Rain Gardens. Sustainable Landscapes Series. What is a rain garden and how does it work? What are the benefits of rain gardens?

Similar documents
PPA NATIVE PLANT SALE 2015

Planting Your Rain Garden

Planting Your Rain Garden

Alternative Stormwater Management Practice RAIN GARDENS

Rain Gardens. Reconnecting with the Rain. Rachel Calabro Massachusetts Riverways Program

RAIN GARDEN PLANT A AND JOIN EFFORTS FOR CLEANER RHODE ISLAND WATERS

RainScaping. Sustainable Landscape Solutions for Stormwater Management

Raingardens. Attractive, functional Stormwater management

RAIN GARDENS FOR ROCK ISLAND

A RESIDENT S REFERENCE GUIDE TO CREATING A RAIN GARDEN

GREEN REGISTRY. Connect with Stores That Sell What You Need for Your Next Eco-Landscaping Project. 1 NOTE: * Indicates deer resistance

USDA Rain Garden Video fluid_planet.html

Plants for Rain Gardens Recommended for Coastal Southeast Landscapes

All About Rain Gardens

Deep-rooted Native Plants Protect Water Quality. Cyndi Ross River Restoration Program Manager

RainReady Program Certification of Work Performed

What is a Rain Garden?

Everett Rain Garden. Mystic River Watershed Association.

SINGLE FAMILY RESIDENTIAL GUIDE CITY OF ATLANTA, GEORGIA

Stormwater and Your Rain Garden

Low Impact Development for your homes, businesses & streets

5.2. Facility Specific Landscaping Guidance

BCPS Native Plant Catalog

Plants for Rain Gardens and Pond Edges

RAINGARDENS STEP 1: INFILTRATION TEST TIP TECHNICAL STANDARDS AND DESIGN EXAMPLES

Attracting Birds and Wildlife to the Garden. Spring 2015 Garden Smarter Series Kent Phillips Howard County Master Gardener

SINGLE FAMILY RESIDENTIAL GUIDE CITY OF ATLANTA, GEORGIA DEPARTMENT OF WATERSHED MANAGEMENT

Biosystems Engineering and Soil Science

Be sure to follow us on Instagram.

Raingardens. Conserving and Protecting Water L

Construction of a Rain Garden

Rain Garden Plant Selection

Mercer EducationalGardens. Meadow (3/4 acre)

Rain Garden Maintenance Manual

Rainscaping With Rain Gardens...

Native Plant Information Sheet

2017 BTG NATIVE PLANT SALE MONDAY JUNE 26 TH FROM 11:30 7:30 TUESDAY JUNE 27 TH FROM 1:30-4:30

YOU CAN Capture Rainwater in a Garden

Being A Good Garden Neighbor To A Stream: IPM and Water Quality. George Kingston Master Gardener

Rain Garden Maintenance Manual

These design guidelines are provided for you free of charge as a public service from the Alliance for the Chesapeake Bay.

These design guidelines are provided for you free of charge as a public service from the Alliance for the Chesapeake Bay.

WQ-05 BIORETENTION. 1.0 Bioretention. Greenville County Technical Specification for: 1.1 Description

RAIN GARDEN ILLINOIS URBAN MANUAL PRACTICE STANDARD. (feet) CODE 897 DEFINITION

Plants to Enhance and Stabilize Your

STORMWATER TOOL. Rain Garden

Chrysogonum virginianum, green and gold Flower time: spring through early summer Flower color: yellow Size: 6-12 x 12-18

Residential Rain Gardens. Dr. Cathy Neal Extension Specialist Landscape Horticulture

Rain Gardens. A Welcome Addition to Your Landscape

A Model for Suburbia

PLANT LIST FOR SHORELINE MANAGEMENT

Rain Gardens. A How-To Guide. Mill Creek Watershed Council of Communities

Healthy Living Strategy: Shorelines

Application for Pollinator Friendly Garden Certification

RAIN GARDENS. Maria Ballesteros Mindy Munoz Hernan Reyes Elizabeth Cox Rosa Garcia Katie Fritchey

Building a Rain Garden in Colorado. Created By:

Landscaping with Plants Native to Indiana

Did you know. Rain Barrel Program

Potomac Headwaters Leaders of Watersheds Spring 2019 Application

Plants of the Lafayette Watershed Rain Gardens

Top Performing Herbaceous Native Plants

Request for Proposals: Reduce Your Stormwater - Rain Garden Installers

Water Conservation in the Landscape

Rain Gardens for Beginners

Certain areas of your yard or property may not represent a good location for your rain garden. Don t plant your rain garden:

Rain Gardens for Nashville. Make the most of the rain that falls on your property. A Resource Guide for PLANNING, DESIGNING and MAINTAINING

Homeowners Guide to Stormwater BMP Maintenance

Rain Garden Site Selection and Installation

THE LEAST WANTED: ALIEN INVASIVE PLANTS

BUTTERFLY GARDEN PLANTS. Plant Information all plants native to Michigan except where noted

XERISCAPE The conservation of water and energy through creative landscape.

Conservation Landscaping for Healthy Streams

Minor Stormwater Management Plans

Step-by-Step Guide to Planning & Planting Rain Gardens in Detroit

What is Xeriscape? Why Xeriscape?

What is a watershed? Where does precipitation go? Land Use / Land Cover Changes. Point / Non-point Source Pollution. Low-Impact Development

Landscaping that benefits the environment and community. A guide to native landscaping in Louisiana

Symbols and What They Mean

Healthy Watershed Practices

Rain Gardens. A better way to manage stormwater. Thinking Globally and Acting Locally

City of South Portland Stormwater Manual

Authored by Rose Mary Seymour References at the end of the presentation

These tools may be useful when constructing the rain garden. Power tools can make the work easier, but are not essential. n Stakes or marking flags

Rain Garden Design for Home Owners. A guide compiled for Alabama Master Gardens

2017 Davis Arboretum Fall Native Plant Sale

Rain Garden Design & Construction Worksheet

Toledo - Lucas County. A Homeowner s How-To Guide RAIN GARDENS. for Northwest Ohio

Homeowner s Guide to Flooding

Natural Resources Group Forest Restoration Team Fall 2002 Summary

Landscaping that benefits the environment and community. A guide to native landscaping in Illinois

Master Gardener Recommended Horticulture Best Management Practices

John F. Kennedy STEM High School Green Infrastructure Information Sheet

Gardening for Native Pollinators!


Buffer Zone Restoration Guidelines

Plant Lessons Learned from Designed Rain Gardens

Lesson 2: Stormwater Best Management Practices (BMPs)

Designing with Native Plants & Our Ecosystem in Mind

Rain Garden Plant Selection

Stormwater Management Feasibility Study

Transcription:

Revision Date: 31 January 2009 Rebecca Pineo, Botanic Gardens Intern Susan Barton, Extension Specialist University of Delaware Bulletin #127 Sustainable Landscapes Series Rain Gardens What is a rain garden and how does it work? Rain gardens, sometimes called bio-retention areas, are shallow depressions in the landscape that capture stormwater and allow it to gradually percolate into the soil. Planted with moisture-loving plants that help filter out pollutants, rain gardens provide an attractive way to reduce the impact of stormwater on the environment. Recently installed rain garden at the University of Delaware s Louise and David Roselle Center for the Arts. What are the benefits of rain gardens? Manages stormwater on site. Rainwater is captured by a rain garden instead of flowing off-site, where it picks up pollutants on paved surfaces before flowing into storm drains and then into natural water bodies. Rain gardens reduce flooding and erosion associated with large amounts of stormwater entering streams during heavy rainfalls. Helps recharge the water table. By capturing water and allowing it to percolate into the soil, rain gardens help replenish local aquifers. Filters out pollutants to reduce contamination of groundwater. Ongoing research suggests that rain gardens can be quite effective at filtering out some of the most common pollutants in stormwater, including chemicals, metals, fertilizers, and pesticides. Charged soil particles can attract and absorb metals and chemicals; microorganisms decompose pathogens and organic litter; and plants can filter out and utilize the nitrogen and phosphorous contained in fertilizer runoff.

Delights the senses. The diversity of plant textures, colors and fragrances possible in rain garden plantings can enhance the appearance of a home landscape. For more information about how people benefit from gardens, consult the fact sheet Human Benefits of Green Spaces, available at http://www.ag.udel.edu/udbg/sl/humanwellness.html. Attracts wildlife. Plantings that provide food, nectar and shelter for wildlife can help preserve biodiversity. For more information about maximizing the wildlife value of the landscape, consult the fact sheet Supporting Biodiversity in the Garden, available at http://www.ag.udel.edu/udbg/sl/vegetation.html Installing a Rain Garden This section describes basic guidelines for rain garden construction. For more in-depth instructions, consult Rain Gardens: A How-To Manual for Homeowners from the University of Wisconsin-Extension, available online at http://clean-water.uwex.edu/pubs/ Location The best place for your rain garden is on gently sloping ground where stormwater drains off impermeable surfaces or turf grass, such as the downhill side of a patio, driveway, or lawn. You can also site it in a location 10 30 feet away from your building where flexible piping can be used to direct the flow of your downspouts. Do not locate a rain garden in a low spot on the property that drains poorly. Poorly drained areas may not support sufficient plant growth to function as a rain garden. A rain garden must have level sides to effectively capture water; a flatter slope requires less digging. Slopes of 1-10% are ideal. Orient your rain garden so the long side is perpendicular to the slope this will maximize the amount of runoff captured. Building code requires any water retention device, including rain gardens, to be located at least 10 feet from any building as a guard against flooding. Also avoid building your rain garden over a septic system, or where the seasonally high water table is less than 2 feet from the surface. Any time you dig in your yard, you also need to confirm the location of underground utilities; in Delaware you can call Miss Utility at 1-800-282-8555. Finally, try to locate your rain garden in an area that receives full to partial sun, as most plants that do well in rain gardens are sun-lovers. There is, however, a limited selection of rain garden plants that can tolerate shade. Size The surface area of your rain garden will depend on the rain garden s depth, the size of the area from which you are capturing runoff, and your soil type. Typically, rain gardens are roughly 10-20% the size of the source area; several smaller gardens may be used in lieu of one

big one. Even if you do not have enough space for rain gardens that treat all of your site s run off, remember that every bit helps a rain garden is 30% more effective at draining runoff than a turf area of the same size. You can use the following equations to calculate the approximate surface area, where: Runoff area = surface area of the area that the runoff will be draining from; for example, the size of your rooftop, driveway, patio, or sloping lawn. Depth of runoff = average amount of rainfall in a storm. For most storm events in the Mid-Atlantic region, the rainfall is less than 2 inches. Rain garden depth: Recommendations for rain garden depth ranges from 3 inches to 12 inches. The deeper the rain garden, the smaller the required surface area required. Note that a larger slope will require deeper digging for the rain garden to be level. [Runoff area (ft²) x depth of run off (inches)] rain garden depth (inches) = rain garden area (ft²) For example, if your 4-inch deep rain garden will treat up to 2 inches of rainfall that drains from the downspout of 10 x 25 ft. roof, your rain garden will need to be 125 ft², or 10 x 12.5 ft: [125 ft² x 2 in] / 4 in = 125 ft² Preparing the site Site preparation depends largely on the soil type of your site. In sandy or well-draining loamy soil, you simply need to dig a level-bottomed depression with gently sloping sides. Use the excavated soil to build a berm around the garden, leaving an opening on the uphill side where runoff will enter. Two stakes with a level string tied between them can serve as a guide for creating a level-bottomed depression on sloped ground. Consult the drawings on the next page for more information about digging a rain garden. Clay soils or compacted, poorly draining soils often require more intensive excavation to be effective. Excavate or till to 3 or 4 feet, and fill partway with a layer of coarse gravel. Then, cover the gravel with a layer of permeable filter fabric, followed by sandy, free-draining soil and then a top layer of topsoil. Incorporating compost into the topsoil provides nutrients and added drainage capabilities. (For more information about compost, consult the fact sheet Yard Waste and Composting, available at http://ag.udel.edu/extension/horticulture/). As you would prepare any garden bed, perform a soil test and add nutrients as needed. Consult the Sustainable Landscapes: Soils page at http://www.ag.udel.edu/udbg/sl/soils.html for more information on sustainable soil practices.

Digging a Rain Garden on a 5% Slope Before Before After Digging a Rain Garden on a 10% Slope After Graphics courtesy of University of Wisconsin-Extension and the Wisconsin Department of Natural Resources, from Rain Gardens: A How-to Manual for Home Owners, available at http://clean-water.uwex.edu/pubs/pdf/home.rgmanual.pdf

Plants Rain garden plants must be able to tolerate not only moisture, but also drought, as the rain garden is designed to drain water quickly. For this reason, many plants typical to wetland environments are not appropriate for a rain garden. Hardy herbaceous perennials are most commonly used, through a variety of shrubs and trees also perform well in rain garden conditions. For specific plant recommendations, consult the list at the end of this fact sheet. Maintenance Mulching. After planting, apply mulch at a depth of at least 2 inches to preserve soil moisture, suppress weeds, and reduce erosion. Shredded hardwood mulch is an effective, attractive option; be sure to avoid mulches that float (for example, pine bark). As your rain garden matures, maintain the protective layer of mulch, adding more as the lower layers decompose. Research has shown that over time, decomposing mulch helps maintain the pollutant-absorbing properties of the soil. Eventually, the plants may grow together and mulch will no longer be needed. Watering. Until the plants become established over the course of a few months, the garden will need to receive thorough watering at least twice a week by either rainfall or irrigation. More water may be needed in hot summer weather. With proper plant choice to fit your climate conditions, the garden will require no supplemental irrigation after the initial establishment period, except perhaps during extreme drought. Weeding. Control for weeds until good plant cover is established. Pruning and other maintenance. Prune shrubs to remove dead stems or rejuvenate plants such as red twig dogwood whose new growth is more desirable. Proper plant selection should limit the need for much pruning. In late winter/early spring (before new growth begins), perennial stems from the previous season can be cut within a few inches of the ground. Plants for a Delaware Rain Garden Herbaceous Perennials Amsonia ciliata Amsonia hubrechtii Amsonia tabernaemontana Aquilegia canadense Arisaema triphyllum Asclepias incarnata Aster novae-angliae, Aster novi-belgii Athyrium filix-femina downy blue star Arkansas blue star blue star columbine Jack-in-the-pulpit swamp milkweed New England aster New York Aster lady fern Amsonia hubrechtii

Baptisia australis Boltonia asteroides Caltha palustris Campanula divaricata Carex stipata Chasmanthium latifolium Chelone glabra Chelone lyonii Cimicifuga racemosa Convallaria majalis Eupatorium maculatum Gillenia trifoliate Helianthus angulstifolius Hibiscus moscheutos Iris cristata Kosteletskya virginica Lobelia cardinalis Lobelia siphilitica Meehania cordata Monarda didyma Muhlenbergia capillaris Osmunda regalis Osmunda cinnamomea Panicum virgatum Persicaria virginiana Phlox paniculata Physostegia virginiana Rudbeckia fulgida Rudbeckia laciniata Solidago rugosa Sorghastram nutans Spartina pectinata Spiranthes cernua Stylophorum diphyllum Tradescantia x andersoniana Veratrum viride Vernonia noveboracensis Veronicastrum virginicum false indigo boltonia marsh marigold southern harebell tussock sedge sea oats white turtlehead pink turtlehead black snakeroot lily-of-the-valley Joe-pye weed Bowman s root swamp sunflower marsh mallow dwarf crested iris seashore mallow cardinal flower blue lobelia Meehan s mint Oswego tea, beebalm muhly grass royal fern cinnamon fern switchgrass tovara garden phlox obedient plant black-eyed Susan green-headed coneflower goldenrod Indian grass cord grass nodding lady s tresses celandine poppy Virginia spiderwort Indian poke common ironweed Culver s root Hibiscus moscheutos Lobelia cardinalis Vernonia noveboracensis

Trees Amelanchier laevis Asimina triloba Betula nigra Diospyros virginiana Liquidambar styraciflua Magnolia virginiana Shrubs Cephalanthus occidentalis Clethra alnifolia Cornus amomum Cornus sanguinea Fothergilla gardenii Ilex glabra Ilex verticillata Itea virginica Lindera benzoin Sambucus canadensis Viburnum dentatum shadbush pawpaw river birch persimmon sweet gum sweetbay magnolia buttonbush sweet pepperbush silky dogwood bloodtwig dogwood dwarf fothergilla inkberry holly winterberry holly Virginia sweetspire spicebush American elderberry arrowwood Magnolia virginiana Itea virginica Additional Resources Designing Rain Gardens (Bio-Retention Areas) www.bae.ncsu.edu/stormwater/publicationfiles/designingraingardens2001.pdf Rain Gardens http://www.apporiver.org/projects/pastprojects/raingardenborchure.pdf Rain Gardens: A How-to Manual for Homeowners http://clean-water.uwex.edu/pubs/pdf/home.rgmanual.pdf Rainscapes: Harvesting the Heavens http://www.montgomerycountymd.gov/content/dep/rainscapes/pdf/harvesting.pdf Bibliography

Bannerman, R. and E. Considine. (2003). Rain Gardens: A How-to Manual for Homeowners. University of Wisconsin Extension and Wisconsin Department of Natural Resources. Retrieved November 10, 2008 from http://clean-water.uwex.edu/pubs/pdf/home.rgmanual.pdf. Hunt, William F. and Nancy White. (2001). Urban Waterways: Designing Rain Gardens (Bio-Retention Areas). North Carolina Cooperative Extension Service. Retrieved November 10, 2008 from www.bae.ncsu.edu/stormwater/publicationfiles/designingraingardens2001.pdf. Miss Utility of Delmarva. (2008). Miss Utility of Delmarva. Retrieved November 10, 2008 from http://www.missutilitydelmarva.com/. Obropta, Christopher, William J. Sciarappa, and Vivian Quinn. (2006). Rain Gardens. Rutgers Cooperative Research & Extension. Retrieved November 10, 2008 from www.water.rutgers.edu/fact_sheets/fs513.pdf. Potomac Conservancy and Montgomery County Department of Environmental Protection. Rainscapes: Harvesting the Heavens. Retrieved November 10, 2008 from http://www.montgomerycountymd.gov/content/dep/rainscapes/pdf/harvesting.pdf.