC University of Wisconsin-Madison. University of Wisconsin-Madison

Chapter-8 Capacity Control of Refrigeration Systems

C13-Series Engineering Guide

DAVE DEMMA ACHIEVING HEAD PRESSURE CONTROL

SECTION PACKAGED ROOFTOP AIR CONDITIONING UNITS

Calhoon MEBA Engineering School. Study Guide for Proficiency Testing Refrigeration

MH Fluid Cooler HYBRID DESIGN. HIGHER PERFORMANCE.

2013 Guideline for Specifying the Thermal Performance of Cool Storage Equipment. AHRI Guideline T (I-P)

RN/RQ. Series PACKAGED ROOFTOP UNITS, AIR-SOURCE HEAT PUMPS, WATER-SOURCE/ GEOTHERMAL HEAT PUMPS, & OUTDOOR AIR HANDLING UNITS.

Partial Load Performance Of Refrigeration System

HVAC (Heating, Ventilating, and Air Conditioning)

Table of Contents. Service Procedures. Service Procedures. Measuring Superheat (4) Measuring Subcooling (5) Airflow Calculation (6-8)

WHITE PAPER. ANSI/AHRI Standard for Fan and Coil Evaporators - Benefits and Costs

Compressors, Chillers & Condensers

Cascade Refrigeration System for LPG Subcooling. Related Technical Data and Information for the Case:

BASIC HEAT PUMP THEORY By: Lloyd A. Mullen By: Lloyd G. Williams Service Department, York Division, Borg-Warner Corporation

VERSECON Indoor Vertical Self-Contained Air Conditioner YSWU Ton Water-Cooled

3. (a) Explain the working of a rotary screw compressor. [10] (b) How the capacity control is achieved in refrigerant compressor?

Otherwise, you can continue reading the file on the following pages.

DSV Model Air Cooled Self Contained Indoor Packaged Units 3-5 Tons Preliminary Application Data

Figure 22-1 Evaporator sensible and latent capacity vs. entering air wet bulb

Transcription:

SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS UNIT OBJECTIVES After studying this unit, the reader should be able to explain the purpose of the condenser in a refrigeration system. describe differences between the operating characteristics of water-cooled and aircooled systems. describe the basis of the heat exchange in a condenser. explain the difference between a tube-within-a-tube coil-type condenser and a tube-within-a-tube serviceable condenser. describe the difference between a shell-and-coil condenser and a shell-and-tube condenser. values. UNIT OBJECTIVES After studying this unit, the reader should be able to describe a wastewater system. describe a recirculated water system. describe a cooling tower. explain the relationship between the condensing refrigerant and the condensing medium for cooling tower systems. compare an air-cooled, high-efficiency condenser with a standard condenser. describe the operation of head pressure control values. 1

THE CONDENSER Heat exchange surface that rejects system heat Rejects sensible heat Desuperheating vapor refrigerant from the compressor Subcools refrigerant at the outlet of the condenser Rejects latent heat during the condensing process The greatest amount of heat is transferred during the change of state Condenser is on the high pressure side of the system WATER-COOLED CONDENSERS More efficient than air-cooled condensers Water temperature can be maintained Water temperature directly affects system pressures Three types of water-cooled condensers Tube within a tube condenser Shell and coil condenser Shell and tube condenser TUBE WITHIN A TUBE CONDENSER Heat exchange takes place between the fluids in the inner and outer tubes Refrigerant flows in the outer tube Water flows in the inner tube Refrigerant and water flow in opposite directions to maximize the heat transfer rate Depending on the construction, the condenser can be cleaned mechanically or chemically 2

Water to tower (95 F) Cool water from the cooling tower the compressor 85 F Water Sub cooled liquid to the receiver Cross-Section of a tube within a tube condenser Surrounding air compressor (outer tube) Water from tower (inner tube) Discharge gas transfers heat to both the surrounding air and the water in the inner tube MINERAL DEPOSITS Heat from the discharge gas causes minerals in the water to come out of solution These minerals form scale that adhered to the pipes The scale acts as an insulator and reduces the rate of heat transfer between the refrigerant and the water Water is chemically treated to reduce the rate of scale formation on the interior pipe surfaces Dirty condensers lead to high head pressures 3

Cross-Section of a tube within a tube condenser Surrounding air MINERAL DEPOSITS compressor (outer tube) Water from tower (inner tube) Heat transfer between the refrigerant and the water is reduced because of the insulating effect of the mineral deposits 110 F liquid refrigerant to receiver 85 F WATER TUBES ARE CLEAN 95 F 145 F liquid refrigerant to receiver Discharge gas 200 F 85 F 90 F Scale Discharge gas 200 F MECHANICALLY CLEANABLE CONDENSERS Tube within a tube condenser has end flanges Flanges are removed to access the water circuit The refrigerant circuit remains sealed while the water circuit is open The mechanically cleanable tube-in-tube condenser is more costly than the chemically cleanable version of the condenser 4

MECHANICALLY CLEANABLE TUBE WITHIN A TUBE CONDENSER Water and refrigerant connections MECHANICALLY CLEANABLE TUBE WITHIN A TUBE CONDENSER Flange Gasket Access to interior of water tubes SHELL AND COIL CONDENSERS Coil of tubing enclosed in a welded shell Water flows through the coil Refrigerant from the compressor is discharged into the shell The shell also acts as the receiver When refrigerant comes in contact with the cool coil, it condenses and falls to the bottom This condenser must be cleaned chemically 5

Shell and Coil Condenser Water coil Shell compressor Droplets of condensed refrigerant Warm water out Cool water in Bottom of shell acts as a receiver Subcooled liquid from condenser SHEL AND TUBE CONDENSERS Can be cleaned mechanically Compressor discharge gas is piped into the shell Water flows through the tubes in the condenser The ends of the shell are removed for cleaning The shell acts as a receiver Refrigerant circuit is not disturbed when the ends of the shell (water boxes) are opened Most expensive type of condenser Shell Warm water out Water Tubes compressor Cool water in Bottom of the condenser acts as the receiver Subcooled liquid from condenser 6

compressor Water out Water in Subcooled liquid from condenser Directs water through the tubes compressor Access to tubes for cleaning Water box Subcooled liquid from condenser WASTEWATER SYSTEMS Water used once and then wasted down the drain Economical if water is free or if the system is small The main drawback is that the water temperature can vary a great deal Typical water temperature is about 75 F 75 F wastewater requires a flow of about 1.5 gpm per ton of refrigeration to absorb the heat rejected by the condenser Water typically leaves the condenser at 95 F 7

Wastewater System compressor Warm water out to drain (95 F) Water-regulating valve Cool water in (75 F) Subcooled liquid from condenser To compressor head REFRIGERANT-TO-WATER TEMPERATURE RELATIONSHIP FOR WASTEWATER SYSTEMS Water flow is controlled by a water regulating valve Two pressures control the water regulating valve The head pressure pushes to open the valve The spring pressure pushes to close the valve The valve opens when the head pressure rises Water temperature is higher in the warmer months Water temperature is lower in the cooler months RECIRCULATED WATER SYSTEMS The water flowing through the condenser is pumped to a remote location, cooled and reused Design water temperature is 85 F A water flow rate of 3.0 gpm per ton of refrigeration is required to absorb the heat rejected by the system condenser The water leaving the condenser is about 95 F There is a 10 degree split across the water circuit 8

Recirculated Water System compressor Warm water out to drain (95 F) Cool water in (85 F) Subcooled liquid from condenser COOLING TOWERS Device used to remove heat from the water used in recirculated water systems Towers can cool the water to a temperature within 7 F of the wet bulb temperature of the air surrounding the tower If the wet bulb temperature is 90 degrees, water can be cooled to a temperature as low as 83 F Natural draft, forced draft, or evaporative Hot water in (95 F) Fan motor Air in 95 F dry bulb, 78 F wet bulb Air out Cooled water out (85 F) 9

NATURAL DRAFT COOLING TOWERS Redwood, fiberglass or galvanized sheet metal There are no blowers to move air through the tower Natural breezes move air through the tower Water enters the tower from the top and is cooled as the water falls to the bottom Some water evaporates in the process, helping to cool the remaining water in the tower Additional water is added through a float valve FORCED OR INDUCED DRAFT TOWERS Use a fan or blower to move air through the tower As the water falls through the tower, air is moved across it to aid in the cooling process Can be located almost anywhere The fan is cycled on and off to maintain the desired water temperature Forced draft Air is pushed through the tower Induced draft Air is pulled through the tower EVAPORATIVE CONDENSERS Designed to operate full of liquid A latent heat transfer takes place throughout the coil Coil efficiency is maximized Other devices must be used to prevent liquid from entering the compressor Normally use a float-type metering device to keep the liquid level in the coil high 10

AIR-COOLED CONDENSERS Uses air to absorb heat rejected by the system Used in locations where water is difficult to use Horizontal, vertical, or side intake and top discharge Hot gas enters the condenser from the top For standard efficiency systems, the refrigerant will condense at a temperature about 30 F higher than the outside ambient temperature AIR-COOLED CONDENSER EXAMPLE R-134a medium temperature refrigeration system Outside air temperature 95 F Condensing temperature 125 F (95 F + 30 F) From P/T chart, high side pressure is 184 psig Discharge refrigerant from the compressor at 200 F Refrigerant must desuperheat from 200 F to 125 F Refrigerant will begin to condense at 125 F Liquid refrigerant subcools below 125 F CALCULATING SUBCOOLING Refrigerant R-134a REFRIGERANT ENTERING THE COIL CONDENSER SUBCOOLING = 125 F 110 F = 15 F 184 psig (125 F) OUTLET TEMP = 110 F REFRIGERANT LEAVING THE COIL CONDENSER SATURATION TEMPERATURE = 125 F 11

HIGH-EFFICIENCY CONDENSERS Have larger surface areas than standard condensers Allow systems to operate at lower pressures Allow systems to operate more efficiently Can operate with head pressures as low as 10 F higher than the outside ambient temperature THE CONDENSER AND LOW-AMBIENT CONTROLS Condensing temperatures drop when the outside ambient temperature drops The condensing pressure must be at least 75 psig higher than the evaporator pressure in order for the metering device to operate properly Low ambient controls Designed to maintain the desired head pressure Needed on systems that operate year-round HEAD PRESSURE CONTROL FAN CYCLING DEVICES Used on air-cooled condensers As the head pressure drops, the fan cycles off As the head pressure rises, the fan cycles on Some condensers have more than one fan Some fans remain on all the time Others cycle on and off to maintain proper pressure Can be controlled by pressure or temperature 12

HEAD PRESSURE CONTROL VARIABLE SPEED MOTORS Motor speed changes to maintain head pressure As the head pressure drops, the fan slows down As the head pressure rises, the fan speeds up Can utilize variable frequency drives (VFD) Maintains a more constant head pressure Can be controlled by pressure or temperature HEAD PRESSURE CONTROL AIR SHUTTERS OR DAMPERS Located at the inlet or outlet of the condenser Opens and closes by a pressure-controlled piston Controls airflow through the condenser coil As ambient temperature drops, the dampers close to reduce the amount of airflow through the coil As ambient temperature rises, the dampers open to increase the amount of airflow through the coil HEAD PRESSURE CONTROL CONDENSER FLOODING Valve installed in parallel with the condenser Valve closed when the ambient temperature is high Valve opens as the ambient temperature drops As the valve opens, refrigerant backs up in the condenser, reducing the heat transfer surface area During very cold weather, the condenser will be almost completely filled with liquid refrigerant Systems must have an oversized receiver 13

FLOATING HEAD PRESSURES Term used for attaining the lowest possible condensing temperature in the system Allows the head pressure to follow the ambient temperature without using head pressure controls Newer expansion devices can operate properly with pressure differences as low as 30 psig Systems become more efficient since they operate at lower pressures UNIT SUMMARY - 1 The condenser is the system component responsible for rejecting system heat Condensers reject both latent and sensible heat Water-cooled condensers are more efficient than air-cooled condensers Three types of water-cooled condensers are the tube within a tube, shell and coil, and the shell and tube Mineral deposits in the water circuit reduce the heat transfer rate between the water and the refrigerant UNIT SUMMARY - 2 Some condensers can be mechanically cleaned while others must be cleaned chemically Wastewater systems use water once and then waste it down the drain Wastewater systems typically supply 75-degree water to the condenser and require 1.5 gpm/ton Recirculating water systems typically supply 85-degree water and require 3.0 gpm/ton 14

UNIT SUMMARY - 3 Wastewater systems utilize a water-regulating valve while recirculated water systems do not Evaporative condensers use a combination of water and air to achieve the condensing process High efficiency condensers operate with lower head pressures than standard efficiency condensers Low ambient controls allow systems to operate properly when the ambient temperature is low 15