Experimental Study on the Performance of Twisted Capillary Tube

Similar documents
Experimental Study on Match for Indoor and Outdoor Heat Exchanger of Residential Airconditioner

Experimental Research On Gas Injection High Temperature Heat Pump With An Economizer

Some Modeling Improvements for Unitary Air Conditioners and Heat Pumps at Off-Design Conditions

Performance of R-22, R-407C and R-410A at Constant Cooling Capacity in a 10

Development of a Transient Simulation Model of a Freezer Part II: Comparison of Experimental Data with Model

Research Article / Araştırma Makalesi EXPERIMENTAL INVESTIGATION OF R600A REFRIGERANT FLOW INSIDE ADIABATIC CAPILLARY TUBE

Control Method Of Circulating Refrigerant Amount For Heat Pump System

Design and Research of the Digital VRV Multi- Connected Units With Three Pipes Type Heat Recovery System

Refrigeration Cycle And Compressor Performance For Various Low GWP Refrigerants

A Generalized Correlation for Pressure Drop of Refrigerant R-134a through Helical Capillary Tubes

Experimental Investigation of Closed Loop Oscillating Heat Pipe as the Condenser for Vapor Compression Refrigeration

Performance Investigation of Refrigerant Vapor- Injection Technique for Residential Heat Pump Systems

Conceptual Design of a Better Heat Pump Compressor for Northern Climates

Air-Cooled Heat Exchanger Performance for R410A

Performance Comparisons Of A Unitary Split System Using Microchannel and Fin-Tube Outdoor Coils, Part I: Cooling Tests

Effects of Flash and Vapor Injection on the Air-to- Air Heat Pump System

Purdue e-pubs. Purdue University

Drop-in Testing of Next-Generation R134a Alternates in a Commercial Bottle Cooler/Freezer

An Experimental and Theoretical Study on System Performance of Refrigeration Cycle Using Alternative Refrigerants

The Effect of the Ventilation and the Control Mode on the Performance of a VRV System in Cooling and Heating Modes

Performance Characteristics of Air-Conditioner Under Tropical Ambient Condition

Performance Evaluation of a Plug-In Refrigeration System Running Under the Simultaneous Control of Compressor Speed and Expansion Valve Opening

Comparison Of Hermetic Scroll And Reciprocating Compressors Operating Under Varying Refrigerant Charge And Load

Performance Characteristics and Optimization of a Dual-Loop Cycle for a Domestic Refrigerator- Freezer

Effect of Height Difference on The Performance of Two-phase Thermosyphon Loop Used in Airconditioning

Improving Heating Performance of a MPS Heat Pump System With Consideration of Compressor Heating Effects in Heat Exchanger Design

Efficiency of Non-Azeotropic Refrigerant Cycle

Load Sharing Strategies in Multiple Compressor Refrigeration Systems

Experimental Study of Fouling Performance of Air Conditioning System with Microchannel Heat Exchanger

Low GWP Refrigerants for Air Conditioning Applications

Experimental Studies on Non-Adiabatic Flow of HFC-134a Through Capillary Tubes

Performance Analysis of a Miniature-Scale Vapor Compression System for Electronics Cooling: Bread Board Setup

The Development Of High Efficiency Air Conditioner With Two Compressors Of Different Capacities

FABRICATION OF REFRIGERANT FLOW RATE WITH SPIRALLY COILED CAPILLARY TUBE

Performance of window air conditioner using alternative refrigerants with different configurations of capillary tube

Experimental Study on the Performance and Oil Return Characteristics of Multi-Split Air- Conditioning System for Medium Size Building

Effect of the Use Pattern on Performance of Heat Pump Water Heater

Feasibility of Controlling Heat and Enthalpy Wheel Effectiveness to Achieve Optimal Closed DOAS Operation

An Experimental Investigation Of Oil Retention Characteristics In CO2 Air-Conditioning Systems

Performance Evaluation and Design Optimization of Refrigerated Display Cabinets Through Fluid Dynamic Analysis

Numerical Study on the Design of Microchannel Evaporators for Ejector Refrigeration Cycles

Designated vs Non-designated Areas for Condenser Subcooling

Performance Evaluation of the Energy Efficiency of Crank-Driven Compressor and Linear Compressor for a Household Refrigerator

Experimental Investigation on Condensation Performance of Fin-and-Flat-Tube Heat Exchanger

Effect of Modification in Refrigerant Passage of an Automotive Air Conditioning Compressor

Hot Water Making Potential Using of a Conventional Air- Conditioner as an Air-Water Heat Pump

Performance Characteristic and Optimization of a Simultaneous Heating and Cooling Multi Heat Pump

Comparison of Performance of a Residential Air- Conditioning System Using Microchannel and Finand-Tube

Performance Analysis of a Domestic Refrigerator in Malaysia using Experimental Method

The Innovative Green Technology for Refrigerators Development of Innovative Linear Compressor

Design and Research of the Commercial Digital VRV Multi-Connected Units With Sub-Cooled Ice Storage System

Effects of Frost Formation on the External Heat Transfer Coefficient of a Counter-Crossflow Display Case Air Coil

MODELLING AND OPTIMIZATION OF DIRECT EXPANSION AIR CONDITIONING SYSTEM FOR COMMERCIAL BUILDING ENERGY SAVING

Thermal Modelling for the Motor in Semi-hermetic Screw Refrigeration Compressor under Part-load Conditions

Study of R161 Refrigerant for Residential Airconditioning

Enhancement of Round Tube and Flat Tube- Louver Fin Heat Exchanger Performance Using Deluge Water Cooling

Evaluation The Effect Of Washing On The Heat Transfer Capacity And Air-Side Flow Resistance Of Air Cooled Condensers

WORK STUDY ON LOW TEMPERATURE (CASCADE) REFRIGERATION SYSTEM

Development of a Novel Structure Rotary Compressor for Separate Sensible and Latent Cooling Air-Conditioning System

Visualization of Evaporatively Cooled Heat Exchanger Wetted Fin Area

Low Global Warming Refrigerants For Commercial Refrigeration Systems

Heat Transfer Characteristics and Heat Exchanger Performances for R407C Using Herringbone Heat Transfer Tube

Two-Phase Evaporation Pressure Drop Experimental Results for Low Refrigerant Mass Flux

Performance Analysis of Electronic Expansion Valve in 1 TR Window Air Conditioner using Various Refrigerants

Experimental Investigation of a Miniature-Scale Refrigeration System for Electronics Cooling

Experimental Study About An Amount Of Oil Charge On Electric Driven Scroll Compressor For Electric Vehicle

A Performance-Enhancing Additive for Vapor- Compression Heat Pumps: Additional Test Results

Hunting Phenomena Of Automotive Air Conditioning Systems With Variable Displacement Compressor

Experimental Study on the Thermal Behavior of a Domestic Refrigeration Compressor during Transient Operation in a Small Capacity Cooling System

Lower GWP Refrigerants Compared to R404A for Economizer Style Compressors

Enhancement of the Separate Sensible and Latent Cooling Air-Conditioning Systems

Performance Measurement of R32 Vapor Injection Heat Pump System

Mini Vapour Cycle System For High Density Electronic Cooling Applications

THE COOLING CAPACITY AND PRESSURE DROP IN A HYBRID CLOSED CIRCUIT COOLING TOWER

Experimental Investigate on the Performance of High Temperature Heat Pump Using Scroll Compressor

Design of Divided Condensers for Desiccant Wheel-Assisted Separate Sensible and Latent Cooling AC Systems

Heat Pump Clothes Dryer Model Development

EFFECT OF PAG OIL CIRCULATION RATE ON THE HEAT TRANSFER PERFORMANCE OF AIR-COOLED HEAT EXCHANGER IN CARBON DIOXIDE HEAT PUMP SYSTEM

The Effects of Hydrophilicity on Water Drainage and Condensate Retention on Air-Conditioning Evaporators

Experimental Study of Two-phase Seperators for Vapor Compression Systems in Household Appliances

Global Journal of Engineering Science and Research Management

COMPARATIVE PERFORMANCE ANALYSIS OF EXPERIMENTAL FRIGORIFIC AIR CONDITIONING SYSTEM USING R-134A AND HFO-1234YF AS A REFRIGERANT

An Experimental Study on the Refrigeration Capacity and Thermal Performance of Free Piston Stirling Coolers

System Modeling of Gas Engine Driven Heat Pump

Experimental and Numerical Study on a Dryexpansion Shell-and-Tube Evaporator Used in Wastewater Source Heat Pump (WWSHP)

Effects of Oil on atranscritical Carbon Dioxide Air Conditioning Systems some experiences -

Refrigerant Mass and Oil Migration During Start-up Transient

Development of Performance Test Facility of Positive Displacement CO2 Refrigerant Compressor

Investigation of Evaporator Performance with and without Liquid Overfeeding

Pressure drop analysis of evaporator using refrigerants R-22, R-404A and R-407C

Experimental Research and CFD Simulation on Microchannel Evaporator Header to Improve Heat Exchanger Efficiency

A Review of Household Compressor Energy Performance

Development of R744 Two Stage Compressor for Commercial Heat Pump Water Heater

Adiabatic Capillary Tube Test Data for HFC-134a

Application of two hybrid control methods of expansion valves and vapor injected compression to heat pumps

Thermal Design of Condenser Using Ecofriendly Refrigerants R404A-R508B for Cascade Refrigeration System

STUDY ON THE CONTROL ALGORITHM OF THE HEAT PUMP SYSTEM FOR LOAD CHANGE

Noise Reduction Technology With Porous Metal for Refrigerant Two-Phase Flow Through the Expansion Valve

Evaluation of a Virtual Refrigerant Charge Sensor

Exploring the Performance Characteristics of CO2 Cycles in a Breadboard-Type Test Facility

Transcription:

Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2006 Experimental Study on the Performance of wisted Capillary ube Amr O. Elsayed Zagazig University Follow this and additional works at: http://docs.lib.purdue.edu/iracc Elsayed, Amr O., "Experimental Study on the Performance of wisted Capillary ube" (2006). International Refrigeration and Air Conditioning Conference. Paper 779. http://docs.lib.purdue.edu/iracc/779 his document has been made available through Purdue e-pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html

R117, Page 1 EXPERIMENAL SUDY ON HE PERFORMANCE OF WISED CAPILLARY UBE Amr O. Elsayed Zagazig University, Faculty of Engineering, Mech. Power Dept Zagazig, Egypt +2-055-3204997, Fax: +2-055-3204987, amro9992000@yahoo.com ABSRAC A novel capillary tube has been tested and evaluated experimentally in the refrigeration cycle of window type air conditioner. hree twisted capillary tubes have been demonstrated and evaluated to show the performance of these tubes and its ability in the depressurization process seeking for short capillary tube. he effect of twist angle and the number of twisted points on the refrigeration cycle performance have been investigated and compared with the performance of original straight capillary tube. wo twist angles and two different numbers of twisting points have been considered in this study. he results showed that the twist angle has a remarkable influence on the depressurization process and condensation temperature. 1. INRODUCION he performance of adiabatic capillary tube has been extensively investigated because it s widely used as a simple expansion device in small refrigeration systems. he capillary tube performance depends upon many geometrical parameters such as inner diameter, inner surface roughness, tube length, and the tube configurations. herefore, many researchers have been concerned with the performance of capillary tube and its behavior in the refrigeration cycle (e.g. Kuehl and Goldschmidt, 1990, Kim et al., 2002). Since the flow inside the capillary tube is very complex, another several investigators have been concerned with the flow of refrigerant and azeotropic mixture inside the tube (e.g. Chen et al., 1990, Choi et al., 2004, Melo et al., 2004). heoretical modeling of refrigerant flow through the capillary tubes also received the attention of researchers (e.g. Kuehl and Goldschmidt, 1991, Fiorelli and Silvares, 2004). Among these researches, several empirical correlations and rating charts have been presented to predict the refrigerant mass flow rate inside the capillary tube (e.g. Choi et al., 2003). In a vapor compression cycle using a capillary tube, the liquid refrigerant with slight degree of subcooling enters the capillary tube since the pressure decreases linearly along the tube length due to the wall friction. At the flash point (the first vapor bubble is formed) the pressure starts to decrease rapidly. hree regions can be described inside the capillary tube. Upstream the

R117, Page 2 flash point, subcooled liquid region and metastabe liquid region exist. While downstream the flash point a two phase flow is established. he pressure gradients through the subcooled and two phase regions are proportional to their respective contributions to the overall flow resistance within the capillary tube (Bittle et al, 2001). From this point of view, the capillary tube configuration has been studied for material saving (e.g. Gorasia et al, 1991). he main objective of this study is to test and evaluate the performance of twisted capillary tube and its ability in depressurization process, also to show the effect of twist angle and the number of twisted point on the refrigeration cycle performance. he motivation of this object is to produce a short capillary tube which has the ability to do the same job as the long one. As a first step of research, the examined twisted tubes and the original capillary tube are identical in outer and inner diameters, length and tube material. 2. EXPERIMENAL APPARAUS AND PROCEDURES A window type, 7kW nominal capacity, air conditioner using R-22 was used for testing the performance of three twisted capillary tubes. he vapor compression cycle of the conditioner was provided with controlling and measuring devices at the key locations of the refrigeration cycle. A schematic diagram of the experimental apparatus is shown in Figure 1. Cond enser P Co mpres sor P P Capillary tube P Evaporator Figure 1: Schematic diagram of the experimental apparatus he evaporator and condenser of the refrigeration unit were finned-plate air heat exchangers. he evaporator and condenser fans were employed to extract the room air and discharge it outside the room through foam ducts. An electric heater was installed in the path of entering air to the evaporator. he heater was connected with a variable capacity transformer to control

R117, Page 3 the heater power. It is worth mentioning that the room temperature was maintained at 23-24 ºC during the experiments. he original capillary tube was placed in a horizontal and straight configuration between two shut-off valves and outside the conditioner cabin. An additional section of tubing was soldered at both ends of the capillary tube to facilitate the replacement of it. A service valve was installed at the compressor suction line for charging the refrigeration unit from a refrigerant accumulator. he original capillary tube was a standard drawn copper tube with 1.5 mm inner diameter and a length of 900 mm. All connections and additional tubes as well as the capillary tube were well insulated to guarantee that the steady state temperature along the wall is assumed equal to the refrigerant temperature. he temperature was measured via a type- thermocouple with a maximum uncertainty of ± 0.2 ºC. hermocouples were placed at the inlet and outlet of the capillary tube, evaporator and condenser. Also, thermocouples were installed along the tube length of the evaporator and condenser to determine the condensation and evaporation temperatures. he thermocouple junctions were soldered at the outer surface of the tubes and the thermocouple wires were connected to a multi-channel temperature logging system. he pressure at the capillary tube inlet and exit was measured by precision Bourdon type gages. Also, the compressor suction and discharge pressures were measured. he accuracy of the pressure gages was verified to be ±0.02 bar. he liquid refrigerant mass flow rate was measured by a calibrated flowmeter with a maximum uncertainty of ±0.5 kg/hr. A digital wattmeter with ±1% reading uncertainty was provided to measure the compressor power consumption. All test runs for each of the four capillary tubes were performed in an identical manner and at the steady state condition. After installing the capillary tube, the refrigeration unit was evacuated and recharged again with the minimum refrigerant charge. Since the mass flow rate was increased by increasing the refrigerant charge. en percent of refrigerant under and overcharging can affect the cooling capacity of the refrigeration unit by 1-9 % (Proctor, 1997 ). he minimum and maximum values of the refrigerant mass flow rate that were measure for the various capillary tubes are reported in the results. 3. WISED CAPILLARY UBES hree identical capillary tubes, similar to the original one, were modified to establish the twisting tubes. First, the entire length of the capillary tube was pressed to a required width to accommodate the oval configuration as shown in Figure 2. After that, the tube was fixed at

R117, Page 4 one end to facilitate twisting. At the desired locations, the tube was twisted with the required angle. By this way, the number of twisted points and the twisting angle can be controlled and adjusted. he twisted capillary tube #2 has a twist angle, θ = 90º and the number of twisted points (N) are 16 points with 50 mm apart. Second twisted capillary tube #3 has a twist angle, θ = 180º and the number of twisted points (N) are 8 with 100 mm apart. While the third twisted tube #4 has a twist angle of 180º and the number of twisted points (N) are 16 with 50 mm apart. wist angle Figure 2: Capillary tube twisting 4. EXPERIMENAL RESULS AND DICUSSION As well known, the capillary tube keeps the pressure difference between the condenser and evaporator during the cycle operation. herefore to facilitate viewing of twisting effect and the influence of twisted point s number, the depressurization process in the various capillary tubes is presented in Figure 3. his figure shows the variation of measured pressure drop across the tubes as a function of refrigerant mass flow rate. It is seen from this figure that the capillary tube # 4 (θ = 180º & N = 16) has the greatest pressure drop, as expected, due to the restriction of flow. he pressure drop of the capillary tube #4 is higher by about 42 % than that for the. However, for capillary tubes #2 (θ = 90º & N = 16) and #3 (θ = 180º & N = 8) the increase of ΔP is about 8 % and 34 % respectively compared with the original tube #1. he high pressure difference caused by the twisted capillary tubes, especially tubes #3 and #4, leads to increase in the condensation temperature. his is shown in Figure 4. From this figure, it can be observed that the condensation temperature increases by about 20 % for tube #4 and by about 16 % for tube #3 than that for the original tube #1 at the same refrigerant flow rate. his increase in condensation temperature reflects the influence of the twisting angle. For capillary tube #2 that θ = 90º and N = 16 nodes the increase of condensation temperature is about 4 % at m ref = 86 kg/hr, while at m ref = 107 kg/hr the condensation temperature reaches close to the condensation temperature of the original capillary tube.

R117, Page 5 Pressure drop along the tube, ΔP, (bar) 22 20 18 16 14 12 10 8 twisted tube #4 (θ=180 o & N=16) twisted tube #3 (θ=180 o & N=8) twisted tube #2 (θ=90 o & N=16) 80 85 90 95 100 105 110 Condensation temperature, cond ( o C) 68 64 60 56 52 48 44 40 twisted tube #4 (θ=180 o & N=16) twisted tube #3 (θ=180 o & N=8) twisted tube #2 (θ=90 o & N=16) 80 85 90 95 100 105 110 Refrigerant mass flow rate, m ref (kg/hr) Refrigerant mass flow rate, m ref (kg/hr) Figure 3: Variation of pressure drop as a function of refrigerant mass flow rate. Figure 4: Measured condensation temperature for the various capillary tubes. he inlet subcooling level of the refrigerant has an influence in the flash point location and there by the metastable liquid region length (Koizumi and Yokoyama 1980). herefore, the measured subcool level versus condensation temperature is presented in Figure 5 for the different capillary tubes. It can be seen form this figure that the subcool level curve for the capillary tube #2 is similar in shape to the curve of the original capillary tube #1. he subcool level of tube #2 is higher by about 3 ºC. For capillary tubes #3 and #4 the trend of the curves are different, when compared with the other tubes. Also, high subcool level is achieved by these tubes as shown in Figure 5. his high level of subcooling occurs at high condensation temperatures, since the value of latent heat that is required to be rejected from the condenser decreases as the condensation temperature increases. At the same time, it should be mentioned that the Degree of subcooling, Sub. ( o C) 30 25 20 15 10 5 twisted tube #4 (θ=180 o &N=16) twisted tube #3 (θ=180 o & N=8) twisted tube #2 (θ=90 o & N=16) 0 42 44 46 48 50 52 54 56 58 60 Condensation temperature, con ( o C) Figure 5: Measured subcooling level versus condensation temperature. entering air temperature to the condenser was approximately 24 ºC during the experiments.

R117, Page 6 he high level of the subcooling leads to an increase in the metastable liquid region length and improves the quality of the outlet refrigerant from the capillary tube (Bittle et. al. 2001). his fact can be seen in Figure 6. his figure reveals that the beast refrigerant qualities are achieved by capillary tubes #3 and #4 which have 180 º twisting angle. So it can be said that more liquid refrigerant entering to the evaporator and more cooling duty can be done. his is shown in Figure 7, which presents the plot of cooling duty of the evaporator at the different values of mass flow rate Quality, x 0.40 0.35 0.30 0.25 0.20 0.15 0.10 twisted tube #4 (θ=180 o twisted tube #3 (θ=180 o & N=16) twisted tube #2 (θ=90 o & N=8) & N=16) Cooling duty, (kw) 7 6 5 4 3 twisted tube #4 (θ=180 o twisted tube #3 (θ=180 o & N=16) twisted tube #2 (θ=90 o & N=8) & N=16) 0.05 0 5 10 15 20 25 30 Degree of subcooling, sub ( o C) 2 80 85 90 95 100 105 110 Refrigerant mass flow rate, m ref (kg/hr) Figure 6: he quality of outlet refrigerant as a function of subcooling degree. Figure 7: he evaporator cooling duty in the vicinity of the different capillary tubes. On the other hand, high condensation temperature causes increasing in the compressor power consumption. his can be observed in Figure 8 which presents the measured power consumption as a function of the refrigerant mass flow rate for the different capillary tubes. In this figure the capillary tube #2 increases the compressor power consumption by about 2 % than the consumed power in the vicinity of the original tube #1. While at m ref = 95 kg/hr, capillary tubes #3 and #4 increase the power consumption by about 12 % and 18 % respectively compared with the power consumption in the vicinity of the original tube #1.

R117, Page 7 Compressor power comsumption, (kw) 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 twisted tube #4 (θ=180 o twisted tube #3 (θ=180 o & N=16) twisted tube #2 (θ=90 o & N=8) & N=16) 80 85 90 95 100 105 110 Refrigerant mass flow rate, m ref (kg/hr) COP 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 twisted tube #4 (θ=180 o twisted tube #3 (θ=180 o & N=16) twisted tube #2 (θ=90 o & N=8) & N=16) 80 85 90 95 100 105 110 Refrigerant mass flow rate, m ref (kg/hr) Figure 8: Measured power consumption at the various values of refrigerant flow rate. Figure 9: COP of the air conditioner in the vicinity of various capillary tubes. he coefficient of performance, COP, of the refrigeration cycle is plotted in Figure 9 to evaluate the performance of various capillary tubes. It is seen from this figure that the COP of the refrigeration cycle decreases when using capillary tubes #3 and #4 that have 180º twisting angle in spit of the achievement of best quality values at the tube outlet. his means that the increase of evaporator cooling duty which occurred by these capillary tubes does not match the increase in power consumption. For capillary tube #2 (θ = 90º & N = 16 nodes), the COP of the cycle is approximately equal to that of the. 5. CONCLUSIONS Performance characteristics of twisted capillary tube have been presented and compared with the original capillary tube of window type air conditioner using R-22 as a refrigerant. hree twisted capillary tubes with the same inner diameter and length, as the original capillary tube, have been tested experimentally. he effect of twist angle and the number of twisted points on the refrigeration cycle performance have been investigated and discussed. From the experimental results in this article, it can be concluded that:

R117, Page 8 - he twist angle has a remarkable influence on the depressurization process and condensation temperature. - he twisted capillary tube with 90º twisting angle and 16 twisted points shows a similar behavior as the original straight capillary tube; however, this twisted tube leads to more power consumption (by about 2%) and similar COP of the refrigeration cycle. - High level of subcooling and best refrigerant qualities at the tube outlet are achieved by capillary tubes that have 180º twisting angle. While, on the other side, the compressor power consumption is higher and the COP of the refrigeration cycle is lower than those for the original capillary tube. From the above conclusions it can be deduced that the control of the capillary tube length can be done by selecting the suitable number of twisted points with correct choice for the twist angle to obtain the required pressure drop across the capillary tube. Future experimental investigations are needed to correlate the capillary tube length and diameter with different twist angles at various numbers of twisted points for alternative refrigerants in different refrigeration cycles. REFERENCES Kuehl, S.J., and Goldschmidt, V.W., (1990); Steady Flows of R-22 hrough Capillary ubes: est Data, ASHRAE ransactions, Vol. 96, Part 1, pp. 719-728. Kim, S.G., Kim, M.S., Ro, S.., (2002); Experimental Investigation of the Performance of R- 22, R-407c and R-404a in Several Capillary ubes for Air Conditioners, International Journal of Refrigeration, Vol. 25, No. 5, pp. 521-531. Chen, Z.H., Li, R.Y., Lin, S., Chen, A.Y., (1990); A Correlation for Metastable Flow of Refrigerant 12 hrough Capillary ubes, ASHRAE ransactions, Vol. 96, Part 1, pp. 550-554. Choi, J., Kim, Y., Chung, J.., (2004); An Empirical Correlation and Rating Charts for the Performance of Adiabatic Capillary ubes with Alternative Refrigerants, Applied hermal Engineering, Vol. 24, pp. 29-41. Melo, C., Vieira, L.A.., Pereira, R.H., (2004); Experimental Study on Adiabatic Flow of R- 22 Alternatives in Capillary ubes, International Refrigeration and Air Conditioning Conference at Purdue, July 12-15, R075, pp 1-8. Kuehl, S.J., and Goldschmidt, V.W., (1991); Modeling of Steady Flows of R-22 hrough Capillary ubes, ASHRAE ransactions, Vol. 97, Part 1, pp. 139-148. Fiorelli, F.A.S., Sivares, O.M., (2004); Experimental Validation of a Capillary ube Simulation Model with Refrigerant Mixtures Flow, hermal Engineering, June, No. 5, pp. 15-23.

R117, Page 9 Choi, J., Kim, Y., Kim, H.Y., (2003); A Generalized Correlation for Refrigerant Mass Flow Rate hrough Adiabatic Capillary ubes, International Journal of Refrigeration, Vol. 26, No. 8, pp. 881-888. Bittle, R.R., Carter, J.A., Oliver, J.V., (2001); Extended Insight into the Metastable Liquid Region Behavior in an Adiabatic Capillary ube, ASHRAE Annual Meeting, pp. 1-17. Gorasia, J.N., Dubey, N., Jain, K.K., (1991); Computer-Aided Design of Capillaries of Different Configurations, ASHRAE ransactions, Vol. 97, Part 1, pp. 132-138. Proctor, J., (1997); Field Measurements of New Residential Air Conditioners in Phoenix Arizona, ASHRAE ransactions, Vol. 103, Part 1, pp. 406-415. Koizumi, H., Yokouama, K., (1980); Characteristics of Refrigerant Flow in a Capillary ube, ASHRAE ransactions, Vol. 86, pp. 19-27. ACKNOWEDGEMENS he author would like to thank Eng. Ziad Ammourah for supporting this work. Also the author would like to acknowledge all members of refrigeration and air conditioning department in particular Mr. Abd-Elfatah Solel.