Improvement of Granular Subgrade Soil by Using Geotextile and Jute Fiber

Similar documents
SUBGRADE IMPROVEMENT OF CLAYEY SOIL WITH THE USE OF GEOTEXTILES

Load-Carrying Capacity of Stone Column Encased with Geotextile. Anil Kumar Sahu 1 and Ishan Shankar 2

Full Scale Model Test of Soil Reinforcement on Soft Soil Deposition with Inclined Timber Pile

Improvement in CBR of Expansive Soil with Jute Fiber Reinforcement

Effect of Woven Polyester Geotextile on the Strength of Black Cotton Soil

A laboratory study on pine needle reinforced soil

Behaviour of a Strip Footing on Compacted Pond Ash Reinforced with Coir Geotextiles

Subgrade Characteristics of Locally Available Soil Mixed With Fly Ash and Randomly Distributed Fibers

A Study on Stabilization of Subgrade Soil Using Natural Fibers (Coir and Jute)

Mechanical Behavior of Soil Geotextile Composites: Effect of Soil Type

EFFECT OF RANDOM INCLUSION OF BAMBOO FIBERS ON STRENGTH BEHAVIOUR OF FLYASH TREATED BLACK COTTON SOIL

CHAPTER 4 EXPERIMENTAL WORK 4.1 GENERAL

Paper ID: GE-007. Shear Strength Characteristics of Fiber Reinforced Clay Soil. M. R. Islam 1*, M.A. Hossen 2, M. A.Alam 2, and M. K.

Influence of Mesh Size on Bearing Capacity and Settlement Resistance of Coir Geotextile-Reinforced Sand

Effect of Placement of Footing on Stability of Slope

Efficacy of Geosynthetics in Subgrade Stabilization-A Comparative Study in Laterite Soil

Study of Soil Cement with Admixture Stabilization for Road Sub-Grade

Soil Stabilization by Using Fly Ash

GEOTEXTILE REINFORCED TWO LAYER SOIL SYSTEM WITH KUTTANAD CLAY OVERLAIN BY LATERITE SOIL

EFFECT OF NATURAL GEOTEXTILE ON UNPAVED AND PAVED ROAD MODELS- A COMPARATIVE STUDY

Soil Stabilization by using Plastic Waste

COMPARISON OF SHEAR STRENGTH PARAMETERS OF BLACK COTTON SOIL WITH EFFECT OF RELATIVE COMPACTION

An Experimental Study on Variation of Shear Strength for Layered Soils

Behaviour of Black Cotton Soil Reinforced with Sisal Fibre

Stabilization of Expansive Soil with Micro Silica, Lime and Fly Ash for Pavement

IGC. 50 th. 50 th INDIAN GEOTECHNICAL CONFERENCE IMPROVEMENT IN LOAD BEARING CHARACTERISTICS OF RED MUD REINFORCED WITH SINGLE GEOGRID LAYER

Stabilization of Subgrade by Using Waste Plastic Bottle Strips and Marble Dust Powder

IMPROVEMENT OF COMPACTION AND STRENGTH CHARACTERISTICS OF WEAK CLAYEY SOIL WITH DATE PALM LEAF MATS

Performance of Geosynthetics in the Filtration of High Water Content Waste Material

Assessment of Geotextile Reinforced Embankment on Soft Clay Soil

EFFECT OF BOLT CONNECTION OF SQUARE-SHAPED GEOCELL MODEL ON PULLOUT TEST RESULTS

SOIL STABILIZATION USING NATURAL FIBER COIR

EFFECT OF COIR GEOTEXTILE AS REINFORCEMENT ON THE LOAD SETTLEMENT CHARACHTERISTICS OF WEAK SUBGRADE

Effect of Moisture Content on the Tensile Strength of Jute Geotextile

TRANSMISSIVITY BEHAVIOR OF SHREDDED SCRAP TIRE DRAINAGE LAYER IN LANDFILL COVER SYSTEM *

EXPERIMENTAL STUDY ON PULL-OUT CAPACITY OF HELICAL PILE IN CLAYEY SOIL

A Study on Soil Stabilization using Cement and Coir Fibres

SUITABILITY OF GEOGRID REINFORCED - RUBBER WASTE IN PAVEMENTS

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August ISSN

Shear Characteristics of Fly Ash-Granular Soil Mixtures Subjected to Modified Compaction

Shear Strength Enhancement of Sandy Soil Using Hair Fibre

Moisture Content Effect on Sliding Shear Test Parameters in Woven Geotextile Reinforced Pilani Soil

Performance evaluation of coir geo-textiles as earth reinforcement in soil structures

PERFORMANCE OF GEOSYNTHETICS IN THE FILTRATION OF HIGH WATER CONTENT WASTE MATERIAL

J. K. Gupta, Scientist D, Bureau of Indian Standards

Settlement analysis of Shahid Kalantari highway embankment and assessment of the effect of geotextile reinforcement layer

Experimental Study on Utilization of E -Waste in Cement Concrete

Consolidation Stress Effect On Strength Of Lime Stabilized Soil

An Experimental Study of Soil Stabilization using Marble Dust

COHESIONLESS SOIL PROPERTIES IMPROVEMENT USING BENTONITE

ESTIMATION OF BEARING CAPACITY OF BLACK COTTON SOIL USING ROCK DUST AND GEO-TEXTILE SHEET: AN EXPERIMENTAL STUDY

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

Influence of Different Materials to Improve the Stabilization of Black Cotton Soil

EFFECT OF COMPACTION ON THE UNSATURATED SHEAR STRENGTH OF A COMPACTED TILL

Performance Evaluation of Block Cotton Soil Stabilized with Sugarcane Bagasse Ash and Randomly Distributed Core Fibres

Table III.A PHYSICAL PROPERTIES OF CLAYEY SOIL

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

[Gupta* et al., 5(7): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

Investigation on Engineering Properties of Soil-Mixtures Comprising of Expansive Soils and a Cohesive Non-Swelling Soil

Effect of Geosynthetic Reinforcement Inclusion on the Strength Parameters and Bearing Ratio of a Fine Soil

Usage of Woven Geo-Textiles in the Construction Subgrade in Flexible Pavements

LARGE-SCALE SHEAR TESTS ON INTERFACE SHEAR PERFORMANCE OF LANDFILL LINER SYSTEMS

Experimental tests for geosynthetics anchorage trenches

Pullout of Geosynthetic Reinforcement with In-plane Drainage Capability. J.G. Zornberg 1 and Y. Kang 2

Ground Improvement of Problematic Soft Soils Using Shredded Waste Tyre

Soil-Structure Interaction of a Piled Raft Foundation in Clay a 3D Numerical Study

Evaluation of Installation Damage of Geotextiles. A Correlation to Index Tests

GEOTEXTILE DEFORMATION ANALYSIS OF GEOSYNTHETIC CLAY LINERS WITH FEM

Swelling Treatment By Using Sand for Tamia Swelling Soil

1. Introduction. Abstract. Keywords: Liquid limit, plastic limit, fall cone, undrained shear strength, water content.

Utilization Of Geotextile For Soil Stabilization

International Journal of Advance Engineering and Research Development. Soil Stabilization Using Terrazyme

Effect of Admixtures on Strength and Compressibility Characteristics of Different Types of Soils

Black Cotton Soil Stabilization Using Eggshell Powder and Lime

THE ROLE OF SUCTION IN THE PERFORMANCE OF CLAY FILL RONALD F. REED, P.E. 1 KUNDAN K. PANDEY, P.E. 2

SOIL STABILISATION USING MARBLE DUST

Improvement in CBR of the expansive soil subgrades with a single reinforcement layer

The Significance of Geotextile in Unpaved Roads with Special Reference to Stress Analysis

Introduction. Functions of Non woven Geotextile (TechGeo) Separation. Filtration. Drainage. Containment. Tech Geo. . Geotextile Overview

Stabilization of Pavement Subgrade Using Fly Ash and Lime

A STUDY ON LOAD CAPACITY OF HORIZONTAL AND INCLINED PLATE ANCHORS IN SANDY SOILS

CBR Values of Soil Mixed with Fly Ash and Lime

Field Trials with Polypropylene Woven Geotextiles

EFFECT OF CENTRAL PILE IN INCREASING THE BEARING CAPACITY OF BORED PILE GROUPS

PULLOUT CAPACITY OF HORIZONTAL AND INCLINED PLATE ANCHORS IN CLAYEY SOILS

Basic Geosynthetics: A Guide to Best Practices in Forest Engineering

Introduction To Geosynthetics In Transportation

GeoTechnicalInvestigationonBlackCottonSoils

Analysis of Pullout Resistance of Soil-Nailing in Lateritic Soil

LOAD TRANSFER MECHANISM IN PULL-OUT TESTS

LABORATORY STUDY ON THE CONSOLIDATION SETTLEMENT OF CLAY-FILLED GEOTEXTILE TUBE AND BAGS

MECHANICAL STABILIZATION OF A DELTAIC CLAYEY SOIL USING CRUSHED WASTE PERIWINKLE SHELLS.

A Study on Soil Stabilization of Clay Soil Using Flyash

RESPONSE OF ANCHOR IN TWO-PHASE MATERIAL UNDER UPLIFT

Study on Effect of Water on Stability or Instability of the Earth Slopes

Proposed Design Graphs of Geotextile Reinforcement on Soft Clay under Various Field Conditions

EARTH STABILIZATION GEOSYNTHETIC SOLUTIONS

National European specifications and the energy concept

2.2 Soils 3 DIRECT SHEAR TEST

Influence of Flyash on expansive Soils

Transcription:

International Journal of Science, Technology and Society 2015; 3(5): 230-235 Published online August 3, 2015 (http://www.sciencepublishinggroup.com/j/ijsts) doi: 10.11648/j.ijsts.20150305.12 ISSN: 2330-7412 (Print); ISSN: 2330-7420 (Online) Improvement of Granular Subgrade Soil by Using Geotextile and Jute Fiber Md. Akhtar Hossain, Akib Adnan, Md. Maskurul Alam Department of Civil Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh Email address: akhtar412002@yahoo.com (Md. A. Hossain), akib_adnan@yahoo.com (A. Adnan), maskurul090018@gmail.com (Md. M. Alam) To cite this article: Md. Akhtar Hossain, Akib Adnan, Md. Maskurul Alam. Improvement of Granular Subgrade Soil by Using Geotextile and Jute Fiber. International Journal of Science, Technology and Society. Vol. 3, No. 5, 2015, pp. 230-235. doi: 10.11648/j.ijsts.20150305.12 Abstract: Geotextiles and jute fibers both have been successfully used for reinforcement of soils to improve the bearing capacity. In the present study, firstly the geotextile is used as a tensional material for reinforcement of granular soils. Laboratory California Bearing Ratio () tests were performed to investigate the load-penetration behavior of reinforced and unreinforced granular soils with geotextile. By placing geotextile at certain depth within sample height in one, two or three layers were tested under soaked condition to investigate the effects of the number of geotextile layer on the increase in bearing capacity. Secondly, laboratory tests were performed to investigate the behavior of granular soil reinforced with jute fiber of various aspect ratio mixed with soil at 0.5%, 1.0%, 1.5%, 2.0% by weight of the soil. Finally, the granular soil was reinforced with the combination of geotextile (top and middle layer of the sample) and jute fiber (0.5% and 1% by the weight of soil). The experimental results were then studied and compared to determine the most effective combination of geotextile and jute fiber to reinforce the studied granular soil. Keywords: Tests, Jute Fiber, Geotextile, Bearing Capacity, Granular Soil 1. Introduction The uses of geotextile in many engineering applications have become more apparent and have proven to be an effective means of soil improvement. Soil improvement in the broadest sense, is the alteration of any property of a soil to improve its engineering performance. It also comprises any process which increases or maintains the natural strength of soil. In early applications in roads and airfield construction, emphasis was laid on the load bearing function of the geotextile. Resl and Werner (1986) carried out the laboratory tests under an axi-symmetric loading condition using nonwoven, needle-punched geotextiles. The result showed that the geotextile layer placed between subbase and subgrade can significantly increase the bearing capacity of soft subgrades. Fannin and Sigurdsson (1996) carried out a full scale field trial to observe the performance of different geosynthetics in unpaved road construction over the soft ground. Numerous papers have examined the reinforcement of soil (Bergado et al., 2001; Raymond and Ismail, 2003; Park and Tan,2005; Yetimoglu et al., 2005 ). Current research works are mainly emphasized on improving the strength mechanism and bearing capacity of the reinforced soil by adding jute fiber and geogrid (Hossain et al., 2015; Allahbakhshi, M. and Sadeghi, H. 2014). In this study, test carried out on nonwoven needle-punched geotextile combines with the granular soils, the geotextile reinforcement placed between three different subgrade layers and the comparison between bearing capacity of soil with and without geotextile reinforcement under axi-symmetric loading condition was investigated. Further tests were carried out of soil reinforced with jute fiber of various aspect ratios and a number of combined reinforcements. 2. Methodology Samples with various geotextile layers and various percentage of jute fiber were prepared and tested. The test results were compared to determine the combination reinforcement. The combination reinforcement was applied and similar tests were performed. Samples Tested 1. Sample without any reinforcement.

International Journal of Science, Technology and Society 2015; 3(5): 230-235 231 2. Sample reinforced with 0.5%, 1.0%, 1.5%, 2.0% of 50mm jute fiber. 3. Sample reinforced with 0.5%, 1.0%, 1.5%,2.0% of 100mm jute fiber. 4. Sample reinforced with 0.5%, 1.0%, 1.5%, 2.0% of 150mm jute fiber. 5. Sample reinforced with single layer of geotextile (top, middle, bottom). 6. Sample reinforced with two layer of geotextile (topmiddle, top-bottom, middle-bottom). 7. Sample reinforced with three layer of geotextile (topmiddle-bottom). 8. Sample reinforced with 0.5% jute fiber (50mm) and single layer (top) of geotextile. 9. Sample reinforced with 0.5% jute fiber (50mm) and single layer (middle) of geotextile. 10. Sample reinforced with 1.0% jute fiber (50mm) and single layer (top) of geotextile. of sample with and without jute fibers (differently for each soil-fiber ratio) was experimentally achieved by Modified Proctor test. Later on various blends on jute fibers and geotextile layers were used to achieve similar or improved values with less layers of geotextiles to reduce the overall cost of a project. 3. Materials Used Collection of Soil Sample and It s Geotechnical Properties Soil sample obtained locally is used for the present experimental investigations. Sample used in this research was collected from the bank of river Padma at Talaimari, Rajshahi. The required properties of the soil were determined and are presented on Table.3.1. Table 3.1. Basic Geotechnical Properties of Soil Sample. Optimum Moisture Content 13 Specific Gravity 2.635 Angle of Internal Friction 34.14 Finness modulus 2.611 Table 3.2. Basic Engineering properties of geotextile. Weight(g/m²) 175 Thickness(mm) 0.9 Static Puncture(N) 170 Tensile Strength(KN/m) 13 Elongation at Peak Stress 45-50% Fig. 4.1. Grain size distribution of Sample. Table 4.1. Optimum moisture content of sample with and without jute fiber. Jute Fiber Content(% by weight) 0.0 13.5 0.5 14.8 1.0 15.6 1.5 17.1 2.0 18.6 Optimum Moisture Content (% from Modified Proctor test) 4.1. Test Results for Various Lengths and Amount of Jute Fiber Table 3.3. Basic Properties of Jute Fiber. Weight per Unit Length (gm/cm) 0.36 Diameter (mm) 4 Length (mm) 50(A.R. = 12.5) 100(A.R. = 25) 150(A.R. = 37.5) 4. Test Results Soil sample was mixed with 0.5%,1.0%,1.5%,2.0% jute fiber of various length(10mm,20mm,40mm) and reinforced with 1 layer, 2 layers,3 layers of geotextiles. tests were performed for all test samples. Optimum moisture content Fig. 4.2. Load vs Penetration Plot for various % of jute fiber (50 mm) mixed subgrade soil in unsoaked condition.

232 Md. Akhtar Hossain et al.: Improvement of Granular Subgrade Soil by Using Geotextile and Jute Fiber % of jute fiber by weight Table 4.3. Test Results for jute fiber(100mm)mixed sample. Unsoaked in Soaked 0.0% 17-15 - 0.5% 29 70.5 24 60 1.0% 33 94.1 28 86.6 1.5% 35 105.4 30 100 2.0% 37 117.7 31 106.6 in Fig. 4.3. Load vs Penetration Plot for various % of jute fiber (50 mm) mixed subgrade soil in soaked condition. Table 4.2. Test Results for jute fiber (50 mm) mixed sample. % of jute Unsoaked Soaked fiber by weight in in 0.0% 17-15 - 0.5% 25 47.1 23 53.2 1.0% 29 70.25 27 80.1 1.5% 34 100.1 29 93.33 2.0% 36 111.5 32 113.6 Fig. 4.6. Load vs Penetration Plot for % of jute fiber (150 mm) mixed subgrade soil in unsoaked condition. 14000 12000 10000 Load (N) 8000 6000 Fig. 4.4. Load vs Penetration Plot for various % of jute fiber (100 mm) mixed subgrade soil in unsoaked condition. 4000 2000 0 0.00% 0.50% 1.00% 1.50% 2.00% 0 5 10 15 Penetration (mm) Fig. 4.7. Load vs Penetration Plot for % of jute fiber (150 mm) mixed subgrade soil in soaked condition. Table 4.4. Test Results for jute fiber (150 mm) mixed sample. Fig. 4.5. Load vs Penetration Plot for % of jute fiber (100 mm) mixed subgrade soil in soaked condition. % of jute fiber by weight Unsoaked in Soaked 0.0% 17-15 - 0.5% 30 76.4 25 66.6 1.0% 35 105.8 30 100 1.5% 36 111.7 31 106.6 2.0% 38 123.5 32 113.3 in

International Journal of Science, Technology and Society 2015; 3(5): 230-235 233 4.2. Comparison of s due to Mixing of Jute Fiber 4.3. Test Results for Various Geotextile Layers Fig. 4.8. Increased value vs jute fiber (50 mm) content plot. Fig. 4.11. Load vs penetration plot for soil reinforced with single layer of geotextile under soaked condition. Fig. 4.9. Increased of value vs jute fiber (100 mm) content plot. Fig. 4.12. Load vs penetration plot for soil reinforced with double layer of geotextile under soaked condition. Fig. 4.10. Increased of value vs jute fiber (150 mm) content plot. Fig. 4.13. Load vs penetration plot for soil reinforced with triple layer of geotextile under soaked condition.

234 Md. Akhtar Hossain et al.: Improvement of Granular Subgrade Soil by Using Geotextile and Jute Fiber 5. Results and Discussion Fig. 4.14. Load vs penetration plot for soil reinforced with 1 layer of geotextile at top and 0.5% jute fiber (150 mm) under soaked condition. By studying Fig. 4.2, Fig. 4.3, Fig. 4.4, Fig. 4.5, Fig. 4.6, Fig. 4.7 which show the load vs penetration plots of the soil sample with jute fiber reinforcement at various percentages, it can be said that increasing both the percentage of jute fiber and aspect ratio increases the bearing capacity of the soil. Fig. 4.8, Fig. 4.9, Fig. 4.10 shows the increase of value due to adding jute fiber. Fig. 4.11, Fig. 4.12, Fig.4.13 shows the load vs penetration plot for soil reinforced with geotextile. From the Fig. 4.11, Fig. 4.12, Fig.4.13 we can conclude that placing geotextile at top layer is more effective than placing it anywhere else in the soil sample. Fig. 4.14, Fig. 4.15, Fig 4.16 shows the load vs penetration plot for soil reinforced with combination reinforcements discussed above. From Fig. 4.14, Fig. 4.15, Fig 4.16 it can be said that placing the geotextile at top and increasing jute fiber content increases the value most effectively. But from economic point of view increasing the aspect ratio of jute fiber is more effective than increasing its percentage in the mixture. 6. Conclusion Fig. 4.15. Load vs penetration plot for soil reinforced with 1 layer of geotextile at middle and 0.5% jute fiber (150 mm) under soaked condition. Fig. 4.16. Load vs penetration plot for soil reinforced with 1 layer of geotextile at top and 1.0% jute fiber (150 mm) under soaked condition. Table 4.5. values for soil reinforced with combination of geotextile and jute fiber. Jute Without One layer at top One layer at middle fiber(%) Geotextile 0.0 15 19 26.6 18 20 0.5 25 32 113.3 31 106.6 1.0 30 51 240 - - The following observations were made on the behavior of unreinforced soil, soil reinforced with geotextile, jute fiber mixed soil and soil reinforced by both geotextile and jute fiber. From the tests performed it is clearly evident that increasing the percentage of geotextile will increase the load bearing capacity of the soil. Though bearing capacity of sample having the same percentage of jute fiber varies with the length of jute fiber used and value increases with the increase of jute fiber which can be observed by studying Table 4.2,Table 4.3,Table 4.4, as a result 50mm and 100mm jute fibers were rule out in case of combined reinforcement. The effectiveness of geotextiles is governed by the no. of layers used and the placement of the layer. Tests show that placing the layer of geotextile at the top and middle of the soil sample gives the most effective results. The most effective result is achieved by using the geotextile and jute fiber simultaneously. Tests show that a single layer of geotextile coupled with 0.5% and 1.0% jute fiber gives almost the same values(table 4.5) as a sample reinforced with 2/3 layers of geotextile or 1.5/2.0% jute fiber which will effectively reduce the cost of the project. Through the tests performed earlier it is evident that: 1. For jute fiber, value increases with the increase of both fiber content and aspect ratio. It is worth mentioning that the highest amount of change is recorded for 0.5% and 1.0% fiber content for all aspect ratios. 2. Tests show that placing of geotextile at top is more effective than placing it at middle or at bottom. 3. Increased layer of both geotextile and length and percentage of jute imparts increasing bearing capacity to the granular subgrade soil. 4. Combination reinforcement with single layer geotextile and only 0.5% and 1.0% jute fiber is as effective as two or three layers of geotextile.

International Journal of Science, Technology and Society 2015; 3(5): 230-235 235 References [1] Allahbakhshi, M. and Sadeghi, H. (2014) Behaviour of industrial machinery foundation on prestressed geogridreinforced embankment over soft soil under static load, Journal of Science Publishing Group, Vol. 2, Issue 6, pp. 65-73. [2] Al-Moussawi, H.M. and Andersland, O.B. (1987) Discussion on the paper Behavior of Fabric- versus Fiber- Reinforced Sand, J. Geotech. Engg., ASCE, Vol. 113(7), pp.381-387. [3] Datta, M. (1999) Engineering Properties of Coal Ash, Proceedings of Indian Geotechnical Conference, New Delhi, pp.41-45. [4] Bergado, D.T., Youwai, S., Hai, C.N. and Voottipruex, P. (2001) Interaction of nonwoven needle-punched geotextiles under axisymmetric loading conditions. Geotextiles and Geomembranes, Vol. 19, pp.299-328 [5] Fannin, R.J., O. Sigurdsson (1996) Field observations on stabilization of unpaved roads with geosynthetics. Journal of Geotechnical Engineering, ASCE,122 (7), pp.544 553. [6] Haeri, S.M., R. Nourzad, A.M. Oskrouch (2000) Effect of geotextile reinforcement on the mechanical behavior of sands. Geotextiles and Geomembranes 18 (6), pp.385 402. [7] Hossain, M.A., Hossain, M.S. and Hasan, M.K. (2015) Application of Jute Fiber for the Improvement of Subgrade Characteristics Journal of Science Publishing Group, Vol. 2, Issue 3, pp. 26-30. [8] Kaniraj, S.R., and Rao, G.V. (1994) "Trends in the use of geotextiles in India", Journal of geotextiles and geomembranes, pp.13389-402. [9] Latha, G.M, Murthy, V.S., (2007) Effects of reinforcement form on the behavior of geosynthetic reinforced sand. Geotextiles and Geomembrane, Vol. 25, pp. 23 32. [10] Park, T., S.A. Tan (2005) Enhanced performance of reinforced soil walls by the inclusion of short fiber. Geotextiles and Geomembranes, Vol 2 (4), pp. 348 361. [11] Raymond, G., Ismail, I.,(2003) The effect of geogrid reinforcement on unbound aggregates. Geotextiles and Geomembranes, Vol. 21, pp.355 380. [12] Resl, S., Werner, G., (1986) The influence of nonwoven needle- punched geotextiles on the ultimate bearing capacity of the subgrade. Proceedings of the Third International Conference on Geotextiles, Vienna, Vol. 4, pp. 1009 1013. [13] Yetimoglu, T., Salbas, O., (2003) A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotextiles and Geomembranes, Vol. 21 (2), pp.103 110.