REFRIGERATION TUTOR. OBJECTIVE: To perform test on the refrigeration tutor to determine different COPs and other performance parameters.

Similar documents
THERMAL ENGINEERING LABORATORY II. To train the students with principles and operation of thermal Engineering equipments.

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY MASS & ENERGY BALANCES IN PSYCHROMETRIC PROCESSES EXPERIMENT 3

AIM: TO STUDY THE PERFORMANCE OF THE DOMESTIC REFRIGERATION RIG.

Experiment 2: Test on Domestic Refrigerator for evaluation of EER.

s. Properties for R134a are as follows : Saturated R-134a Superheated R-134a

MAHATMA GANDHI MISSION s JAWAHARLAL NEHRU COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

Dhulapally, Secunderabad Subject: REFRIGERATION AND AIR CONDITIONING QUESTION BANK

ME 410 MECHA ICAL E GI EERI G SYSTEMS LABORATORY

3. (a) Explain the working of a rotary screw compressor. [10] (b) How the capacity control is achieved in refrigerant compressor?

R07. Answer any FIVE Questions All Questions carry equal marks *****

R10. IV B.Tech I Semester Regular/Supplementary Examinations, Nov/Dec REFRIGERATION & AIR-CONDITIONING (Mechanical Engineering)

COLD. Basic Training Course II. November ESSE - Wilhelm Nießen

LISTOF EXPERIMENTS. S. No. NAME OF EXPERIMENTS PAGE No.

Week 9. Refrigeration Cycles I. GENESYS Laboratory

Refrigeration and Air Conditioning

pdfmachine trial version

Refrigerator/Heat pump

ME 354 THERMODYNAMICS LAB THE REFRIGERATION CYCLE

Economical and Energy Efficient Air Conditioner Using Calcium Liquid as a Secondary Refrigerant.

Pressure Enthalpy Charts

PRESSURE-ENTHALPY CHARTS AND THEIR USE By: Dr. Ralph C. Downing E.I. du Pont de Nemours & Co., Inc. Freon Products Division

DEEPAK PALIWAL, S.P.S.RAJPUT

TECHNICAL GUIDE DESCRIPTION SPLIT-SYSTEM AIR-COOLED CONDENSING UNITS. HA300, HB360, HB480 & HB thru 50 NOMINAL TONS (50 Hz)

Chapter 9. Refrigeration and Liquefaction

Short Questions with Answers APPLIED THERMODYNAMICS(5 TH MECHANICAL) Chapter No-1

Homework Chapter2. Homework Chapter3

1 /35 2 /35 3 /30 Total /100

9. ENERGY PERFORMANCE ASSESSMENT OF HVAC SYSTEMS

MECHANICAL ENGINEERING ME.2017 FUNDAMENTAL OF REFRIGERATION AND AIR CONDITIONING. Sample Questions and Answers

Experimental Investigations of Heat Pump for Domestic and Light Commercial Market.

Design & Fabrication of Hybrid Cooler

Refrigeration Systems

Performance Improvement of Window Air Conditioner by using Bottle Neck Arrangement

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

EXPERIMENTAL INVESTIGATION OF COMPARISION OF AIR COOLED AND WATER COOLED CONDENSER ATTACHED WITH COOLING TOWER

Institute of Aeronautical Engineering (Autonomous) Dundigal, Hyderabad B.Tech (III II SEM) MECHANICAL ENGINEERING

Refrigeration Technology in Building Services Engineering


Sarthak Thakar, 2 R.P.Prajapati 1

INSTITUTE OF AERONAUTICAL ENGINEERING

Use this Construction/HVAC Glossary to answer the questions below.

EXPERIMENTAL VERIFICATION OF PERFORMANCE OF CAPILLARY TUBE USING VAPOUR COMPRESSION REFRIGERATION SYSTEM

Chapter-8 Capacity Control of Refrigeration Systems

TEST REPORT #4. Travis Crawford Dutch Uselton. Lennox Industries Inc Metrocrest Drive Carrollton, TX 75006

Math. The latent heat of fusion for water is 144 BTU s Per Lb. The latent heat of vaporization for water is 970 Btu s per Lb.

TEST REPORT #14. System Drop-In Test of Refrigerant Blend ARM-42a in an Air-Cooled Screw Chiller

2. CURRICULUM. Sl. No.

ENERGY SAVINGS THROUGH LIQUID PRESSURE AMPLIFICATION IN A DAIRY PLANT REFRIGERATION SYSTEM. A. Hadawey, Y. T. Ge, S. A. Tassou

Energy Use in Refrigeration Systems

Paper No. : 04 Paper Title : Unit Operations in Food processing Module 11 : Principles of Refrigeration

Refrigeration Cycles. Refrigerators, Air-conditioners & Heat Pumps. Refrigeration Capacity/Performance. Dr. Md. Zahurul Haq

T270 COP R = Q L. c Dr. Md. Zahurul Haq (BUET) Refrigeration Cycles ME 6101 (2017) 2 / 23 T354

LAB EQUIPMENT DETAILS

OFFICE OF THE PRINCIPAL GOVERNMENT ENGINEERING COLLEGE JAGDALPUR (C.G.)494005

Performance of R-22, R-407C and R-410A at Constant Cooling Capacity in a 10

SECTION 8 AIR SOURCE HEAT PUMPS UNIT 43 AIR SOURCE HEAT PUMPS

The Refrigeration Cycle

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

(ME-225) HEATING, VENTILATION AND AIR-CONDITIONING SYSTEM

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

The Refrigeration Cycle

Performance of window air conditioner using alternative refrigerants with different configurations of capillary tube

Water Jet Nozzle to reduce the operation cost in Air Conditioning unit

Improvement Of Energy Efficiency Ratio Of Refrigerant Compressor

c Dr. Md. Zahurul Haq (BUET) Refrigeration Cycles ME 6101 (2013) 2 / 25 T270 COP R = Q L

PERFORMANCE OF VCRS SYSTEM WITH HEAT EXCHANGER AND PHASE CHANGE MATERIAL

EXPERIMENTAL INVESTIGATION OF WATER COOLER SYSTEM BY USING ECO-FRIENDLY REFRIGERANT (R-134a)

Technical Development Program. COMMERCIAL HVAC PACKAGED EQUIPMENT Split Systems PRESENTED BY: Ray Chow Sigler

ORTEC HIGH CAPACITY REFRIGERATED AIR/GAS DRYERS

PERFORMANCE OF DEEP FREEZER BY USING HYDROCARBON BLENDS AS REFRIGERANTS

Carnot. 2. (a) Discuss the advantages of the dense air refrigeration system over an open air refrigeration system?

Numerical Study on Improvement of COP of Vapour Compression Refrigeration System

IJESRT. (I2OR), Publication Impact Factor: (ISRA), Journal Impact Factor: 2.114

Last exam / sista tent

Transcritical CO2 Bottle Cooler Development

ijcrr Vol 04 issue 07 Category: Research Received on:06/02/12 Revised on:17/02/12 Accepted on:02/03/12

Numerical Simulation of Window Air Conditioner

CHAPTER 7 PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM IN HYBRID REFRIGERATION SYSTEM

Optimum Length of a Condenser for Domestic Vapor Compression refrigeration System

Refrigeration Cycles MOHAMMAD FAISAL HAIDER. Bangladesh University of Engineering and Technology

Compendium DES July 2016, CARN

RAC. Unit 1. Previous year Questions

U.G. Student, Department of Mechanical Engineering, J D Engineering College, Nagpur, Maharashtra, India

Performance Characteristics of Air-Conditioner Under Tropical Ambient Condition

SIMULATION OF SWITCHING TRANSIENTS OF 90 TR CHILLER SYSTEM AT SASTRA UNIVERSITY

RS-70 is suitable as a direct replacement for R-22 in low, medium and high temperatures in a great number of applications:

4.1 Refrigeration process comparison

[Vali*, 5(2): February, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785

Calhoon MEBA Engineering School. Study Guide for Proficiency Testing Refrigeration

TECHNICAL, OPERATING & INSTALLATION MANUAL TC 15, 33, 52 AIR COOLED PACKAGED WATER CHILLERS

0.4 In the preparation of this standard, assistance has been derived from the following standards:

Improving and Comparing the Coefficient of Performance of Domestic Refgirator by using Refrigerants R134a and R600a

RSES Technical Institute Training Manual 1 70 hours, 70 NATE CEHs, 7.2 CEUs

Refrigeration System with a Capillary Tube and a Thermostat

(Refer Slide Time: 00:00:40 min)

Engineering Thermodynamics. Chapter 7

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road AUTONOMOUS QUESTION BANK (DESCRIPTIVE) UNIT I

JCseries EVAPORATIVE CONDENSER. engineering data

Refrigeration & Air-Conditioning Laboratory REPORT. Prepared by: AURKO CHATTERJEE 10ME10069 REFRIGERATION AND AIR-CONDITIONING LABORATORY REPORT 1

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT

Transcription:

REFRIGERATION TUTOR OBJECTIVE: To perform test on the refrigeration tutor to determine different COPs and other performance parameters. EXPERIMENTAL SETUP: All the components of refrigeration bench are displayed on a portable sun mica stand. The set up consists of An air cooled fin type condenser Hermetically sealed compressor Evaporator with calorimeter and heater Two expansion devices-capillary and thermostatic expansion valve Electrically operated solenoid valve High pressure and low pressure cut-outs for safety of the compressor Two energy meter for measuring energy input to compressor and calorimeter heater Rotameter is used for measuring the flow rate of liquid refrigerant (R-12) in the refrigeration cycle WORKING PRINCIPLE : The refrigerating tutor is based upon the vapour compression refrigeration cycle(vcrc). It consists of four basic processes (see fig 1 and 2): (1-2)- Reversible adiabatic(isentropic) compression in compressor(s1=s2) (2-3)- Constant pressure heat rejection in condenser (3-4)- Isentropic ( h3 = h4 ) expansion in capillary tube/ Expansion device (4-1)- Constant pressure heat addition in evaporator Alternative arrangement of passing the liquid refrigerant through a capillary and a thermostatic expansion valve is provided with suitable shut off valves where the liquid is throttled to low pressure and temperature and sent to evaporator where it boils. A drier and sight glass is present in the way to throttling device. A heater provided at the bottom of the calorimeter offers heat load which is balanced by refrigerating effect produced. The calorimeter consists of 25 liters of water as medium, the temperature of which could be observed with a dial thermometer. Separate pressure gauges are provided to measure condenser and evaporator pressures and four suitable thermometers are supplied to measure temperatures at various locations. HP LP cutout and thermostat is provided for safety and voltmeter and ammeters to measure voltage and current of the compressor, and heater input to balance the refrigerating effect produced by the evaporator. Main switch and switches for heater, compressor, fan and solenoid valve to stop the liquid refrigerant flooding the evaporator should the supply fail while operation on thermostatic expansion valve are provided.

Fig 1. T-s curve for VCRC Fig 2. P-h curve for VCRC.

SPECIFICATIONS: BENCH: 1. Nominal cooling capacity : ¼ Ton. (0.8722 kw at the evaporator ) 2. Nominal H.P. of compressor : 1/3 H.P. 3. Refrigerant : Freon-12 COMPRESSOR (Kirloskar Hermatic single cylinder reciprocating type): 1. CAJ-34 Cooling Capacity : 920kcal/hr (1070 watt) 2. Suction pressure : 2.92 kgf/cm2(0.292 Mpa) 3. Delivery pressure : 12.6 kgf/cm2 (1.26 MPa)4. Condenser Temperature : 54.4 C, 130 F 5. Electrical Circuit : CSIR(Capacitor Static Induction Run) 6. Power input : 500W(430 kcal/hr) 7. Displacement/rev : 12.58 cc 8. Displacement/hr : 2.15 m3 9. RPM : 2875 to 2900 To give COPact=920/430=2.13 4. Condenser: Air-cooled condenser 3/8 (9.53 mm) OD copper tube suitable for compressor with an exhaust fan. 5. Expansion device: A capillary tube 2/3 mm O.D. about 30 to 60 cm length. 6. Service valves: 7 nos., ¼ ¼ (6.35mm 6.35) INSTRUMENTS: 7. Rotameter :Range 9 to 90 liters /hr for R12 liquid, specific gravity- 0.82 8. Energy meter : Single phase 0-5/10A 9. Voltmeters : 0-250V 10. Ammeters : 0-5Amp 11. Pressure Gauges : 2 Nos. 0-300lbs/in2(0-2.113kPa, 76.2cm (30 ) of Hg, 0-1.056 KPa(0-150 lb/in2) 12. Thermometer: 2 Nos: 10 to 50 C 2 Nos.: 10 to 100 C 13. Dial Thermometer : 1 No. : -30 to 50 C 14. Solenoid Valve : 1 No. 15. HP LP Cutout 16. Sight Glass : 1 No. ¼ ¼ 17. Service Valves : 7 Nos. ¼ ¼ 18. Thermostat : 1 No. OBSERVATIONS: Conditions of test:

D.B.T.: 27 C W.B.T. 25 C Sr. No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Gauge pressure at 110V 14.5 Absolute Pressure 15.513 P1 kg/cm2 3 4.013 T2 68 T3 42 T4-8 T1 27 Vc tc 200 2.3 N tn f 5 132 12 N tc 5 108 34 Symbol Compressor discharge pressure (condenser pressure) (MPa) Compressor suction pressure(evaporator pressure)(mpa) Condenser inlet temperature(in C) Condenser outlet temperature( C) Evaporator inlet temperature( C) Evaporator outlet temperature( C) Compressor 1. Voltage(volts) 2. Current(amp) Heater energy meter a. No of revolutions b. Times(sec) Rate of flow through rotameter(m3/hr) 10-3 Compressor power for a. No of revolution b. In times(sec) Calorimeter water temperature( C) P2 kg/cm2

CALCULATIONS: Enthalpy values of specimen trial(from Table R-12): Enthalpy of condenser inlet H1 = 394.802 kj/kg Enthalpy of condenser outlet H2 = 240.574 kj/kg Enthalpy of evaporator inlet H3 = 240.574 kj/kg Enthalpy of evaporator outlet H4 = 362.439 kj/kg 1. COPth = Nth/Wth = (H4 H3)/(H1 H4) = 3.766 2. COPact = Nact/Wact Nact = 5/132 * 3 kw = 0.114 kw Wact = 3/108 * 3 kw = 0.138 kw COPact = 0.820 1 rev/sec = 3 kw(1200 rev = 1 KWh) 3. COPrel = COPact/COPth = 0.820/3.766 = 0.189

4. COPcarnot = T(l) [T(h) T(l)] = 265/341-265 = 3.487 5. Efficiency of the plant on Carnot cycle basis =COPact/COPcarnot =.235 6. Actual capacity of the plant = Nact/3.489 ton = 0.114/3.487 = 0.033 ton 7. Mass flow rate of the refrigerant m = [Rotameter reading(f) 0.001 m3] / [sp. Vol of liquid at Pc(from table)] = 12 10-3 / 0.803 10-3 = 14.94 kg/hr =.004 kg/s 8. Actual volumetric efficiency = m sp volume of suction vapor(from table) / piston displacement per hr. 14.94 0.0254/2.15 = 0.177 = 17.7 % 9. Dimensionless ratiosa. Condenser to evaporator heat transfer = (Hci Hco)/(Heo Hei) = 1.266 b. Power consumption ratio = Wact/Wth = 0.139/0.487 = 0.285 c. Compression ratio = Compressor discharge pr/ Compressor suction pr 15.513/4.013 = 3.866 RESULT: Cycle Actual Theoretical Ideal ( Carnot) COP 0.820 3.766 3.487 PRECAUTIONS: 1. Do not forget to put on solenoid valve switch while running the plant on thermostatic expansion valve. If not opened, condenser pressure (greater than 215 psi) will shoot up and HP cutout will stop the compressor. 2. The evaporator pressure should not decrease below 20 psi otherwise LP cutout will switch off the compressor. 3. Start the system on capillary first. Starting the system initially on thermostatic expansion valve will demand the compressor works against heavy condenser pressure. 4. Do not open charging valve unless required for charging. 5. Observe condenser inlet temperature, which should lie in between 70 to 75 C. If it exceeds 75 C, stop the plant immediately. It means the condenser cooling air temp is high. Cooling table fan adjustment to the compressor is advised. 6. Calorimeter bar temperature should not decrease below 15 C otherwise thermostat will switch off the compressor.

DISCUSSION: COP obtained in these calculations is quite low. This may be due to non-uniform heating by the heater. It may also be due to the time provided for heating the liquid is not sufficient and while taking the readings, steady state was yet to be achieved. Also the rotameter observations are liable to be wrong as accurate reading from the rotameter is very difficult to get. QUESTIONS: 1. What is the function of solenoid valve? It is a shut off valve that is actuated by an electro magnetic coil so designed that when the coil is energized. Its function is more of a safety device than of an expansion valve because while running the plant on thermostatic expansion valve, if solenoid valve is not put on, condenser pressure will shoot up and HP cutout will stop the compressor 2. What is the difference between actual and standard VCRC? There is a difference between actual vapor compression cycle and the standard vapor compression cycle(see fig 3) In the standard vapor compression cycle, the pressure drops due to friction in the condenser and the evaporator are not taken into consideration. Sub cooling in the condenser and super heating in the evaporator are also not considered in the standard vapor compression cycle. In the fig A B C D represents the standard vapor compression cycle whereas ABCD is the actual vapor compression cycle. CC indicated sub cooling in the condenser whereas AA indicates the super heating in the evaporator. Fig 3

3. Name all safety & control devices used and function of each in one line. 1. High pressure cutout to switch off compressor if condenser pressure exceeds 2.15 to 2.20 lb/inch2 (1.514 kpa to 1.549 kpa) 2. Low pressure switch to switch off compressor if evaporator pressure falls below 20lb/inch (140.86 kpa) 3. Thermostat to switch off compressor if the calorimeter bath temp falls below 15 C (set). 4. Solenoid valve to prevent flooding of evaporator if power fails. 4. Which refrigerant is used in refrigerating tutor and why? In our experiment, we use Freon-12.Its chemical name is dichlorodifluoro Methane(CCl2F2).It is commonly used for all refrigeration purposes. It is colourless and odourless liquid. It is non-toxic, non-flammable, non-explosive and noncorrosive. It condenses at moderate pressure under normal atmospheric conditions and boils at 29.5 deg cel at atm. Pr. This property makes it suitable for all purpose refrigeration and it can be used with all three types of compressors. 5. What type of condenser is being used? we have used forced convection air- cooled condenser. Heat transfer takes place by air convection around the condenser surface. Air is circulated by means of a fan or blower. 6. How pressure drop takes place in capillary tube? The required pressure drop is caused due to heavy frictional resistance offered by a small dia. Tube. Resistance is directly proportional to the length and inversely proportional to the dia.

fig no. 4 (schematic diagram of refrigeration tutor in lab.) V1- Charging valve V2- Rotameter inlet valve V3- Rotameter By pass V4- Capillary inlet valve V5- Capillary outlet valve V6- Thermostatic expansion valve inlet V7- Thermostatic expansion valve outlet 1- Main switch 2- Heater switch 3- Compressor switch 4- Fan switch 5- Solenoid switch 6- Indicator lamp 7- Voltmeter for compressor 8- Ammeter for compressor 9- Energy meter for heater 10-Energy meter for compressor 11- Pressure gauge for HP 12- Pressure gauge for LP 13- Dimmer stat 14- HPLP cutout 15- Calorimeter Temperature 16- Thermostat 17- Calorimeter/Evaporator 18- Fan with motor 19- Compressor 20- Condensor 21- Sight glass 22- Filter dryer 23- Capillary tube 24- Solenoid valve 25- Indicator lamp 26- Indicator lamp 27- Thermometer expansion valve 28- Stirrer with motor 29- Tap