DLKF. EBARA Submersible Sewage Pumps Specifications Project: Model: Chk d: Date:

Similar documents
EBARA. Submersible Non-clog Pump Model DLFU Model DVFU Model DDLFU

KEENER GRINDER PUMPS

Submersible A Series Wastewater Pumps AMX, AV and AK Hydraulic Ranges

HOMA Pump, Ansonia Connecticut

K4RH(X) Solids-Handling Pumps

K4RB(X) 4 Submersible, Recessed Impeller (Class 1, Div. 1, Groups C & D Hazardous Location)

4VH and 4VHX. 4" Non-Clog Wastewater Pumps Standard (4VH) and Explosion-Proof (4VHX) Construction

Family Curve. Submersible Grinder Pumps 1¼" and 2" Discharge. Effluent/Grinder Pumps.

SECTION WASTEWATER PUMPING STATION DESCRIPTION

KGP(X) Grinder Pumps HP Grinder Pump, 3 Phase (Class 1, Div. 1, Groups C & D Hazardous Location) Performance Curve.

Family Curve. Submersible Grinder Pumps 1¼" and 3" Discharge. Effluent/Grinder Pumps.

- Sewage and Sludge Pumps

STATION MODEL: KPCG21-24x48 PUMP MODEL: KEEN KPCG21 VOLTAGE: 230 PHASE: 1 TANK DIMENSIONS: 24 DIAMETER X 48 DEEP

Series 4XSHV 18 Frame Driver 76mm Spherical Solids Handling

B. HI Compliance: Design, manufacture, and install pumps in accordance with HI "Hydraulic Institute Standards."

Goulds HSU, HSUL & JCU. Submersible Pumps

CombiChem. Centrifugal pumps according to ISO 5199 and ISO 2858 / EN (DIN 24256)

Reliable Long-Term Solutions For Your Toughest Pump

VSA SEWAGE PUMP. Capacities to 1600 gpm, Heads to 120, Horsepower range 3/4 thru 40, 3 thru 6 discharge, 1750 and 1150 operation.

C. ASME Compliance: Fabricate and label water chiller heat exchangers to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

3020/3120 Series DEMING PUMPS. Frame-mounted and close-coupled Enclosded and semi-enclosed impeller Capacities to 4,000 GPM Heads to 780 feet

MARLOW PUMPS RECIRCULATION

D. NEMA Compliance: Provide electric motors and components which comply with NEMA standards.

MODEL 652A MODEL 654A MODEL 652A MODEL 653A MODEL 651A AURORA. 650 Series SINGLE STAGE SOLIDS HANDLING PUMPS

DS series STERLING PUMPS. Industrial End Suction Pumps ISO/DP

PAPANTONATOS. We supply clean water and remove waste water. P u m p s s e r v ic e & e n g i nee r in g. submersible pumps. s e w a g e p u m p s

Goulds Trash Hog. Self-Priming Solids Handling Pumps

LN series STERLING PUMPS. Horizontal Split Case Pumps. Double Volute. Single Stage.

PUMPS FOR INDUSTRY. The Vertical Pump Specialists CONTENTS: Introduction & User List. Product Overview. Vertical Process Pumps...

Dean Pump High Temperature Chemical Process Inline Pumps

SECTION STEAM CONDENSATE PUMPS

SEWAGE PUMPS WITH CUTTER IMPELLER

380 Series Multi-Stage Centrifugal Pumps

MODEL 664A MODEL 662A MODEL 663A MODEL 661A AURORA. 660 Series SINGLE STAGE SOLIDS HANDLING VORTEX PUMPS

CombiChem Centrifugal pumps. according to ISO 5199 and ISO 2858 / EN (DIN 24256)

380 Series Multi-Stage Centrifugal Pumps

SECTION PLUMBING EQUIPMENT Piping (Plumbing). 2. Division 16 - Electrical Wiring and Connections.

PUMPS FOR INDUSTRY. The Vertical Pump Specialists CONTENTS: Introduction & User List. Product Overview. Vertical Process Pumps...

Title: YALE OFFICE OF FACILITIES PROCEDURE MANUAL Chapter: 01 - Yale Design Standard Division: HVAC Standards

568X, 587X, 588X Series

A. Operation and Maintenance Data: For pumps to include in emergency, operation, and maintenance manuals.

Full-line Product Overview

GSZ/GSD HIGH VOLUME DEWATERING PUMPS

FEATURES. Other Fed-Flush Arrangements

UPZ PUMP POWER FOR TOP PERFORMANCE UNDER

DENVER PUBLIC SCHOOLS DESIGN AND CONSTRUCTION STANDARDS This Standard is for guidance only. SECTION PUMPS

DUPLEX CONDENSATE TANK SYSTEM

Vertical Heavy Duty Pumps

FLANGE-MOUNT CENTRIFUGAL PUMPS

PUMPS FOR INDUSTRY. The Vertical Pump Specialists CONTENTS: Introduction & User List. Product Overview. Vertical Process Pumps...

LHW HIGH HEAD DRAINAGE PUMPS

POULTRY MARKET CATALOG

CORNELL PUMP COMPANY MINE DEWATERING WHEN RELIABILITY MATTERS

.2 Section Waste Management and Disposal..5 Section Motors, Drives and Guards for Mechanical Systems.

Wilo IL Vertical Split-Coupled Inline Pumps

brands you trust. The Next Generation of SH Series Pumps BARNES SH SERIES PUMPS

CPVC Horizontal. Series HV. Centrifugal Pump. Flows to 132 GPM Pressure to 81 Ft. TDH. Model HV-1 1/2DV

MAGNETIC DRIVE PUMPS AMERICA S MOST VERSATILE LINE OF CENTRIFUGAL PUMPS THINK QUALITY...THINK DELIVERY...THINK PRICE

1 1/8 Inch Centrifugal Pump Operation and Maintenance Guide

Submersible and Immersible Pumps

A. ASME Compliance: Fabricate and install hydronic piping in accordance with ASME B31.9 "Building Services Piping.

PUMPS AND CONTROLS. Submittal #1 Pumps. Project Torrance Memorial Medical Center Storm Lift Sation Project #

DNJ SERIES PUMPS END SUCTION CLOSE COUPLED

Goulds Large Capacity, Single Stage, Double Suction Pump

Warranty Details page 2. Pump Description & Technical page 3 Specifications. Transportation, Storage & Installation page 4. Pump Maintenance page 5

Horizontal Split Case Pumps Type U

C. ASSE 1013: Performance Requirements for Reduced Pressure Principle Backflow Preventers.

CAP SERIES SEWAGE AND WASTE WATER PUMPS

Goulds Trash Hog. Self-Priming Solids Handling Pump

Wayne State University WSU Project No Chatsworth Tower Apts. Misc. Bldg. Upgrades DSD Project No

SUBMERSIBLE PUMPS For water with particulate matter 2 pole - 50 Hz 2 ranges : SS 304 & SS 316 L

SERIES 1600 Quality Design Features Assure Long, Trouble-Free Service

Series SR Compact Centrifugal Mag-Drive Pumps. WARRENDER, LTD. Process & OEM Pumps From Stock or Built-to-Spec

Goulds 3600 Between-Bearing, Axially-Split, Multi-Stage Pumps. Goulds Pumps

Patterson/AMT Inline Circulator Pump Refer to pump manual for General Operating and Safety Instructions.

PhiloWilke Partnership Addendum No. 2 A/E Project No April 2016

Owner's Manual. (200 Gallon Lawn Service Skid Sprayer) Technical Specifications. Operation. General Information. Warranty/Parts/Service

DESCRIPTION IMPELLER INSPECTION MAINTENANCE POWER CORD REPLACEMENT IMPELLER REPLACEMENT MECHANICAL SEAL REPLACEMENT IMPELLER INSPECTION /REPLACEMENT

dualarm Vertical In-Line Pumps

N N O V A T I O N E F F I C I E N C Y Q U A L I T Y SMF. Vertical Submersible Pump

EVMSU - Vertical Multistage Pumps. Product Catalog

Patterson/AMT Inline Circulator Pump Refer to pump manual for General Operating and Safety Instructions.

N N O V A T I O N E F F I C I E N C Y Q U A L I T Y

Centrifugal Pumps acc. to EN / ISO 2858 with Shaft Sealing Type NCL

Industrial. Solutions brands you trust. Product Overview

SECTION COOLING TOWERS

our contribution for Sealless Magnetic Coupled, Heavy Duty Side-Channel Pumps environmental protection Type SCM PN40

Goulds 3600 Between-Bearing, Axially-Split, Multistage Pumps

Patterson/AMT Inline Circulator Pump Refer to pump manual for General Operating and Safety Instructions.

p u m p s Technology. Innovation. Commitment. M A C E R A T O R E n h a n c e y o u r l i f e

TECHNICAL. Series 18. Pump Packages

SUBMERSIBLE SOLIDS HANDLING PUMPS Features and Benefits:

15-BER3. parts list as Excel-spreadsheet. Tsurumi Europe GmbH

SECTION PACKAGED COMPRESSOR AND CONDENSER UNITS

Pump Installation and Service Manual SPX50/SPX50H Submersible Explosion-Proof Pumps

KINGS COUNTY JAIL EXPANSION PHASE III COUNTY OF KINGS SECTION

References are in agreement with UMRL dated April 2018 **************************************************************************

Centrifugal Pumps acc. to DIN EN ISO 2858 with Shaft Sealing Type NCL

Unequaled I Unrivaled I Performance

InterSeptor Centrifugal Separators Operating & Maintenance Manual

Transcription:

DLKF A. General: Provide submersible sewage pumps suitable for continuous duty operation underwater without loss of watertight integrity to a depth of 65 feet. Pump system design shall include a guide rail system be such that the pump will be automatically connected to the discharge piping when lowered into place on the discharge connection. The pump shall be easily removable for inspection or service, requiring no bolts, nuts, or other fasteners to be disconnected, or the need for personnel to enter the wet well. The motor and pump shall be designed, manufactured, and assembled by the same manufacturer. B. Manufacturer: EBARA International Corporation C. Pump Characteristics: Pumps shall conform to the following requirements: Number of units Design flow (gpm) Design TDH (ft) Minimum shut off head (ft) RPM 1800 Maximum HP Minimum efficiency at design (%) Minimum power factor at design (%) Voltage/HZ 208/230V, 460V / 60 Phase 3 D. Pump Construction: All major parts of the pumping unit(s) including casing, impeller, suction cover, wear rings, motor frame and discharge elbow shall be manufactured from gray cast iron, ASTM A-48 Class 30. Castings shall have smooth surfaces devoid of blow holes or other casting irregularities. Casing design shall be centerline discharge with a large radius on the cut water to prevent clogging. Units shall be furnished with a discharge elbow and 125 lb. flat face ANSI flange. All exposed bolts and nuts shall be 304 stainless steel. All mating surfaces of major components shall be machined and fitted with NBR O-rings where watertight sealing is required. Machining and fitting shall be such that sealing is accomplished by automatic compression of O-rings in two planes and O-ring contact is made on four surfaces without the requirement of specific torque limits. Internal and external surfaces are prepared to SPPC-VISI-SP-3-63 then coated with a zinc-chromate primer. The external surfaces are then coated with a H.B. Teneme-Tar 46H-413 Polyamide Epoxy - Coal Tar paint. 1. Impellers: a. For units 2 to 5 HP, the impeller shall be radial single or multi-vane, semi-open design. It shall be dynamically balanced and shall be designed for solids handling with a long thrulet without acute turns. The inlet edge of the impeller vanes shall be angled toward the impeller periphery so as to facilitate the release of objects that might otherwise clog the pump. The 2 to 5 HP impeller design shall also include back pump out vanes to reduce the pressure and entry of foreign materials into the mechanical seal area. In addition, a lip seal shall be located behind the impeller hub to further reduce the entry of foreign materials into the seal area. Impellers shall be direct connected to the motor shaft with a slip fit, key driven, and secured with an impeller bolt. The design shall include a replaceable cast iron suction cover. The suction cover shall contain a groove(s) perpendicular to the suction opening to disrupt fibrous solids that may otherwise become lodged between the impeller and suction cover. The suction cover shall be designed such that it may be adjusted to maintain working clearances and hydraulic efficiencies. www.pumpsebara.com 1

DLKF b. For units 7 1 /2 to 30 HP, the impeller shall be a mixed flow multi-vane semi-open design. It shall be dynamically balanced and shall be designed for solids handling with a long thrulet without acute turns. The inlet edge of the impeller vanes shall be angled toward the impeller periphery so as to facilitate the release of objects that might otherwise clog the pump. The 7 1 /2 to 30 HP impeller design shall also include back pump out vanes to reduce the pressure and entry of foreign materials into the mechanical seal area. In addition, a lip seal shall be located behind the impeller hub to further reduce the entry of foreign materials into the seal area. Impellers shall be direct connected to the motor shaft with a slip fit, key driven, and secured with an impeller bolt. The design shall include a replaceable cast iron suction cover. The suction cover shall contain a groove(s) perpendicular to the suction opening to disrupt fibrous solids that may otherwise become lodged between the impeller and suction cover.the suction cover shall be designed such that it may be adjusted to maintain working clearances and hydraulic efficiencies. 2. Mechanical Seals a. For units 2 to 5 HP, double mechanical seals operating in an oil bath shall be provided on all units. The oil filled seal chamber shall be designed to prevent over-filling and include an anti-vortexing vane to insure proper lubrication of both seal faces. Lower face materials shall be silicon carbide, upper faces carbon vs. ceramic, NBR elastomers, and 304SS hardware. Seal system shall not rely on pumping medium for lubrication. b. Units 7 1 /2 to 30 HP shall be designed to include a double mechanical seal in a tandem arrangement. Each seal shall be positively driven and act independently with its own spring system. The upper seal operates in an oil bath, while the lower seal is lubricated by the oil from between the shaft and the seal faces, and in contact with the pumpage. The oil filled seal chamber shall be designed to prevent over-filling and include an anti-vortexing vane to insure proper lubrication of both seal faces. Lower face materials shall be silicon carbide upper faces carbon vs. ceramic, NBR elastomers, and 304SS hardware. Seal system shall not rely on pumping medium for lubrication. E. Motor Construction: The pump motor shall be an air filled induction type with a squirrel cage rotor, shell type design, built to NEMA MG-1, Design B specifications. Stator windings shall be copper, insulated with moisture resistant Class F insulation, rated for 311 F. The stator shall be dipped and baked three times in Class F varnish and heat shrunk fitted into the stator housing. Rotor bars and short circuit rings shall be manufactured of cast aluminum. Motor shaft shall be one piece AISI403 for 2 to 5 HP, AISI420 for 7 1 /2 to 30 HP, rotating on two permanently lubricated ball bearings designed for a minimum B-10 life of 60,000 hours. Motor service factor shall be 1.15 and capable of up to 20 starts per hour. The motor shall be designed for continuous duty pumping at a maximum sump temperature of 104 F. Voltage and frequency tolerances shall be a maximum 10 / 5% respectively. Motor over temperature protection shall be provided by miniature thermal protectors embedded in the windings. Mechanical seal failure protection shall be provided by a mechanical float switch located in a chamber above the seal. This switch shall be comprised of a magnetic float that actuates a dry reed switch encapsulated within the stem. Should the mechanical seal fail, liquid shall be directed into the float chamber, in which the rising liquid activates the switch opening the normally closed circuit. For units 2 to 30 HP the float body and float shall be a polypropylene material with a 316SS stopper. The motor shall be non-overloading over the entire specified range of operation and be able to operate at full load intermittently while unsubmerged without damage to the unit. Power cable jacket shall be manufactured of an oil resistant chloroprene rubber material, designed for submerged applications. Cable shall be watertight to a depth of a least 65'. The cable entry system shall comprise of primary, secondary, and tertiary sealing methods. The primary seal shall be achieved by a cylindrical elastomeric grommet compressed between the motor cover and a 304SS washer. Secondary sealing is accomplished with a compressed O-ring made of NBR material. Compression and subsequent sealing shall preclude specific torque requirements. The system shall also include tertiary sealing to prevent leakage into the motor housing due to capillary action through the insulation if the cable is damaged or cut. The cable wires shall be cut, stripped, re-connected with a copper butt end connector, and embedded in epoxy within the cable gland. This provides a dead end for leakage through the cable insulation into the motor junction area. The cable entry system shall be the same for both the power and control cables. www.pumpsebara.com 2

DLKF F. Guide Rail system: Design shall include two (2) 304SS schedule 40 guide rails sized to mount directly to the quick discharge connector, QDC, at the floor of the wetwell and to a guide rail bracket at the top of the wetwell below the hatch opening, (refer to project drawings). Intermediate guide brackets are recommended for rail lengths over 15 feet. Guide rails are not part of the pump package and shall be supplied by others. The QDC shall be manufactured of cast iron, ASTM A48 Class 30. It shall be designed to adequately support the guide rails, discharge piping, and pumping unit under both static and dynamic loading conditions with support legs that are suitable for anchoring it to the wetwell floor. The face of the inlet QDC flange shall be perpendicular to the floor of the wetwell. The discharge flange of the QDC shall conform to ANSI B16.1 Class 125. The pump design shall include an integral self-aligning sliding bracket. Sealing of the pumping unit to the QDC shall be accomplished by a single, linear, downward motion of the pump. The entire weight of the pump unit shall be guided to and wedged tightly against the inlet flange of the QDC, making metal to metal contact with the pump discharge forming a seal without the use of bolts, gaskets or O-rings. Lifting chain shall be galvanized (stainless steel) suitable for removing and installing the pump unit. www.pumpsebara.com 3

DLKFM Explosion Proof Non-clog A. General: Provide FM explosion proof submersible non clog sewage pumps suitable for continuous duty operation underwater without loss of watertight integrity to a depth of 65 feet. Pump system design shall include a guide rail system be such that the pump will be automatically connected to the discharge piping when lowered into place on the discharge connection. The pump shall be easily removable for inspection or service, requiring no bolts, nuts, or other fasteners to be disconnected, or the need for personnel to enter the wet well. The motor and pump shall be designed, manufactured, and assembled by the same manufacturer. B. Manufacturer: EBARA International Corporation C. Pump Characteristics: Pumps shall conform to the following requirements: Number of units Design flow (gpm) Design TDH (ft) Minimum shut off head (ft) RPM 1800 Maximum HP Minimum efficiency at design (%) Minimum power factor at design (%) Voltage/HZ 208/230V, 460V / 60 Phase 3 D. Pump Construction: All major parts of the pumping unit(s) including casing, impeller, suction cover, wear rings, motor frame and discharge elbow shall be manufactured from gray cast iron, ASTM A-48 Class 30. Castings shall have smooth surfaces devoid of blow holes or other casting irregularities. Casing design shall be centerline discharge with a large radius on the cut water to prevent clogging. Units shall be furnished with a discharge elbow and 125 lb. flat face ANSI flange. All exposed bolts and nuts shall be 304 stainless steel. All mating surfaces of major components shall be machined and fitted with NBR O-rings where watertight sealing is required. Machining and fitting shall be such that sealing is accomplished by automatic compression of O-rings in two planes and O-ring contact is made on four surfaces without the requirement of specific torque limits. Internal and external surfaces are prepared to SPPC-VISI-SP-3-63 then coated with a zinc-chromate primer. The external surfaces are then coated with a H.B. Teneme-Tar 46H-413 Polyamide Epoxy - Coal Tar paint. 1. Impellers: a. For units 2 to 5HP, the impeller shall be single or radial multi-vane, semi-open design. It shall be dynamically balanced and shall be designed for solids handling with a long thrulet without acute turns. The inlet edge of the impeller vanes shall be angled toward the impeller periphery so as to facilitate the release of objects that might otherwise clog the pump. The 2 to 5 HP impeller design shall also include back pump out vanes to reduce the pressure and entry of foreign materials into the mechanical seal area. In addition, a lip seal shall be located behind the impeller hub to further reduce the entry of foreign materials into the seal area. Impellers shall be direct connected to the motor shaft with a slip fit, key driven, and secured with an impeller bolt. The design shall include a replaceable cast iron suction cover. The suction cover shall contain a groove(s) perpendicular to the suction opening to disrupt fibrous solids that may otherwise become lodged between the impeller and suction cover. The suction cover shall be designed such that it may be adjusted to maintain working clearances and hydraulic efficiencies. www.pumpsebara.com 4

DLKFM Explosion Proof Non-clog b. For units 7 1 /2 to 30 HP, the impeller shall be a mixed flow multi-vane semi-open design. It shall be dynamically balanced and shall be designed for solids handling with a long thrulet without acute turns. The inlet edge of the impeller vanes shall be angled toward the impeller periphery so as to facilitate the release of objects that might otherwise clog the pump. The 7 1 /2 to 30 HP impeller design shall also include back pump out vanes to reduce the pressure and entry of foreign materials into the mechanical seal area. In addition, a lip seal shall be located behind the impeller hub to further reduce the entry of foreign materials into the seal area. Impellers shall be direct connected to the motor shaft with a slip fit, key driven, and secured with an impeller bolt. The design shall include a replaceable cast iron suction cover. The suction cover shall contain a groove(s) perpendicular to the suction opening to disrupt fibrous solids that may otherwise become lodged between the impeller and suction cover. The suction cover shall be designed such that it may be adjusted to maintain working clearances and hydraulic efficiencies. 2. Mechanical Seals a. For units 2 to 5 HP, double mechanical seals operating in an oil bath shall be provided on all units. The oil filled seal chamber shall be designed to prevent over-filling and include an anti-vortexing vane to insure proper lubrication of both seal faces. Lower face materials shall be silicon carbide, upper faces carbon vs. ceramic, NBR elastomers, and 304SS hardware. Seal system shall not rely on pumping medium for lubrication. b. Units 7 1 /2 to 30 HP shall be designed to include a double mechanical seal in a tandem arrangement. Each seal shall be positively driven and act independently with its own spring system. The upper seal operates in an oil bath, while the lower seal is lubricated by the oil from between the shaft and the seal faces, and in contact with the pumpage. The oil filled seal chamber shall be designed to prevent over-filling and include an anti-vortexing vane to insure proper lubrication of both seal faces. Lower face materials shall be silicon carbide upper faces carbon vs. ceramic, NBR elastomers, and 304SS hardware. Seal system shall not rely on pumping medium for lubrication. E. Motor Construction: The pump motor shall be FM Explosion Proof, Class 1, Division 1, Groups C, D. The design shall be an air filled induction type with a squirrel cage rotor, shell type design, built to NEMA MG-1, Design B specifications. Stator windings shall be copper, insulated with moisture resistant Class F insulation, rated for 311 F. The stator shall be dipped and baked three times in Class F varnish and heat shrunk fitted into the stator housing. Rotor bars and short circuit rings shall be manufactured of cast aluminum. Motor shaft shall be one piece AISI403 material for 2 to 5 HP, AISI420 for 7 1 /2 to 30 HP material, rotating on two permanently lubricated ball bearings designed for a minimum B-10 life of 60,000 hours. Motor service factor shall be 1.15 and capable of up to 20 starts per hour. The motor shall be designed for continuous duty pumping at a maximum sump temperature of 104 F. Voltage and frequency tolerances shall be a maximum 10 / 5% respectively. Motor over temperature protection shall be provided by miniature thermal protectors embedded in the windings. Mechanical seal failure protection shall be provided by a mechanical float switch located in a chamber above the seal. This switch shall be comprised of a magnetic float that actuates a dry reed switch encapsulated within the stem. Should the mechanical seal fail, liquid shall be directed into the float chamber, in which the rising liquid activates the switch opening the normally closed circuit. For units 2 to 10 HP the float body and float shall be a polypropylene material with a 316SS stopper. Units 15 HP and greater, the float switch components shall be 304SS. The motor shall be non-overloading over the entire specified range of operation and be able to operate at full load intermittently while unsubmerged without damage to the unit. Power cable jacket shall be manufactured of an oil resistant chloroprene rubber material, designed for submerged applications. Cable shall be watertight to a depth of a least 65'. The cable entry system shall comprise of primary, secondary, and tertiary sealing methods. The primary seal shall be achieved by a cylindrical elastomeric grommet compressed between the motor cover and a 304SS washer. Secondary sealing is accomplished with a compressed O-ring made of NBR material. Compression and subsequent sealing shall preclude specific torque requirements. The system shall also include tertiary sealing to prevent leakage into the motor housing due to capillary action through the insulation if the cable is damaged or cut. The cable wires shall be cut, stripped, re-connected with a copper butt end connector, and embedded in epoxy within the cable gland. This provides a dead end for leakage through the cable insulation into the motor junction area. The cable entry system shall be the same for both the power and control cables. www.pumpsebara.com 5

DLKFM Explosion Proof Non-clog F. Guide Rail system: Design shall include two (2) 304SS schedule 40 guide rails sized to mount directly to the quick discharge connector, QDC, at the floor of the wetwell and to a guide rail bracket at the top of the wetwell below the hatch opening, (refer to project drawings). Intermediate guide brackets are recommended for rail lengths over 15 feet. Guide rails are not part of the pump package and shall be supplied by others. The QDC shall be manufactured of cast iron, ASTM A48 Class 30. It shall be designed to adequately support the guide rails, discharge piping, and pumping unit under both static and dynamic loading conditions with support legs that are suitable for anchoring it to the wetwell floor. The face of the inlet QDC flange shall be perpendicular to the floor of the wetwell. The discharge flange of the QDC shall conform to ANSI B16.1 Class 125. The pump design shall include an integral self-aligning sliding bracket. Sealing of the pumping unit to the QDC shall be accomplished by a single, linear, downward motion of the pump. The entire weight of the pump unit shall be guided to and wedged tightly against the inlet flange of the QDC, making metal to metal contact with the pump discharge forming a seal without the use of bolts, gaskets or O-rings. Lifting chain shall be galvanized (stainless steel) suitable for removing and installing the pump unit. www.pumpsebara.com 6