Improving Air Emission Profiles Using Baghouses and Other Processes EVRAZ INC NA Canada Environmental Affairs Department

Similar documents
Introduction Airflow and filtration area General design practices Cleaning system

Pulse Jet Baghouse ASTEC PULSE JET BAGHOUSE. for Asphalt Facilities

Dust Collectors. Unique Design & Engineering Approaches for Dust Collection and Pneumatic Conveying

ELECTRO STATIC PRECIPITATOR [ESP]

To familiarize you with typical baghouse operation and maintenance problems.

C&W specializes in dust control for a variety of sand-related applications.

Direct Fired Heater Model AD Specification

Lecture 5 Particulate emission control by electrostatic precipitation

Internal ridged board 1" x 1.5 foil face installation shall be installed on roof, walls and base of casing.

DUST COLLECTION TRAINING. Revision 2013

Reducing the Cost and Risk of Dust Collection in Coal

Ventilation Engineering Analysis. Schust Engineering Project #1845

BHA Powerwave Acoustic Cleaning Systems Powerful cleaning to help increase performance

Biosolids Processing Report City of Buffalo, Minnesota

Preventative Maintenance Tables

Internet Version for Reference Only INDUCED DRAFT COMMERCIAL WATER HEATERS SUPPLEMENT INSTRUCTIONS TO PART #

MJC Cartridge Filter Unit Operation & Maintenance

APPLICATION PROFILE EXPLOSIONS IN CEMENT PLANTS EXPLOSIONS IN CEMENT PLANTS CEMENT PLANT EQUIPMENT WITH HIGHEST EXPLOSION POTENTIAL. Form No.

Filter cleaning in hot gas applications PENTAIR 1

Kice Dust Control System Design and Maintenance Basics Design, Maintenance, & Operation

LEAD RECYCLING PLANT. Battery Machine Manufacturers: Since 1989

ALUMINUM REPAIR CERTIFICATION EQUIPMENT. Eliminate hazardous aluminum dust with a Eurovac system. BODY REPAIR CERTIFICATION EII Wet Mix Dust Collector

CARE GUIDANCE. Local Exhaust Ventilation (LEV) Systems for High Temperature Insulation Wool (HTIW) LEVEL 2 RECOMMENDATIONS ON BEST PRACTICE

Providing State-of-the-Art Fine Particulate Control Through Advanced High Energy Ionization

Boiler Draft Equipment

CLEARING THE AIR by Jeremiah Wann, president and

P23 MELT CONFINED SPACE LOG

Waste Heat Recovery Using the Example of Slag Fuming

Traditionally, two design approaches have been commonly used for dust collection in float glass plants:

Boiler Basics. Design and operation

Advanced Technology High-Ratio Pulse Jet Baghouse Dust Collectors

MAXIMIZE EFFICIENCY. MINIMIZE PROBLEMS. Dust Collection Systems Troubleshooting Guide

[1] Lecture 2 Particulate emission control by mechanical separation & wet gas scrubbing

APPLICA TION OF SPRA Y COOLED TECHNOLOGY TO A BOP SHOP FURNACE HOOD

MANUAL WARNING FIRE OR EXPLOSION HAZARD. SL280UHNV SERIES WHAT TO DO IF YOU SMELL GAS:

Ontario Fire Code SECTION 5.10 COMBUSTIBLE DUST PRODUCING PROCESSES. Illustrated Commentary. Office of the Ontario Fire Marshal

TYPICAL CPA SPECIFICATIONS

Enviro International Corporation. WET SCRUBBER

Modular Baghouse Dust Collectors

DUST COLLECTORS. OEM and Industrial Air Handling Specialist Snider Road, Mason, OH Telephone:

DALAMATIC DUST COLLECTORS

KG 092 SHOWN READ ALL INSTRUCTIONS IN THIS MANUAL AND RETAIN FOR FUTURE REFERENCE WARNING

ENVIRO UNIT ENGINEERING MANUAL KES SERIES

Capture at Source FILTERMAX FILTER MODULES WITH AUTOMATIC CLEANING

Indirect gas-fired air heater

THE INDUSTRIAL APPROACH TO DUST MONITORING

The Emergence of Triboelectric Technology

In accordance with the Department of Labor and Industry s statute , Subd. 11,

SERVICE AND INSTALLATION MANUAL MODELS HDO(H) OIL FOR YOUR SAFETY

M O D U L E IV C O N T R O L T E C H N I Q U E S

AIRWASH Abrasive Recycling System

Air Pollution Control Equipment & Service Needs

SLP98UH SERIES VARIABLE CAPACITY GAS FURNACE WARNING WARNING

Prepared by Technical Team

C. Shop Drawings: For boilers, boiler trim, and accessories. Include plans, elevations, sections, details, and attachments to other work.

ML180UH SERIES GAS FURNACE WARNING WARNING

RECOMMENDED PROCEDURES FOR THIRD-PARTY PREVENTATIVE MAINTENANCE PROVIDERS

ACT Cartridge Dust Collector

Energy recovery from exhaust gases using Heat Pipe technology

INDUSTRIAL REMOTE FILTER

F-Series Tower Drying

ProcessBarron is a leader in the design, fabrication, installation, maintenance, and repair of air, flue gas and bulk materials handling system

POWDER GUIDE. Trouble shooting tips to maximise the benefits of Apcoshield Powder Coatings

How to Take Basic Readings to Show Energy Efficiency

General Characteristics.3. S.M.A.R.T System Set-up...5. Start-up Procedures.6. Shut-down Procedures 8. General Maintenance..8

Revitalize Building Mechanical Systems (4619)

Leisure Line Power Vent Operations & Maintenance Manual And Safety Instructions

HOFFMAN & LAMSON ENGINEERED VACUUM SYSTEMS

Problem Cause Remedial action. Gauge glass There was excess chemical dosage The normal ph recommended was 9.5 to See photo 3 & 4.

and Closed Circuit Blaster

FS flat bag dust collector

The equipment and materials shall be designed and constructed in accordance with the ASME code section I 2001 ED A02 and Chinese Standards.

Ronald Sigmond 26 Oct 2016 FLAME MONITORING, GAS HANDLING SYSTEMS AND BURNERS

CMHC HOME MAINTENANCE CHECKLIST

WARNING FIRE OR EXPLOSION HAZARD.

USER S INFORMATION MANUAL

Sootblowers. Learning Outcome. Learning Objectives. When you complete this module you will be able to: Discuss sootblowers.

Granulators Reprocessing Plastic Scrap into Valuable Regrind. world of innovation

Boiler Technical Specifications (2013)

Indiana WX Oil Furnace Inspection Guide

SECTION HEATING BOILERS

PORTABLE PILOT TEST UNIT. Mike Hill Shirco Infrared Systems, Inc.

Centrifugal Fans, Non-Overloading, Backward Inclined

B. Use UT Austin specifications and equipment schedule format for HVAC equipment where available.

Performance Report 2009 Chimfex

RELIABLE SOLUTIONS FOR INDUSTRIAL APPLICATIONS ENGINEERED VACUUM SYSTEMS

Computer Controller. The Bio-Burner has user regulated settings as well as built-in safety features to protect you and your burner.

2x58 MW Coal Fired Power Plant at Mauritius

Conversion Instructions Logano G234X. Gas boiler. Please read carefully before installing and servicing. Gas boiler

CPF PRODUCT DESCRIPTION

Design Considerations for Abrasive Blast Rooms & Recovery Systems

Gas-Fired Unit Heaters Commercial & Industrial

Vacuum - The Universal Conveying Force Suction and transportation of powders, liquids and gases

Exhaust Duct Design Page 1 of (C)

Discover the Difference

User s Information Manual

INDUSTRIAL BLOWERS. With over 70 years of experience and expertise our fans will ensure your projects are a success.

Leisure Line Power Vent Operations & Maintenance Manual And Safety Instructions

BARD MANUFACTURING COMPANY, INC. W24G-W60G Gas Heat/Electric Cooling Engineering Specification Guide

ZG Shown READ ALL INSTRUCTIONS IN THIS MANUAL AND RETAIN FOR FUTURE REFERENCE WARNING

Transcription:

Improving Air Emission Profiles Using Baghouses and Other Processes EVRAZ INC NA Canada Environmental Affairs Department Prepared by: Robert Schutzman Director of Environmental Affairs & Samantha French - Environmental Data Management Specialist January 17, 2014

Outline 1. EVRAZ Regina Steel Making 2. EVRAZ Emission Control Design 3. EVRAZ INC NA Canada Baghouses 4. Baghouse Basics 5. Baghouse Basics Bag types 6. Baghouse Basics Cleaning mechanisms 7. Baghouse Design 8. EVRAZ INC NA Canada Baghouses Pollution Detection Equipment 9. Scheduling of Baghouse Compartment Change-outs 10.Cold Weather Operations and Issues 11.EAF Dust removal 1

EVRAZ Regina Steel Making Steel recycling using scrap steel, about 1Mt/a Electric Arc Furnaces (EAF) with natural gas burners Scrap steel placed into EAFs with clam-shell buckets Lime (= EAF Steel Slag ) added to top of molten steel to insulate and occlude air Processing with fine carbon and oxygen Tapping into ladles for further processing in Ladle Metallurgy Furnace (LMF), before casting 2

EVRAZ Emission Control Design SB 3

EVRAZ Emission Control Design cont d Emissions from EAF melting are exhausted in a water cooled (WC) system after the fourth hole elbow, into a drop box for post-combustion and where the larger pieces of debris are deposited. The exhaust travels thence to a Spark Box (SB), where heavier dust and materials settle, and then is routed to the Mikropul baghouse. 4

EVRAZ Emission Control Design cont d When emptying the furnace, eccentric bottom tapping is used, and the liquid steel flows to a ladle through a tap hole in the base of the furnace. Exhaust during furnace tapping is pulled through a side draft (items L and F on diagram) which is then routed through the water cooled exhaust piping. 5

EVRAZ Emission Control Design cont d Emissions from the two Electric Arc Furnaces (EAF) into the building occur, as a charge plume to the canopy when the furnace lid is lifted and new scrap charges are added, or during slag pour-off. Fume flowing into the canopy is exhausted to the Procedair and the AAF baghouses. Canopy hood velocity design is greater than 60 cm/s. The LMF exhaust is drawn into a plenum (item E on the diagram) and then into the canopy. If there are any issues with the Mikropul baghouse, exhaust duct flow can be rerouted and the air emissions can be exhausted into the Procedair and the AAF baghouses. 6

EVRAZ Emission Control Design cont d Meltshop Canopy Ducting Photograph of the exhaust ductwork to the baghouses 7 Photograph of exhaust system and spark box

EVRAZ Regina Baghouses Evacuation design rate is about 1.5 acfm per Ton/year of Steel produced; (usual practice has been 1.0). Net*Net design; i.e. without two compartments per baghouse EVRAZ has three (3) baghouses in operation, named based upon Manufacturer Two Positive Pressure Mikropul -- about 1 M acfm 12 compartments, 336 bags/compartment (4,032 bags) Three fans, two in operation continuously Maximum A/C ratio is 3:1 most recent addition AAF about 0.3 M acfm 10 compartments, 128 bags/compartment (1,280 bags) Three fans, two in operation continuously One Negative Pressure Procedair about 0.2 M acfm 10 compartments, 180 bags/compartment (1,800 bags) One fan in operation continuously Photograph of EVRAZ Baghouses: Mikropul, AAF and Procedair (left to right) 8

Baghouse Basics - Bag Types Can be made out of woven or non-woven materials. Some of the common types and their characteristics are listed below. Polyester Synthetic fibre Acid, alkaline and abrasion resistant Inexpensive Fibreglass Synthetic fibre High temperature application use More chemically resistant Gore Expanded polytetrafluoroethylene (PTFE) membrane Laminated with various fibres to create Wear resistance, longer life Lower friction, higher flow 9

EVRAZ INC NA Canada Baghouses cont d Mikropul Baghouse AAF Baghouse 10

EVRAZ INC NA Canada Baghouses cont d Procedair Baghouse 11

Baghouse Basics Fabric filtration is a common technique for emission control and is otherwise called a baghouse Filters with their supports are referred to as bags Bags hang vertically in fabric filter shell Dust is collected either inside or outside of the bag During compartment cleaning and upon removal dust particles fall into the hopper and are removed Bag material must be matched to the cleaning methodology Baghouses are classified based upon the cleaning mechanism Photograph of bag tubes in the EVRAZ Mikropul Baghouse 12

Baghouse Basics Cleaning Mechanisms Intermittent cleaning Commonly used for compartmentalized baghouses Can also be used for single compartment baghouses One compartment removed from service at a time and cleaned Rotational between compartments Continuous cleaning Fully automatic, row of bags always being cleaned in baghouse Does not require taking the baghouse or compartment out of service for cleaning Compartmentalized baghouses Used for continual operating facilities with large exhaust volumes Can have one compartment offline for cleaning and another offline for maintenance, with the remainder in operation 13

Baghouse Cleaning Mechanisms cont d Shaking Interior filtration (dust collection inside of the bags) Manual or mechanical shaking of a shaft that moves a rod connected to the bags resulting in dust falling into the hopper Generally horizontal shaking Higher cleaning & filtering stress on bag Older technology Reverse Air Commonly used for compartmentalized baghouses Enables compartment to be offline Air / gas flow stopped and compartment backwashed with low pressure air Dust collection inside of the bags Sealed at top and open at bottom Bag has rings (~1 m apart) to prevent complete collapse during cleaning During cleaning the bags are allowed to collapse dust breaks and falls into hopper Usually used on woven fabrics Less cleaning & filtering stress on bag Either cycled or initiated by pressure drop switch Use inlet and outlet dampers for filtering and bag cleaning sequences In operation both dampers are open During cleaning the outlet damper is closed blocking the flow of air / gas through compartment and reverse air damper is opened to allow fresh air for cleaning 14

Baghouse Cleaning Mechanisms cont d Pulse jet cleaning High pressure jet of air into the top of the bag tube removing the dust from the exterior of the bag Bags supported by rings or metal cages held at top with clamps and closed bottom Used for cleaning bags with exterior filtration system Dirty air / gas flow is not stopped Cleaning done row by row Can also be used in compartmentalized baghouses and compartment taken offline via poppet valve closure Higher cleaning & filtering stress on bag Important to space bags to reduce bag abrasion Less commonly used Sonic Sound generator produces low frequency noise causing vibration Typically used in addition to other cleaning techniques 15

Baghouse Design Positive pressure baghouse Fan is upstream or before the filter Pushes air / gas through the filter more prone to pressure leaks and fan wear Commonly used for dusts easily ignited due to air infiltration-related fires Negative pressure baghouse Fan is downstream or after the filter Air / gas is pulled through the filter Requires more structural reinforcement due to suction on baghouse shell Fans are integral part of baghouse thus maintenance is crucial More wear on positive pressure baghouse fans than negative pressure baghouses Can shutdown entire baghouse, thus best to have on-line spare Fans are expensive Air to Cloth (A/C) Ratio Dependant on material, particle size distribution of collected material, particulate matter characteristics, humidity and bag spacing As ratio increases so does seepage through filter medium, baghouse gas inlets and bags and also increases bag breakage Increases as gas volumetric flow rates increase and could decrease bag life Lower A/C based on Net*Net design is key for proper performance and operation 16

Baghouse Design cont d Gas temperature Important because of bag operation design range Operation of a baghouse below dew point temperatures of the gas stream can result in moisture or acid condensation Condensation is a main bag failure cause Consider also in-leakage into gas stream Often tied to alarm to notify of trouble Pressure drop Based upon gas volumetric flow rate Fluctuates with cyclic cleaning process Increases as dust accumulates on / in bags Decreases after compartment cleaning Indicates gas flow resistance and effectiveness of the cleaning system Can indicate maintenance required Hoppers Store collected dust before removal and disposal Dust removal should be frequent to reduce packing of the dust Double dump discharge device Rotary Air lock valve shaft mounted paddle wheel driven by a motor Screw conveyor (auger) Drag conveyor Paddle conveyor Access door or port to enable dust removal Vibrators and plates 17

Emission Control Design cont d Particulate Matter (PM), Carbon Monoxide (CO) and other emissions are collected by building roof ducts which are connected to the baghouse(s). Large volumes of exhaust are created in the charge plume and must be held in the canopy hood until evacuated from the building. Tapping emissions are collected by the push-pull side collection hood at the furnace/ladle during tapping. PM is removed from melt cycle using the fourth hole. CO is either burned in furnace when sufficient oxygen is present or exhausted through the direct evacuated system (DES) where it is post-combusted at the drop box. Downstream ductwork can explode if excessive CO Potential Fugitive Emissions at Baghouses Door seals Corroded points Warped access hatches Tube sheet cracking 18

EVRAZ Regina Baghouses Cleaning System Reverse air is used Baghouse compartment cleaning cycles are controlled timing cycles, and/or by pressure drop Manual pressure gauges and electronic controllers are used 19

EVRAZ Regina Baghouses Performance Monitoring System Each baghouse has broken bag detection sensors Sensors installed at the clean air outlet of each compartment When higher than normal amounts of particles collide with the sensor a frictional electrification will take place Reads in picoamps (pa) Provides signal when higher amounts of dust are discharged (except cleaning spikes) High amperage is indicative of broken bag(s) Data displayed on Programmable Logic Controller (PLC) screens Data saved on cards and files transferred to software Software called Tribo enables real time and historical view of activity including particulate spikes graphics and alarm history summarization 20

EVRAZ Regina Baghouses Radiation Detection Radiation detection used in the baghouses 21

Scheduling of Baghouse Compartment Change-outs Wear and tear occurs on bags during operations Bags Break Individual bags in each compartment will require periodic change-out Proper tracking of individual bag and compartment change-outs is crucial to effectively manage bag integrity and emission control Photograph of broken bag 22

Scheduling of Baghouse Compartment Change-outs cont d Management of Change-outs Key is to manage and monitor change-outs Individual bag change-outs, and Compartment change-outs Multiple baghouses and compartment change-out management Use tracking spreadsheets One compartment per worksheet Set up grid-like pattern to identify bag location in compartment Complex calculations are used to summarize average compartment bag age and highlight when nearing life expectancy Scheduling Compartment Bag Changeouts Enables the facility to maintain reasonable performance over the life of the bags Can use various tracking spreadsheets and updating external linkages Schedule based upon oldest average bags Improves budgeting and evens out costs of compartment change-out over time 23

Cold Weather Operations and Issues Condensation Water is generated by combustion in the EAFs, and WC duct leaks; outer wall insulation is needed. Ice build up can cause exterior wall and roof corrosion of the baghouse shell Internal hot air contacts cold sheeting Hot air condenses on walls and collects on compartment floor If water from floor contacts tube bag, then bag deterioration occurs Can cause reaction with EAF dust in the bag causing a cement layer to form in the bag Roof corrosion Exterior wall corrosion Hopper problem reduction Insulation, Heaters Air tight seals Frequent dust removal (pneumatic through augers) 24

EAF Dust/Liquid Steel (tonnes) EAF Dust (tonnes) EAF Dust Removal Dust is removed from the baghouse hoppers, melt-shop floor and spark box EVRAZ contracts truck operators to remove EAF Dust, slurry with water Dust and water slurry produces an exothermic reaction with the lime, thus expansion room is required in the truck Classified as a Hazardous material EVRAZ has an engineered, licensed EAF Dust Storage Facility for dust disposal Aged and failed bags are also disposed at the Facility Disposal quantities are tracked on a monthly basis EAF Dust Stored - Landfilled 20,000.00 18,000.00 16,000.00 14,000.00 12,000.00 10,000.00 8,000.00 6,000.00 4,000.00 2,000.00 0.00 2002 2004 2006 2008 2010 2012 2014 Year EAF Dust Produced per tonne Liquid Steel Melted 0.025 0.02 0.015 0.01 0.005 0 2002 2004 2006 2008 2010 2012 2014 Year 25

References Air and Waste Management Association. Air Pollution Engineering Manual. 2 nd Ed. New York: John Wiley & Sons, Inc., 2000. Industrial Ventilation A Manual of Recommended Practice for Design. 27 th Ed. Cincinnati, Ohio: ACGIH, 2010 Jones, Jeremy A. T., Nupro Corporation. Electric Arc Furnace Steel Making. Retrieved January 7, 2014 from : http://www.steel.org/en/making%20steel/how%20its%20made/processes/processes%20info/electric%20arc% 20Furnace%20Steelmaking.aspx McKenna, John D., James H. Turner. Fabric Filter Baghouses I Theory, Design, and Selection. Salem, VA: Valley Printers, 1989. United States Environmental Protection Agency (EPA) Air Pollution Training Institute (APTI). Fabric Filter Operation Review APTI Course SI: 412A 2 nd Ed. United States Environmental Protection Agency (EPA) Air Pollution Training Institute (APTI). APTI SI:445 Introduction to Baseline Source Inspection Techniques. 26

Questions 27