Check valve Types NRV and NRVH

Similar documents
Tube-in-tube heat exchanger Type HE

Hot gas bypass regulator, type CPCE Liquid gas mixer, type LG (accessory)

Capacity regulators, type CPCE and LG REFRIGERATION AND AIR CONDITIONING. Technical leaflet

Tube-in-tube heat exchanger Type HE

RD refrigerant distributors, for thermostatic expansion valves REFRIGERATION AND AIR CONDITIONING. Technical leaflet

General information on refrigerant controllers

Liquid Distributor Type RD

Flexible. Upgrade and service with ease Extend lifetime with modular design. Thermostatic expansion valves Type TE5-55

Capacity regulator (hot gas bypass), type TUH/TCHE/TRHE REFRIGERATION AND AIR CONDITIONING. Technical leaflet

FSW SECTION. Product guide. Expansion Valves, Solenoid Valves Water Valves & Oil Pressure Switches F SECTION. 71

Product Catalog VALVES

MAKING MODERN LIVING POSSIBLE. Thermostatic expansion valves, type TR 6 REFRIGERATION & AIR CONDITIONING DIVISION.

Filter Driers with Replaceable Core

Thermostatic Expansion valves, type TUA/TUAE REFRIGERATION AND AIR CONDITIONING. Technical leaflet

Pressure switch KPU. Data sheet

Thermostatic Expansion Valves Type TR 6

Zero ODP and negligible GWP when using hydrocarbons. Zero. portfolio for hydrocarbons.

Refrigeration and Air Conditioning Controls. Applications. PM Modulating pressure and temperature regulators REFRIGERATION AND AIR CONDITIONING

MAKING MODERN LIVING POSSIBLE. One valve for all purposes. TGE - thermostatic expansion valves REFRIGERATION & AIR CONDITIONING DIVISION

Thermostatic expansion valves for ammonia Type TEA

MAKING MODERN LIVING POSSIBLE. Check valve for EVRA, EVRAT and PM valves in liquid lines type NRVS. Technical brochure

OIL SEPARATORS APPLICATIONS

Low Pressure Sight Glass Up to 35 bar MWP Type SG

Refrigerants and lubricants

Figure 1: Schematic of internal heat exchanger vapor-injection cycle

Pressure Enthalpy Charts

y Small dimensions. Easy to install in refrigerated counters or cold rooms

THERMAL SOLUTIONS COAXIAL HEAT EXCHANGERS WKE, WKC

Revolutionary ETS Colibri valves Engineered to give you maximum flexibility and dependability

FSW. Product guide. Driers and Sight Glasses CSECTION For more information visit

10/4/2013. The Changing State of Refrigerants

PULSE WIDTH MODULATING VALVES

Energy Use in Refrigeration Systems

Suction Line Accumulators

Case 15 Refrigeration System for Chemical Fertilizer Plant Ammonia Storage

LINE COMPONENTS VALVES

CHECK VALVES INSTALLATION

THE FIVE W s SYSTEMES LMP MECHANICAL SUB-COOLING. I.G.A. GIRARD, TERREBONNE, Qc. INCREASED SYSTEM EFFICIENCY & LOWER ENERGY COSTS

Case 8 Basic Performance of Screw Compressor

Kirby Commander Condensing Unit

June 2001 / BULLETIN Way Valves. The right solenoid valve for any job.

SANHUA S OFFER FOR REFRIGERATION APPLICATIONS

Technical Bulletin (TB-0037)

Thermostat KPU. Data sheet

Accumulators - Suction Line

REFRIGERATION PRODUCTS

ELIMINATOR Hermetic filter drier for CO₂ DMSC for Sub-critical and DMT for Trans-critical application

The Saturation process

Technical Information

PREPARE FOR CHANGE LOW GWP ALTERNATIVES. November 17

ZERO ZONE USER GUIDE TO THE 2017 EPA RETAIL FOOD REFRIGERATION REGULATIONS

PRICE CHOPPER SARATOGA, NY. First cascade supermarket system in North America Installed and Started March of 2008

FACT SHEET 9 Large Air-Conditioning (air-to-air)

Brazed heat exchangers

Refrigerant Cycle. Performance Data 1) Electric. Acoustic Pressure Level. Compressor. Connections, Dimensions

Danfoss Scroll for Refrigeration MLM / MLZ

T2 thermostatic expansion valves regulate the injection of refrigerant liquid into evaporators. The refrigerant superheat determines the amount.

SOLENOID VALVES FOR REFRIGERATING SYSTEMS

Thermostatic Expansion Valves

FACT SHEET 9 Large Air-Conditioning (air-to-air)

SECTION 2 SAFETY, TOOLS AND EQUIPMENT, SHOP PRACTICES UNIT 10 SYSTEM CHARGING

Kirby CO 2 Evaporators

System Considerations for Refrigerant Blends with Temperature Glide

Controller for operation of evaporator on water chiller EKD 316

TEST REPORT #14. System Drop-In Test of Refrigerant Blend ARM-42a in an Air-Cooled Screw Chiller

SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS UNIT OBJECTIVES UNIT OBJECTIVES 3/22/2012

BOGE AIR. THE AIR TO WORK. Refrigerant Dryers RA Series

HVAC Fundamentals & Refrigeration Cycle

Compendium DES July 2016, CARN

Technical Information

Technical Information

Thermostats type KPU REFRIGERATION AND AIR CONDITIONING. Technical leaflet

HANDBOOK REGULATOR VALVES. Ed REGULATOR VALVES RP-ED 01/ ENG 1

EN-CV: LHCb SciFi Common chiller. Martin Doubek September 25, 2017

Gary Parker Refrigerants Product Manager

DTI Kenneth Bank Madsen Global Application Expert Food Retail

HEAT PUMPS WITH HYDROCARBONS AS REFRIGERANTS FOR SMALL RESIDENTIAL BUILDINGS

These valves can also be ordered as a bidirectional valve, allowing control of flow in both directions for use on heat pump applications.

Section 1: Theory of Heat Unit 3: Refrigeration and Refrigerants

SECTION 7 AIR CONDITIONING (COOLING) UNIT 41 TROUBLESHOOTING

Suction Accumulators. Introduction. Suction Accumulators

Instruction book for Air dryers

Head Pressure Control Valves

AHRI Standard 751 (SI) 2016 Standard for Performance Rating of Thermostatic Refrigerant Expansion Valves

General Characteristics SM185S3QC. Dimensions. Terminal box. Electrical Characteristics. Recommended Installation torques

49 Danfoss Thermostat Kits Ranco Varifix Kits

System Design, Commissioning, Operation

Bulletin , March Electric Hot Gas Bypass Valves

ENERSAVE Hydrocarbon Scroll Water Cooled Chiller

The Refrigeration Cycle

To accomplish this, the refrigerant fi tis pumped throughh aclosed looped pipe system.

Due to its low temperature glide about 1.5 approx. (75% less than R-407C and R-427A), it is suitable for a wide range of applications.

REFRIGERATION AND AIR CONDITIONING RÉFRIGÉRATION ET CLIMATISATION POST-SECONDARY NIVEAU POSTSECONDAIRE

Sporlan Valve Division Parker Hannifan/CIC Group

Commercial CO2 Refrigeration Systems. Guide for Subcritical and Transcritical CO2 Applications

Thomas J Kelly. Fundamentals of Refrigeration. Sr. Engineering Instructor Carrier Corporation. August 20, Page number: 1.

The Refrigeration Cycle

Fan speed controller Type Saginomiya XGE

TRENDS IN RETAIL INDUSTRY REFRIGERATION & REVIEW OF EUROSHOP 2017 EXHIBITION

500 EX Fusion Compressor Series

Transcription:

Check valve s NRV and NRVH NRV and NRVH can be used in liquid. suction and hot gas lines in refrigeration and air conditioning plant with HCFC. HFC and HC flammable refrigerants. The valves ensure the correct flow direction and prevent back-condensation from a warm part of the system to the cold evaporator. A built-in damping piston makes the valves suitable for installation in lines where pulsation can occur. e. g. in the discharge line from the compressor. Features y Ensure correct flow direction. y Available in both straightway and angleway versions. y Prevents back-condensation from warm to cold system part. y Solder versions are compliant with ATEX hazard zone. y Built-in damping piston that makes the valves suitable for installation in lines where pulsation can occur. e.g. in the discharge line from the compressor. y In refrigeration plants with compressors connected in parallel. it is advantageous to use NRVH. since the spring is stronger than in NRV. y Oversize connections provide flexibility in use. DKRCC.PD.FE0.A5.0 / 50H979

Approvals Technicala data Refrigerants HCFC. HFC and HC flammable refrigerants Media temperature range -50 40 C / -58 85 F Max. working pressure (PS/MWP) 46 bar (667 psig) Note: Only solder version. Connection sizes from 6 s to 9 s are allowed for flammable refrigerant. Dimensioning and selection When selecting the right Danfoss check valve the capacity tables on page 4 and 5 should be utilised together with plant requirements concerning piping and connection sizes. The optimum solution should include the highest capacity at lowest pressure drop across the valve before it closes. Further. when dimensioning and selecting Danfoss check valves for mounting into the compressor discharge line. it is important to be aware of the following: The differential pressure across the valve must always be higher than the given minimum pressure drop at which the valve is completely open. This also applies to lowest capacities for compressor with capacity regulation. In refrigeration plants with compressors connected in parallel. it is advantageous to use NRVH. since the spring is stronger than the one utilised in NRV. Also. resonance problems can be avoided at partial load in the refrigerant plant. Ordering Straightway Flare Version without union Valve type Connection type Connection Pressure drop across valve Δp ) K v value 3 ) (calculated value) C v value 3 ) (calculated value) Code no. [psi] [m 3 /h] [gal/min] NRV 6 Straight-way - flare 4 6 0.07.0 0.56 0.65 00-040 NRV 0 Straight-way - flare 3 8 0 0.07.0..39 00-04 NRV Straight-way - flare 0.05 0.7.05.37 00-04 NRV 6 Straight-way - flare 5 8 6 0.05 0.7 3.6 4.6 00-043 NRV 9 Straight-way - flare 3 4 9 0.05 0.7 5.5 6.36 00-044 Angleway Solder ODF Version Valve type Connection type Connection Pressure drop across valve Δp ) K v value 3 ) (calculated value) C v value 3 ) (calculated value) Code no. [psi] [m 3 /h] [gal/min] NRV s Angle-way - solder 7 8 0.04 0.58 8.5 9.83 00-00 NRVH s Angle-way - solder 7 8 0.30 4.35 8.5 9.83 00-03 NRV s ) Angle-way - solder 8-0.04 0.58 8.5 9.83 00-060 Angle-way - solder - 8 0.04 0.58 8.5 9.83 00-055 NRVH s ) Angle-way - solder 8-0.30 4.35 8.5 9.83 00-07 Angle-way - solder - 8 0.30 4.35 8.5 9.83 00-067 NRV 8s Angle-way - solder 8-0.04 0.58 6.5 9.07 00-0 Angle-way - solder - 8 0.04 0.58 6.5 9.07 00-05 NRVH 8s Angle-way - solder 8-0.30 4.35 6.5 9.07 00-09 Angle-way - solder - 8 0.30 4.35 6.5 9.07 00-033 NRV 8s ) Angle-way - solder 3 8 35 0.04 0.58 6.5 9.07 00-056 NRVH 8s ) Angle-way - solder 3 8 35 0.30 4.35 6.5 9.07 00-068 NRV 35s Angle-way - solder 3 8 35 0.04 0.58 9 33.5 00-06 NRVH 35s Angle-way - solder 3 8 35 0.30 4.35 9 33.5 00-034 NRV 35s ) Angle-way - solder 5 8-0.04 0.58 9 33.5 00-06 Angle-way - solder - 4 0.04 0.58 9 33.5 00-07 NRVH 35s ) Angle-way - solder 5 8-0.30 4.35 9 33.5 00-073 Angle-way - solder - 4 0.30 4.35 9 33.5 00-035 ) Oversize connections. ) p = the minimum pressure at which the valve is completely open. The NRVH with a stronger spring is used in the discharge line from compressors connected in parallel. 3 ) The K v / C v value is the flow of water in [m 3 /h gal/min] at a pressure drop across valve of bar / 4.5 psig. ρ = 000 kg/m 3-05 lbs/g. DKRCC.PD.FE0.A5.0 / 50H979 Danfoss A/S (DCS-IMCGPD/sw), 05-0

Ordering (continued) Straightway Solder ODF Version Valve type Connection type Connection Pressure drop across valve Δp ) K v value 3 ) (calculated value) C v value 3 ) (calculated value) Code no. [psi] [m 3 /h] [gal/min] NRV 6s Straight-way - Solder 4-0.07.0 0.56 0.65 00-00 Straight-way - Solder - 6 0.07.0 0.56 0.65 00-04 NRV 6s ) Straight-way - Solder 4-0.07.0 0.56 0.65 00-057 Straight-way - Solder - 6 0.07.0 0.56 0.65 00-050 NRVH 6s ) Straight-way - Solder 3 8-0.30 4.35 0.56 0.65 00-069 Straight-way - Solder - 0 0.30 4.35 0.56 0.65 00-06 NRV 0s Straight-way - Solder 3 8-0.07.0..39 00-0 Straight-way - Solder - 0 0.07.0..39 00-05 NRVH 0s Straight-way - Solder - 0.30 4.35..39 00-046 Straight-way - Solder - 0.30 4.35..39 00-036 NRV 0s ) Straight-way - Solder - 0.07.0..39 00-058 Straight-way - Solder - 0.07.0..39 00-05 Straight-way - Solder NRVH 0s - 0.30 4.35..39 00-070 ) Straight-way - Solder - 0.30 4.35..39 00-063 NRV s Straight-way - Solder - 0.05 0.7.05.37 00-0 Straight-way - Solder - 0.05 0.7.05.37 00-06 NRVH s Straight-way - Solder - 0.30 4.35.05.37 00-039 Straight-way - Solder - 0.30 4.35.05.37 00-037 NRV s ) Straight-way - Solder 5 8 6 0.05 0.7.05.37 00-05 NRVH s ) Straight-way - Solder 5 8 6 0.30 4.35.05.37 00-064 NRV 6s Straight-way - Solder 5 8 6 0.05 0.7 3.6 4.6 00-08 NRVH 6s Straight-way - Solder 5 8 6 0.30 4.35 3.6 4.6 00-038 NRV 6s ) Straight-way - Solder - 8 0.05 0.7 3.6 4.6 00-053 NRVH 6s ) Straight-way - Solder - 8 0.30 4.35 3.6 4.6 00-065 NRV 6s ) Straight-way - Solder 3 4 9 0.05 0.7 3.6 4.6 00-059 NRVH 6s ) Straight-way - Solder 3 4 9 0.30 4.35 3.6 4.6 00-07 NRV 9s Straight-way - Solder - 8 0.05 0.7 5.5 6.36 00-07 NRVH 9s Straight-way - Solder - 8 0.30 4.35 5.5 6.36 00-008 NRV 9s Straight-way - Solder 3 4 9 0.05 0.7 5.5 6.36 00-09 NRVH 9s Straight-way - Solder 3 4 9 0.30 4.35 5.5 6.36 00-03 NRV 9s ) Straight-way - Solder 7 8 0.05 0.7 5.5 6.36 00-054 NRVH 9s ) Straight-way - Solder 7 8 0.30 4.35 5.5 6.36 00-066 ) Oversize connections. ) p = the minimum pressure at which the valve is completely open. The NRVH with a stronger spring is used in the discharge line from compressors connected in parallel. 3 ) The K v / C v value is the flow of water in [m 3 /h gal/min] at a pressure drop across valve of bar / 4.5 psig. ρ = 000 kg/m 3-05 lbs/g. Danfoss A/S (DCS-IMCGPD/sw), 05-0 DKRCC.PD.FE0.A5.0 / 50H979 3

Capacity The suction vapour capacities are based on liquid temperature t l = 5 C ahead of the evaporator. The table values refer to the evaporator capacity. The capacities are based on dry. saturated vapour ahead of the valve. Under operating conditions with superheated vapour ahead of the valve. the capacities are reduced by 4% for every 0 K superheat. Suction vapour capacity in [kw] Pressure Suction vapour capacity at pressure drop across valve p drop kw at evaporating across temperature t o NRV NRV/NRVH valve p [ C] 0.05 0.07 ) 0.4 0.3 ) 30 0 ) +5 R R NRV/NRVH 6-7.67 0.8 5.8 NRV/NRVH 6 0.07 0.56 0.86.4 NRV/NRVH 0-6.4 3. 34 NRV/NRVH 0 0.07.0.84.43 NRV/NRVH 3.7 8 39.7 58 NRV/NRVH 0.05.05 3.5 4.6 NRV/NRVH 6 4.6 49.3 69 0 NRV/NRVH 6 0.05 3.60 5.53 7.30 NRV/NRVH 9 63 75 06 55 NRV/NRVH 9 0.05 5.50 8.45. NRV/NRVH 98 6 64 4 NRV/NRVH 0.05 8.49 3.0 7. NRV/NRVH 8 9 5 39 467 NRV/NRVH 8 0.05 6.4 5.3 33.4 NRV/NRVH 35 335 397 56 8 NRV/NRVH 35 0.05 8.9 44.5 58 R34a R34a NRV/NRVH 6-7.4 0. 4.7 NRV/NRVH 6 0.07 0.38 0.64 0.89 NRV/NRVH 0-5.3.6 3.6 NRV/NRVH 0 0.07 0.8.37.90 NRV/NRVH. 6. 36.9 54 NRV/NRVH 0.05.38.33 3.5 NRV/NRVH 6 38.8 45.9 64 95 NRV/NRVH 6 0.05.43 4.0 5.7 NRV/NRVH 9 59 70 99 45 NRV/NRVH 9 0.05 3.7 6.6 8.7 NRV/NRVH 9 08 53 4 NRV/NRVH 0.05 5.74 9.68 3.4 NRV/NRVH 8 77 0 97 435 NRV/NRVH 8 0.05. 8.7 6. NRV/NRVH 35 3 369 53 765 NRV/NRVH 35 0.05 9.5 33.0 45.9 R404A/R507 R404A/R507 NRV/NRVH 6-5.3 7.39 0.8 NRV/NRVH 6 0.07 0.47 0.75.0 NRV/NRVH 0 -. 5.8 3. NRV/NRVH 0 0.07.00.6.8 NRV/NRVH 6. 9. 7.0 39.6 NRV/NRVH 0.05.7.74 3.73 NRV/NRVH 6 8.3 33.6 47.5 69 NRV/NRVH 6 0.05 3.0 4.8 6.55 NRV/NRVH 9 43.3 5 7 06 NRV/NRVH 9 0.05 4.59 7.36 0.0 NRV/NRVH 67 79 64 NRV/NRVH 0.05 7.0.3 5.4 NRV/NRVH 8 30 53 7 38 NRV/NRVH 8 0.05 3.7.0 30.0 NRV/NRVH 35 8 70 38 560 NRV/NRVH 35 0.05 4. 38.8 5 ) Capacity for NRVH. Correction factors When selecting the evaporator capacity is to be multiplied by a correction factor depending on the liquid temperature t l ahead of the valve/the evaporator. The corrected capacity can then be found from the table. Correction factors for liquid temperature t l t l [ C] -0 0 0 5 0 5 30 35 40 45 50 R 0.76 0.8 0.88 0.9 0.96.00.05.0.6..30 R34a 0.73 0.79 0.86 0.90 0.95.00.06..9.7.37 R404A/R507 0.67 0.74 0.8 0.87 0.93.00.08.7.9.43.6 4 DKRCC.PD.FE0.A5.0 / 50H979 Danfoss A/S (DCS-IMCGPD/sw), 05-0

Capacity (continued) The suction vapour capacities are based on liquid temperature te = 5 C ahead of the evaporator. The table values refer to the evaporator capacity. The capacities are based on dry. saturated vapour ahead of the valve. Under operating conditions with superheated vapour ahead of the valve. the capacities are reduced by 4% for every 0 K superheat. Suction vapour capacity in [kw] Pressure Suction vapour capacity at pressure drop across valve p drop kw at evaporating across temperature t o NRV NRV/NRVH valve p [ C] 0.05 0.07 ) 0.4 0.3 ) 30 0 ) +5 R407A R407A NRV/NRVH 6-6.8 9.65 4. NRV/NRVH 6 0.07 0.49 0.79.08 NRV/NRVH 0-4.6 0.6 30. NRV/NRVH 0 0.07.05.70.3 NRV/NRVH. 4.9 35.3 5 NRV/NRVH 0.05.79.90 3.95 NRV/NRVH 6 37.0 43.8 6 90 NRV/NRVH 6 0.05 3.4 5.09 6.94 NRV/NRVH 9 56 66 94 38 NRV/NRVH 9 0.05 4.79 7.77 0.6 NRV/NRVH 87 03 46 4 NRV/NRVH 0.05 7.4.0 6.3 NRV/NRVH 8 69 00 84 46 NRV/NRVH 8 0.05 4.3 3.3 3.8 NRV/NRVH 35 98 353 499 73 NRV/NRVH 35 0.05 5. 40.9 55 R407C R407C NRV/NRVH 6-7.36 0.4 5. NRV/NRVH 6 0.07 0.49 0.80.09 NRV/NRVH 0-5.7.3 3.6 NRV/NRVH 0 0.07.06.7.34 NRV/NRVH.7 6.9 38.0 55 NRV/NRVH 0.05.8.93 4.00 NRV/NRVH 6 39.9 47.3 66 97 NRV/NRVH 6 0.05 3.7 5.5 7.0 NRV/NRVH 9 6 7 0 49 NRV/NRVH 9 0.05 4.85 7.86 0.7 NRV/NRVH 94 57 3 NRV/NRVH 0.05 7.49. 6.5 NRV/NRVH 8 83 6 306 448 NRV/NRVH 8 0.05 4.5 3.5 3. NRV/NRVH 35 3 38 538 788 NRV/NRVH 35 0.05 5.5 4.4 56 R407F R407F NRV/NRVH 6-7.47 0.5 5.4 NRV/NRVH 6 0.07 0.54 0.86.6 NRV/NRVH 0-6.0.6 33. NRV/NRVH 0 0.07.5.84.49 NRV/NRVH 3. 7.3 38.6 56 NRV/NRVH 0.05.97 3.5 4.6 NRV/NRVH 6 40.6 48.0 67 99 NRV/NRVH 6 0.05 3.45 5.53 7.48 NRV/NRVH 9 6 73 03 5 NRV/NRVH 9 0.05 5.7 8.44.4 NRV/NRVH 95 3 60 34 NRV/NRVH 0.05 8.5 3.0 7.6 NRV/NRVH 8 86 0 3 455 NRV/NRVH 8 0.05 5.8 5.3 34.3 NRV/NRVH 35 37 387 547 80 NRV/NRVH 35 0.05 7.8 44.5 60 R40A R40A NRV/NRVH 6-7.54 0.6 5.6 NRV/NRVH 6 0.07 0.7.08.4 NRV/NRVH 0-6..8 33.4 NRV/NRVH 0 0.07.5.3 3.04 NRV/NRVH 3.3 7.5 39.0 57 NRV/NRVH 0.05.59 3.95 5.9 NRV/NRVH 6 40.9 48.4 68 00 NRV/NRVH 6 0.05 4.55 6.93 9. NRV/NRVH 9 6 74 04 53 NRV/NRVH 9 0.05 6.94 0.5 3.9 NRV/NRVH 96 4 6 36 NRV/NRVH 0.05 0.7 6.3.5 NRV/NRVH 8 87 34 459 NRV/NRVH 8 0.05 0.8 3.7 4.8 NRV/NRVH 35 39 390 55 808 NRV/NRVH 35 0.05 36.6 55 73 ) Capacity for NRVH. Correction factors When selecting the evaporator capacity is to be multiplied by a correction factor depending on the liquid temperature t l ahead of the valve/the evaporator. The corrected capacity can then be found from the table. Correction factors for liquid temperature t l t l [ C] -0 0 0 5 0 5 30 35 40 45 50 R407A 0.7 0.78 0.85 0.90 0.94.00.06.3..3.44 R407C 0.73 0.79 0.86 0.90 0.95.00.06.3.0.9.40 R407F 0.73 0.79 0.86 0.90 0.95.00.06.3.0.30.40 R40A 0.7 0.78 0.85 0.90 0.94.00.06.4..33.46 Danfoss A/S (DCS-IMCGPD/sw), 05-0 DKRCC.PD.FE0.A5.0 / 50H979 5

Capacity (continued) The suction vapour capacities are based on liquid temperature t l = 5 C ahead of the evaporator. The table values refer to the evaporator capacity. The capacities are based on dry. saturated vapour ahead of the valve. Under operating conditions with superheated vapour ahead of the valve. the capacities are reduced by 4% for every 0 K superheat. Suction vapour capacity in [kw] Pressure Suction vapour capacity at pressure drop across valve p drop kw at evaporating across temperature t o NRV NRV/NRVH valve p [ C] 0.05 0.07 ) 0.4 0.3 ) 30 0 ) +5 R3 R3 NRV/NRVH 6-0.7 5..3 NRV/NRVH 6 0.07 0.9.38.78 NRV/NRVH 0-3. 3.6 47.8 NRV/NRVH 0 0.07.98.95 3.8 NRV/NRVH 33.3 39.4 55 8 NRV/NRVH 0.05 3.38 5.04 6.53 NRV/NRVH 6 58 69 98 43 NRV/NRVH 6 0.05 5.94 8.85.4 NRV/NRVH 9 89 05 49 9 NRV/NRVH 9 0.05 9.08 3.5 7.5 NRV/NRVH 38 63 3 338 NRV/NRVH 0.05 4.0 0.9 7.0 NRV/NRVH 8 68 37 449 657 NRV/NRVH 8 0.05 7. 40.5 5 NRV/NRVH 35 47 558 789 55 NRV/NRVH 35 0.05 47.8 7 9 R90 R90 NRV/NRVH 6 7.8 8.6. 7.8 NRV/NRVH 6 0.07 0.69.06.4 NRV/NRVH 0 5.6 8.4 6. 38. NRV/NRVH 0 0.07.47.7 3.0 NRV/NRVH 6.6 3.5 44.6 65 NRV/NRVH 0.05.5 3.88 5.5 NRV/NRVH 6 46.8 55 78 4 NRV/NRVH 6 0.05 4.4 6.8 9.05 NRV/NRVH 9 7 84 9 75 NRV/NRVH 9 0.05 6.74 0.4 3.8 NRV/NRVH 0 30 84 70 NRV/NRVH 0.05 0.4 6.0.3 NRV/NRVH 8 4 53 359 55 NRV/NRVH 8 0.05 0. 3. 4.4 NRV/NRVH 35 377 446 63 93 NRV/NRVH 35 0.05 35.5 54 7 R600 R600 NRV/NRVH 6-9.70 3.7 0.0 NRV/NRVH 6 0.07 0.8 0.5 0.76 NRV/NRVH 0-0.7 9.4 43.0 NRV/NRVH 0 0.07 0.60..6 NRV/NRVH 30.0 35.5 50 73 NRV/NRVH 0.05.03.9.77 NRV/NRVH 6 5 6 88 9 NRV/NRVH 6 0.05.8 3.37 4.86 NRV/NRVH 9 80 95 34 97 NRV/NRVH 9 0.05.76 5.4 7.4 NRV/NRVH 4 47 08 304 NRV/NRVH 0.05 4.7 7.95.4 NRV/NRVH 8 4 85 404 59 NRV/NRVH 8 0.05 8.9 5.4. NRV/NRVH 35 44 50 70 039 NRV/NRVH 35 0.05 4.5 7. 39. R600a R600a NRV/NRVH 6-8.6. 7.8 NRV/NRVH 6 0.07 0.35 0.6 0.86 NRV/NRVH 0-8.4 6.0 38. NRV/NRVH 0 0.07 0.75.3.84 NRV/NRVH 6.6 3.5 44.5 65 NRV/NRVH 0.05.9.3 3.4 NRV/NRVH 6 46.7 55 78 4 NRV/NRVH 6 0.05.6 3.9 5.5 NRV/NRVH 9 7 84 9 74 NRV/NRVH 9 0.05 3.46 5.99 8.43 NRV/NRVH 0 30 84 70 NRV/NRVH 0.05 5.34 9.6 3.0 NRV/NRVH 8 4 53 358 54 NRV/NRVH 8 0.05 0.3 7.9 5.3 NRV/NRVH 35 376 445 630 9 NRV/NRVH 35 0.05 8. 3.6 44.4 ) Capacity for NRVH. Correction factors When selecting the evaporator capacity is to be multiplied by a correction factor depending on the liquid temperature t l ahead of the valve/the evaporator. The corrected capacity can then be found from the table. Correction factors for liquid temperature t l t l [ C] -0 0 0 5 0 5 30 35 40 45 50 R3 0.76 0.8 0.88 0.9 0.96.00.05..7.4.33 R90 0.73 0.79 0.86 0.90 0.95.00.06..9.8.38 R600 0.77 0.8 0.88 0.9 0.96.00.05.0.6..9 R600a 0.75 0.8 0.87 0.9 0.95.00.05..7.5.33 6 DKRCC.PD.FE0.A5.0 / 50H979 Danfoss A/S (DCS-IMCGPD/sw), 05-0

Capacity Hot gas capacity in [kw] at pressure drop across valve p NRV NRV/NRVH R Hot gas capacity in [kg/s] Press. drop across valve p Suction vapour capacity kw at evaporating temperature t o [ C] 0.05 0.07 ) 0.4 0.3 ) 30 0 ) +5 R NRV/NRVH 6 -.45.04.97 NRV/NRVH 6-0.00848 0.095 0.0736 NRV/NRVH 0-3.0 4.38 6.36 NRV/NRVH 0-0.086 0.0560 0.0370 NRV/NRVH 4.49 5.30 7.48 0.8 NRV/NRVH 0.065 0.0303 0.04374 0.06354 NRV/NRVH 6 7.88 9.3 3. 9.0 NRV/NRVH 6 0.0460 0.05449 0.0768 0.59 NRV/NRVH 9.0 4. 0.0 9. NRV/NRVH 9 0.07043 0.0835 0.735 0.7048 NRV/NRVH 8.6.9 3.0 45.0 NRV/NRVH 0.0884 0.866 0.835 0.6347 NRV/NRVH 8 36. 4.6 60 87 NRV/NRVH 8 0.8 0.4975 0.3504 0.544 NRV/NRVH 35 63 75 05 53 NRV/NRVH 35 0.3734 0.43896 0.6874 0.89890 R34a R34a NRV/NRVH 6 -.6.63.35 NRV/NRVH 6-0.0073 0.008 0.0485 NRV/NRVH 0 -.48 3.48 5.03 NRV/NRVH 0-0.0566 0.003 0.0383 NRV/NRVH 3.58 4.3 5.95 8.60 NRV/NRVH 0.065 0.0676 0.03763 0.05438 NRV/NRVH 6 6.9 7.43 0.4 5. NRV/NRVH 6 0.03978 0.04699 0.06608 0.09549 NRV/NRVH 9 9.6.3 5.9 3.0 NRV/NRVH 9 0.06077 0.0779 0.0096 0.4588 NRV/NRVH 4.8 7.5 4.6 35.6 NRV/NRVH 0.0939 0.095 0.5603 0.546 NRV/NRVH 8 8.8 34.0 47.8 69 NRV/NRVH 8 0.83 0.537 0.3087 0.43765 NRV/NRVH 35 50 59 84 NRV/NRVH 35 0.3043 0.37853 0.533 0.769 R404A/R507 R404A/R507 NRV/NRVH 6 -.6.78.58 NRV/NRVH 6-0.003 0.049 0.0078 NRV/NRVH 0 -.70 3.8 5.54 NRV/NRVH 0-0.07 0.0306 0.0445 NRV/NRVH 3.90 4.6 6.50 9.46 NRV/NRVH 0.0337 0.03709 0.0530 0.07606 NRV/NRVH 6 6.85 8.0.4 6.6 NRV/NRVH 6 0.05509 0.0654 0.0985 0.3357 NRV/NRVH 9 0.4.3 7.4 5.3 NRV/NRVH 9 0.0847 0.0995 0.4033 0.0407 NRV/NRVH 6. 9. 6.9 39. NRV/NRVH 0.3008 0.5379 0.687 0.3538 NRV/NRVH 8 3.4 37. 5 76 NRV/NRVH 8 0.55 0.9854 0.4098 0.60 NRV/NRVH 35 55 65 9 33 NRV/NRVH 35 0.4438 0.5470 0.7399.07599 ) The hot gas capacities are based on condensing temp. An increase of the hot gas temperature of 0 K will reduce the valve capacity approx. % and vice versa. y Condensor temperature, t c = 30 C. y Subcooling t sub = 5 K. y Evaporating temperature, t e = -0 C. y Hot gas temperature, t h = 60 C ahead of valve. 3 ) Capacity for NRVH. Danfoss A/S (DCS-IMCGPD/sw), 05-0 DKRCC.PD.FE0.A5.0 / 50H979 7

Capacity (continued) Hot gas capacity in [kw] Hot gas capacity in [kg/s] at pressure drop across valve p Press. drop Suction vapour capacity kw at evaporating across temperature t o NRV NRV/NRVH valve [ C] p 0.05 0.07 ) 0.4 0.3 ) 30 0 ) +5 R407A R407A NRV/NRVH 6 -.47.08 3.0 NRV/NRVH 6-0.00949 0.0339 0.0947 NRV/NRVH 0-3.5 4.45 6.47 NRV/NRVH 0-0.0034 0.0869 0.047 NRV/NRVH 4.56 5.39 7.60.0 NRV/NRVH 0.0940 0.03476 0.0490 0.078 NRV/NRVH 6 8.00 9.46 3.3 9.4 NRV/NRVH 6 0.0563 0.0603 0.08607 0.57 NRV/NRVH 9. 4.4 0.3 9.6 NRV/NRVH 9 0.07887 0.0935 0.350 0.93 NRV/NRVH 8.8.3 3.5 45.8 NRV/NRVH 0.89 0.44 0.03 0.9554 NRV/NRVH 8 36.6 43.3 6 88 NRV/NRVH 8 0.366 0.7974 0.39449 0.57370 NRV/NRVH 35 64 76 07 56 NRV/NRVH 35 0.4587 0.4967 0.69334.00833 R407C R407C NRV/NRVH 6 -.5.3 3.0 NRV/NRVH 6-0.00900 0.070 0.0846 NRV/NRVH 0-3.4 4.56 6.64 NRV/NRVH 0-0.0930 0.07 0.03955 NRV/NRVH 4.68 5.53 7.80.3 NRV/NRVH 0.0788 0.0396 0.04648 0.06757 NRV/NRVH 6 8. 9.7 3.6 9.9 NRV/NRVH 6 0.04897 0.05789 0.086 0.866 NRV/NRVH 9.5 4.8 0.9 30.4 NRV/NRVH 9 0.0748 0.08844 0.470 0.89 NRV/NRVH 9.4.9 3.3 47 NRV/NRVH 0.56 0.3668 0.97 0.807 NRV/NRVH 8 37.6 44.5 6 9 NRV/NRVH 8 0.443 0.653 0.3740 0.54387 NRV/NRVH 35 66 78 0 60 NRV/NRVH 35 0.39446 0.46633 0.6575 0.95589 R407F R407F NRV/NRVH 6 -.59.5 3.7 NRV/NRVH 6-0.0097 0.0308 0.0903 NRV/NRVH 0-3.4 4.8 7.0 NRV/NRVH 0-0.0987 0.080 0.04077 NRV/NRVH 4.94 5.84 8.3.9 NRV/NRVH 0.087 0.03394 0.04787 0.06965 NRV/NRVH 6 8.67 0. 4.4.0 NRV/NRVH 6 0.0504 0.0596 0.08407 0.3 NRV/NRVH 9 3. 5.6.0 3. NRV/NRVH 9 0.0770 0.0907 0.844 0.8687 NRV/NRVH 0.4 4. 34. 49.6 NRV/NRVH 0.904 0.4074 0.9850 0.8880 NRV/NRVH 8 39.7 46.9 66 96 NRV/NRVH 8 0.307 0.730 0.38533 0.5606 NRV/NRVH 35 69 8 6 69 NRV/NRVH 35 0.406 0.4806 0.6774 0.9853 R40A R40A NRV/NRVH 6 -.80.54 3.70 NRV/NRVH 6-0.0009 0.045 0.0076 NRV/NRVH 0-3.85 5.44 7.9 NRV/NRVH 0-0.063 0.03053 0.04449 NRV/NRVH 5.57 6.58 9.9 3.5 NRV/NRVH 0.035 0.03695 0.055 0.07600 NRV/NRVH 6 9.77.5 6.3 3.7 NRV/NRVH 6 0.05487 0.06489 0.0959 0.3346 NRV/NRVH 9 4.9 7.6 4.9 36.3 NRV/NRVH 9 0.08383 0.0994 0.3993 0.0390 NRV/NRVH 3.0 7. 38.5 56 NRV/NRVH 0.956 0.53 0.65 0.35 NRV/NRVH 8 44.8 5 74 08 NRV/NRVH 8 0.550 0.974 0.4978 0.67 NRV/NRVH 35 78 93 3 9 NRV/NRVH 35 0.4404 0.573 0.73779.0753 ) The hot gas capacities are based on condensing temp. y Condensor temperature, t c = 30 C. An increase of the hot gas temperature of 0 K will reduce the valve capacity approx. % and vice versa. y Subcooling t sub = 5 K. y Evaporating temperature, t e = -0 C. y Hot gas temperature, t h = 60 C ahead of valve. 3 ) Capacity for NRVH. Note: For capacity calculation of other refrigerants, please contact Danfoss. 8 DKRCC.PD.FE0.A5.0 / 50H979 Danfoss A/S (DCS-IMCGPD/sw), 05-0

Capacity (continued) Hot gas capacity in [kw] Hot gas capacity in [kg/s] at pressure drop across valve p Press. drop Suction vapour capacity kw at evaporating across temperature t o NRV NRV/NRVH valve [ C] p 0.05 0.07 ) 0.4 0.3 ) 30 0 ) +5 R3 R3 NRV/NRVH 6 -.30 3.5 4.73 NRV/NRVH 6-0.00860 0.03 0.0769 NRV/NRVH 0-4.93 6.95 0. NRV/NRVH 0-0.084 0.0600 0.0379 NRV/NRVH 7. 8.4.8 7.3 NRV/NRVH 0.066 0.0347 0.0444 0.06476 NRV/NRVH 6.5 4.7 0.8 30.4 NRV/NRVH 6 0.04673 0.0556 0.0780 0.37 NRV/NRVH 9 9.0.5 3.8 46.4 NRV/NRVH 9 0.0739 0.0844 0.98 0.7374 NRV/NRVH 9.5 34.8 49. 7 NRV/NRVH 0.033 0.3047 0.849 0.685 NRV/NRVH 8 57. 67 95 39 NRV/NRVH 8 0.46 0.537 0.35754 0.53 NRV/NRVH 35 00 9 68 44 NRV/NRVH 35 0.3764 0.4454 0.6840 0.960 R90 R90 NRV/H 6 -.7.43 3.5 NRV/H 6-0.00577 0.0083 0.079 NRV/H 0-3.69 5.0 7.55 NRV/H 0-0.037 0.074 0.057 NRV/H 5.34 6.3 8.88.8 NRV/H 0.0787 0.0 0.0976 0.0437 NRV/H 6 9.37.0 5.6.6 NRV/H 6 0.0339 0.0370 0.056 0.0758 NRV/H 9 4.3 6.9 3.8 34.5 NRV/H 9 0.04795 0.05667 0.07984 0.583 NRV/H. 6. 36.8 53 NRV/H 0.074 0.08759 0.338 0.790 NRV/H 8 4.9 50 7 03 NRV/H 8 0.4385 0.700 0.395 0.34748 NRV/H 35 75 89 5 8 NRV/H 35 0.583 0.988 0.4096 0.6073 R600 R600 NRV/H 6 -.00.40.97 NRV/H 6-0.003 0.00448 0.0063 NRV/H 0 -.5.99 4. NRV/H 0-0.00690 0.00959 0.035 NRV/H 3. 3.67 5. 7.0 NRV/H 0.0000 0.078 0.0639 0.0309 NRV/H 6 5.47 6.45 8.97.6 NRV/H 6 0.0757 0.0069 0.0878 0.04054 NRV/H 9 8.36 9.85 3.7 9.3 NRV/H 9 0.0684 0.036 0.04398 0.0694 NRV/H.9 5.. 9.8 NRV/H 0.0448 0.04885 0.06796 0.09573 NRV/H 8 5.0 9.5 4. 57 NRV/H 8 0.0805 0.09483 0.393 0.8583 NRV/H 35 44. 5 7 0 NRV/H 35 0.45 0.6666 0.387 0.366 R600a R600a NRV/H 6 -.0.54.9 NRV/H 6-0.00390 0.00546 0.00778 NRV/H 0 -.36 3.30 4.70 NRV/H 0-0.00836 0.069 0.0667 NRV/H 3.4 4.03 5.63 8.03 NRV/H 0.0 0.049 0.0998 0.0848 NRV/H 6 6.00 7.07 9.89 4. NRV/H 6 0.07 0.0509 0.03508 0.0500 NRV/H 9 9.6 0.8 5..5 NRV/H 9 0.0350 0.03833 0.05359 0.0764 NRV/H 4. 6.7 3.3 33.3 NRV/H 0.050 0.0593 0.0883 0.80 NRV/H 8 7.4 3.4 45.3 64 NRV/H 8 0.09749 0.498 0.6078 0.95 NRV/H 35 48.3 56 79 3 NRV/H 35 0.734 0.009 0.858 0.4093 ) The hot gas capacities are based on condensing temp. y Condensor temperature, t c = 30 C. An increase of the hot gas temperature of 0 K will reduce the valve capacity approx. % and vice versa. y Subcooling t sub = 5 K. y Evaporating temperature, t e = -0 C. y Hot gas temperature, t h = 60 C ahead of valve. 3 ) Capacity for NRVH. Note: For capacity calculation of other refrigerants, please contact Danfoss. Danfoss A/S (DCS-IMCGPD/sw), 05-0 DKRCC.PD.FE0.A5.0 / 50H979 9

Dimensions and weights NRV 6 9 L S Flare straightway connection - SI Units Size L Spanner flats S Net weight [kg] NRV 6 4 6 55 9 0.07 NRV 0 3 8 0 60 9 0.08 NRV 70 4 0.4 NRV 6 5 8 6 8 8 0.0 NRV 9 3 4 9 95 34 0.34 Flare straightway connection - US Units Size L Spanner flats S Net weight [lbs.] NRV 6 4.7 0.75 0.5 NRV 0 3 8.36 0.75 0.9 NRV.76 0.94 0.30 NRV 6 5 8 3.9.0 0.45 NRV 9 3 4 3.74.34 0.75 0 DKRCC.PD.FE0.A5.0 / 50H979 Danfoss A/S (DCS-IMCGPD/sw), 05-0

Dimensions and weights NRV 6s 9s / NRVH 6s 9s Solder straightway connection - SI Units Size L L ød Net weight [kg] NRV/NRVH 6s 4 6 9 7 8 0.06 NRV/NRVH 6s ) 3 8 0 95 9 8 0.07 NRV/NRVH 0s 3 8 0 09 9 8 0.06 NRV/NRVH 0s ) 09 0 8 0.07 NRV/NRVH s 3 0 0.0 NRV/NRVH s ) 5 8 6 3 0. NRV/NRVH 6s 5 8 6 39 8 0.7 NRV/NRVH 6s ) - 8 39 4 8 0.9 NRV/NRVH 9s - 8 65 4 34 0.8 NRV/NRVH 6s ) 3 4 9 39 4 8 0.9 NRV/NRVH 9s 3 4 9 65 4 34 0.9 NRV/NRVH 9s ) 7 8 65 7 34 0.9 Solder straightway connection - US Units Size L L ød Net weight [lbs] NRV/NRVH 6s 4 3.6 0.8 0.7 0.4 NRV/NRVH 6s ) 3 8 3.74 0.35 0.7 0.6 NRV/NRVH 0s 3 8 4.9 0.35 0.7 0.4 NRV/NRVH 0s ) 4.9 0.39 0.7 0.6 NRV/NRVH s 5.6 0.39 0.87 0. NRV/NRVH s ) 5 8 5.6 0.47 0.87 0.4 NRV/NRVH 6s 5 8 5.47 0.47.0 0.39 NRV/NRVH 6s ) 3 4 5.47 0.55.0 0.43 NRV/NRVH 9s 3 4 6.50 0.55.34 0.64 NRV/NRVH 9s ) 7 8 6.50 0.67.34 0.64 ) Oversize connections. Danfoss A/S (DCS-IMCGPD/sw), 05-0 DKRCC.PD.FE0.A5.0 / 50H979

Dimensions and weights NRV s 35s / NRVH s 35s Solder angleway connection - SI Units Size H H L L ød Net weight [Kg] NRV/NRVH s 7 8 94 48 7 87 37 0.58 NRV/NRVH s ) 8 8 94 48 87 37 0.6 NRV/NRVH 8s 8 8 4 67 0 3 49.33 NRV/NRVH 8s ) 3 8 35 4 67 5 3 49.47 NRV/NRVH 35s 3 8 35 4 67 5 3 49.40 NRV/NRVH 35s ) 5 8 4 4 67 9 3 49.38 Solder angleway connection - US Units Size H H L L ød Net weight [lbs.] NRV/NRVH s 7 8 3.70.89 0.67 3.43.46.8 NRV/NRVH s ) 8 3.70.89 0.87 3.43.46.35 NRV/NRVH 8s 8 5.55.64 0.79 4.84.93.93 NRV/NRVH 8s ) 3 8 5.55.64 0.98 4.84.93 3.6 NRV/NRVH 35s 3 8 5.55.64 0.98 4.84.93 3.08 NRV/NRVH 35s ) 5 8 5.55.64.4 4.84.93 3.06 ) Oversize connections. DKRCC.PD.FE0.A5.0 / 50H979 Danfoss A/S (DCS-IMCGPD/sw), 05-0