Potential Risk of Commercial Geranium to Infection by Puccinia pelargonii-zonalis

Similar documents
COOPERATIVE EXTENSION SERVICE THE PENNSYLVANIA STATE UNIVERSITY. 400 Markley Street Norristown, Pennsylvania 19401

Rust Diseases of Ornamental Crops. Introduction. Symptoms. Life History

BEDDING PLANTS are immensely popular and

Greenhouse Production 2004 (Biondo) Correlated to: North Carolina Agricultural Education, Horticulture II Standards, 6842 (Grades 7-12)

Introduction to Horticulture, 5th Edition 2009, (Schroeder et al.) Correlated to: North Carolina VoCATS Course Blueprint - Horticulture II

Bedding Plant Production

Sales of Flats. Bedding Plants. Sales of Perennials. Sales of Potted Annuals. Sales of Hanging Baskets. General Trends. Total $571 million, 17%

I've Got Bacterial Blight of Geranium. Now What!

Invasives of Concern Chrysanthemum White Rust. Lin Schmale, SAF Cristi Palmer, IR-4

Biological Control of Pythium Root Rot in Container Flower Production Using Microbial Inoculants

Diagnosing Plant Diseases of Floricultural Crops. is important for several reasons. Bacterial diseases are not controlled with fungicides,

ROTATION CROP EFFECTS ON RHIZOCTONIA DISEASES OF SUGARBEET IN INFESTED FIELDS. Carol E. Windels and Jason R. Brantner

Shenandoah Valley Greenhouse Production Workshop January 11, 2012

The Importance of Soil Fumigation: Ornamental Crops

Welcome to the Iowa Certified Nursery Professional Training program Module 9: Managing Plant Diseases and Insects.

Phytotoxicity and Efficacy of Rhapsody (Bacillus subtilis) for Control of Botrytis cinerea on Lily (Lilium Star Gazer and Show Winner )

Training Workshop on Plant Health

Bold Colours Get The Industry Votes!

ORNAMENTALS NORTHWEST ARCHIVES

Ornamental Industry. The postharvest problems. Value of California s agriculture. Postharvest science 6/19/2013

Nursery Industry of California Best Management Practices Program

COMPARISON OF VARIOUS METHODS FOR THE ISOLATION OF PHYTOPHTHORA CINNAMONI FROM AVOCADO SOILS

PHYTOPHTHORA ROOT AND RUNNER ROT OF CRANBERRY IN WISCONSIN- THE CURRENT SITUATION

Floral Notes. By . In This Issue. A Publication of the UMass Extension Floriculture Program

air flow) will help keep foliage dry. Spray with maneb or mancozeb on a 7-10 day schedule if the disease

Scotts. Scotts-Sierra Crop Protection Company. Truban FUNGICIDE. 25% Emulsifiable Concentrate

'UF Multi-flora Peach' and 'UF Multi-flora Pink Frost' Gerberas - University of Florida Cultivars for Landscapes and Large Pots 1

Research Progress Report Southern Region Small Fruit Consortium

Black Root Rot (Thielaviopsis basicola) in the Greenhouse

Commercial Floriculture Survey. Project Code = 922

High Tunnel Hanging Baskets, 2010 A Partnership grant funded by NESARE Judson Reid, Principal Investigator Cornell Vegetable Program

Downy Mildews of Ornamental Plants

Pests of Ornamentals and Turfgrass

Botrytis Management in Cut Roses. Melissa Muñoz, James E. Faust & Guido Schnabel

Fruit Pests BOTRYTIS (GREY MOLD) Botrytis (Gray Mould) Alberta Farm Fresh Local Food Short Course 2012 Red Deer, AB. Attacks various plant parts

Alert. Coleus: Lower Foliage Dark, Angular Leaf Spots

Effect of Timing of Preharvest Fungicide Applications on Postharvest Botrytis Fruit Rot of Annual Strawberries in Florida

IR-4 Environmental Horticulture Program Pydiflumetofen Crop Safety

Tomato Bacterial canker- Clavibacter michiganensis pv. michiganensis

GUIDE TO EVALUATING THE RISK OF DISEASE IN A GREENHOUSE

Management of Tobacco Diseases Agent Training Dark Tobacco

EFFECT OF IN-FURROW FUNGICIDE APPLICATION METHOD ON CONTROL OF RHIZOCTONIA AND SUGARBEET STAND ESTABLISHMENT. Jason R. Brantner and Jeffrey D.

USDA-ARSARS 6/21/2010. Data from the California Department of Food and Agriculture total $31.7 billion. Fruits and nuts, $10.

Chrysanthemum White Rust. by Jane Trolinger, Ph.D. Syngenta Flowers, Inc.

DISEASES. College of Agricultural Sciences

MORE POINSETTIAS are grown than any

Minnesota FFA Floriculture CDE Problem Solving. Bubble in the most correct answer in the Assessment and Solution section of your scantron.

The Plant Health Propagation Scheme (PHPS) is a voluntary scheme run by The Food and Environment Research Agency (Fera)

2000 RUTGERS Turfgrass Proceedings

Anthracnose of Strawberry. Production Guideline. In This Issue

SPECIMEN LABEL PERSONAL PROTECTIVE EQUIPMENT (PPE) FIRST AID IF IN EYES:

Hosta Diseases. Hosta Diseases Southern Blight. Wisconsin Hosta Society. Hosta Diseases Southern Blight. Hosta Diseases Hosta Virus X

Lakota East Women s Soccer Spring Fundraiser Player Info

Growing Lavender in Colorado

Research Update. Reduce Air Temperatures during Bedding Plant Production with the use of Root-zone Heating

Important Lettuce Diseases and Their Management

QUINTOZENE 75 WP. Fungicide COMMERCIAL GUARANTEE: QUINTOZENE 75% REGISTRATION NO PEST CONTROL PRODUCTS ACT READ LABEL BEFORE USING

Indiana Horticulture Congress. Starting a Greenhouse Business

Cultivate 2016 Tips, Tricks and Production Hints for Fall Pansy Production

VoCATS Course Blueprint Agricultural Education

2017 Horticultural Show. Welcome Letter Class List Entry Form

Master Gardener 2/2/2014. Plant Disease Diagnosis. Basic Plant Pathology and Diseases of Ornamentals

Sudden Oak Death. SOD History in California. Spread and Infection. Sudden Oak Death (SOD): Biology and Current Situation

2016 Horticultural Show Package. Welcome Letter Class List Entry Form Drop off access pass and map

Hawaii Floriculture and Nursery Products Annual Summary

Lighting Solutions 2/7/2017. The production environment and culture impacts crop quality and timing February

LEVELS OF SEED AND SOIL BORNE

BIG & Whopper The Ultimate Color Show

Peony: Tobacco Rattle Virus

La Paloma Greenhouse Spring Catalog 2019

A Pathway Mitigation Partnership between APHIS and the Geranium Industry

IR-4 Ornamental Horticulture Program Cyprodinil and Fludioxonil Crop Safety and Efficacy

Growing Potted Chrysanthemums

Highlights from Our Trial Garden Tour

New Varieties floranova. creative plant breeding

IR-4 Ornamental Horticulture Program Cyflufenamid Crop Safety

The Pelargonium collection. Top Sellers and Unique Varieties. Pelargonium zonale Tango. Pelargonium zonale Compact Line and Classic

BEAN ROOT ROT EVALUATION PROTOCOLS

Recommended Best Management Practices (BMP) for the Prevention of P. ramorum Introduction or Establishment in Nursery Operations

Best New Annuals for 2008

Scorpio Ornamental Fungicide label approved 11 April 2014 Page 1 of 6

Pardancanda norrisii Alyssa Schell Hort 5051

Holly Thornton, Homeowner IPM Specialist

Introduction. Institute of Food and Agricultural Sciences North Florida Research and Education Center Suwannee Valley

Sunfinity Sunflower Culture Guide

THE POSSIBILITY OF CONTROLLING SCLEROTIUM ROLFSII ON SOYBEAN (GLYCINE MAX) USING TRICHODERMA AND TEBUCONAZOLE*) OKKY S.

Seed rots and Seedling diseases and what to look for in 2013?

Appendix 2. Methodology for production of Pochonia chlamydosporia and Pasteuria penetrans (Dudutech K Ltd.)

catharanthus Soiree Kawaii White Peppermint SOIREE PRODUCT & CULTURE GUIDE

The Cost of Adopting IPM Treatments for Pest and Disease Control by The California Bedding and Color Container Plant Industry

Cool Wave Pansies Production Handbook

PROPAGATION AND RETESTING OF WALNUT ROOTSTOCK GENOTYPES PUTATIVELY RESISTANT TO PESTS AND DISEASES

Diseases of Pansies and Their Control

Producing Salvia A COMMERCIAL GROWERS GUIDE

25-JUN-2003 GROUP 14 FUNGICIDE QUINTOZENE 75 WP WETTABLE POWDER - SOIL FUNGICIDE COMMERCIAL GUARANTEE: QUINTOZENE...75%

FLORICULTURE DEPARTMENT Judging System: American

Spring Barley Seed Treatment Trial, Hettinger County, North Dakota, 2005

Grower Summary SF 99. Sustainable control of crown rot (Phytophthora cactorum) Final Agriculture and Horticulture Development Board

Make New Plants and Keep the Old

IN CASE OF EMERGENCY DUE TO A MAJOR SPILL, FIRE OR POISONING INVOLVING THIS PRODUCT CALL DAY OR NIGHT,

Transcription:

2007 Plant Management Network. Accepted for publication 16 July 2007. Published. Potential Risk of Commercial Geranium to Infection by Puccinia pelargonii-zonalis J. W. Buck, Department of Plant Pathology, University of Georgia, Griffin 30223 Corresponding author: J. W. Buck. jwbuck@uga.edu Buck, J. W. 2007. Potential risk of commercial geranium to infection by Puccinia pelargonii-zonalis. Online. Plant Health Progress doi:10.1094/php-2007-1031-02-rs. Abstract Outbreaks of rust caused by the fungus Puccinia pelargonii-zonalis on geraniums can result in large losses due to the plants reduced aesthetic value and eradication efforts. To assess the potential risk of a rust outbreak in geranium production facilities, 77 commercial varieties of geranium were inoculated with a mixture of two isolates of P. pelargonii-zonalis. All but one variety (98.7%) developed at least one sporulating lesion and 72.7% developed rust lesions on more than 20% of the leaves. Six varieties had lesions on fewer than 10% of the leaves and one variety did not develop visible lesions. These data indicate that the potential for geranium rust to spread throughout commercial greenhouses is very high if an accidental introduction should occur. While fungicides are available to manage the disease, including products with curative properties, minimizing risk by using disease-free cuttings, maintaining clean stock plants, and avoiding leaf wetness is essential to limit losses to geranium rust. Introduction Floriculture commodities include bedding/garden plants, cut cultivated greens, cut flowers, flowering potted plants, and foliage plants. In 2005, the production of floriculture crops in the US was valued at $5.36 billion wholesale with California and Florida accounting for 37% of the total (9). A wide variety of crops are produced including Begonia, Calendula (pot-marigold), Dendranthema (chrysanthemum), Gerbera (daisy), Gladiolus, Hosta, Impatiens, Iris, Pelargonium (geranium), Petunia, Viola (pansy), and many others. Geranium is the most valuable bedding plant in the US valued at $162 million in 2005 (9). Geranium production as a bedding/garden plant can either be from seed or vegetative cuttings and plants are shipped as flats, pots, or hanging baskets. Greenhouse production of floriculture crops requires an integrated management plan to reduce losses due to plant diseases that includes cultural practices (e.g., sanitation, water management) and judicious use of fungicides (1). Specific disease-resistant varieties are not widely available for many floriculture crops which are typically only bred for horticultural characteristics such as plant habit or flower color. Many diseases including gray mold (Botrytis cinerea) and root rots (Pythium spp., Phytophthora spp., Rhizoctonia spp.) are widespread problems on many floriculture hosts. Other diseases such as rusts, have narrow host ranges and are not a constant threat to production but can cause substantial losses should facilities become infested. Certain rust diseases such as gladiolus rust (Uromyces transversalis), chrysanthemum white rust (Puccinia horiana), and geranium rust (Puccinia pelargonii-zonalis) are quarantine-significant pests and infestation can result in the implementation of federal and/or state quarantine measures (11). Geranium rust is caused by P. pelargonii-zonalis Doidge and the fungus completes its entire life cycle on geranium (Pelargonium hortorum L. H. Bailey) (2). Fungicides are available to manage the disease (4,5) but infected plants are not marketable. The pathogen was introduced into Europe from South Africa in the 1960s and by the early 1970s it had been introduced into greenhouses throughout the US (6,10). Attempts to eliminate the rust through sanitation and with quarantine restrictions were unsuccessful and led to the

lifting of most quarantines by the 1980s (8). Restrictions on state-to-state movement of geraniums still exist. For example, Ohio will not accept geraniums from California that are not certified pest-free from P. pelargonii-zonalis (7). Geranium rust can be found on landscape plantings of geranium in California but is not endemic to Ohio. Occasional outbreaks of geranium rust occur resulting in substantial financial losses to producers (3). Variable susceptibility of thirteen varieties of geranium to P. pelargonii-zonalis was observed by Harwood and Raabe in the 1970s (2). This research was conducted to assess the relative risk of modern commercial geranium varieties (zonal or tetraploid, clonal geranium and diploid seed geranium) to infection by P. pelargoniizonalis and to better assess the potential consequences of contamination of a production facility by the fungus. Plant Inoculations and Rating of Disease Two isolates of P. pelargonii-zonalis obtained from infected stock in Georgia were maintained on Pelargonium hortorum cv. Elite White grown from seed in a greenhouse. For plant inoculations, urediniospores of each rust isolate were collected by vacuum from actively sporulating lesions, combined and suspended in 0.001% Tween 20 (J. T. Baker, Phillipsburg, NJ), and filtered through sterile cheesecloth to remove debris. Spores were then diluted to 1 10 5 spores/ml in 0.001% Tween 20. Plants were watered immediately prior to inoculation, sprayed with the urediniospore suspension until run-off, bagged to maintain high relative humidity, and stored in the dark at room temperature (4,5). Plastic bags were removed after 24 h and geraniums were maintained in a greenhouse. Lesions were typically observed in 10 to 14 days. Thirty-one varieties of vegetatively-propagated geranium (Table 1) in 10.2 10.2 cm containers were obtained from Oglevee Ltd. (McDonough, GA) and maintained in a rust-free greenhouse for 6 weeks to minimize the effects of any potential pesticide applied by the producer. Plants were transplanted into Metro-Mix 360 (Sun Gro Horticulture, Bellevue, WA) in 3.78 liter containers one week prior to the experiment. Seed from 46 varieties (Goldsmith Seeds, Gilroy, CA) (Table 2) were sown in 72-cell plug trays containing Metro-Mix 360. Seedlings were irrigated as needed and all plants were fertilized weekly with 100 ppm N (Peters Geranium Special, The Scotts Company, Marysville, OH). Fivemonth old plants transplanted into Metro-Mix 360 in 3.78 liter containers were used in the experiment. Seedling and vegetative geraniums were inoculated with P. pelargonii-zonalis in separate experiments. Plant size was similar in the two trials with an average of 46.5 leaves (vegetative varieties) and 42.8 leaves (seed varieties). For each trial, eighteen 11.4-liter pots containing three Elite White geraniums with sporulating lesions of P. pelargonii-zonalis (approximately 120 to 140 infected leaves per pot) were dispersed among the test varieties. Three single plant replicates of each variety were used and non-infected Elite White plants were included in each trial as a control. Trials were conducted in a 3.6 7.9 m air-conditioned greenhouse with day/night temperature settings of 17 and 21 C. Plants were subjected to overhead misting for 3 h (10 sec every 15 min) each morning to facilitate further infection by the fungus. After three weeks all plants were scored for total number of leaves, number of infected leaves, and leaves with greater than 10 lesions (measure of severity). Data were converted to percent infection and analyzed by ANOVA at P = 0.05.

Table 1. Infection of vegetatively-propagated geranium varieties by P. pelargoniizonalis. Variety % infected leaves z seed-propagated Elite White included for comparison. % leaves > 10 lesions Stardom Pink and White 56.0 22.7 Maestro Red 46.9 23.3 Patriot Bright Red 46.8 13.4 Patriot Bright Violet 38.4 5.9 Patriot Salmon 37.1 6.1 PAC Veronica 36.9 13.5 PAC Melody 36.9 10.5 Elite White z 36.0 7.3 Patriot Cranberry Red 33.6 0.7 Wilhelm Langguth 31.9 2.1 PAC Pink X2 30.5 5.3 Stardom Salmon (Lucille) 29.5 2.1 PAC Melody Blue 28.7 3.4 PAC Shocking Violet 26.2 4.1 PAC Patriot White 21.7 0.0 Catalina 21.5 1.1 Candy Bright Red (Fireball) 19.0 0.7 PAC Candy Lavender 17.3 3.5 PAC Evening Glow 15.0 1.2 Candy White (White Truffles) 14.4 0.0 PAC Kim 14.4 1.3 PAC Victor 13.5 2.8 Sincerely Yours 12.6 0.0 Maestro Salmon 12.4 0.0 PAC Sassy Dark Red 12.3 0.5 Stardom Deep Lavender (Natalie) 10.0 0.0 Stardom Red 8.6 0.0 Candy Rose Splash 6.6 0.0 Patriot Bright Pink 4.4 0.0 Candy White Splash (Raspberry) Ice 3.0 0.0 Patriot Cherry Rose 0.9 0.0 PAC Fox 0.0 0.0 LSD 15.7 7.8 P-value <0.0001 <0.0001

Table 2. Infection of seed-propagated geranium varieties by P. pelargoniizonalis. Variety (continued) % infected leaves % leaves > 10 lesions Elite Scarlet 74.9 32.8 Maverick Salmon 71.0 44.2 Maverick Star 68.2 33.6 Maverick Red 64.0 37.4 Maverick Scarlet 63.9 31.8 Maverick Pink 62.2 38.8 Elite White 61.4 29.1 Elite Salmon 60.0 7.5 Orbit Scarlet Eye 59.9 33.5 Orbit Red 58.0 7.5 Maverick Quicksilver 57.5 19.5 Orbit White 57.5 22.7 Orbit Coral 57.5 20.0 Multibloom Bright Rose 56.0 25.8 Maverick White 53.9 18.1 Bull's Eye Salmon 53.6 14.6 Maverick Violet 53.2 23.0 Orbit Cardinal 46.5 28.3 Multibloom Red 45.4 19.7 Multibloom White 44.7 28.3 Orbit Violet 44.6 8.4 Orbit Pink 44.6 5.8 OrbitDeep Salmon 43.9 13.0 Bull's Eye Light Pink 43.4 6.5 Multibloom Pink 42.7 20.9 Bull's Eye Cherry 38.6 18.9 Orbit Salmon 38.5 5.5 Orbit Orchid 38.2 11.2 Maverick Coral 36.8 16.3 Maverick Light Salmon 35.8 8.2 Multibloom Capri 34.8 18.0 Multibloom Light Salmon 31.8 17.6 Multibloom Salmon 29.0 11.9 Orbit Cherry 26.2 11.5 Maverick Lavender 25.5 4.4 Orbit Scarlet 25.1 4.2 Bull's Eye Scarlet 24.4 0.0 Orbit Appleblossom 23.7 3.7

Table 2. (continued). Variety % infected leaves % leaves > 10 lesions Orbit Light Salmon 21.9 1.1 Elite Cherry 21.6 7.6 Elite Pink 21.4 5.6 Orbit Rose 18.2 0.0 Elite Red 14.5 5.9 Orbit Hot Pink 12.2 0.0 Multibloom Scarlet 12.2 0.0 Orbit Glow 4.6 0.7 LSD 15.6 13.2 P-value <0.0001 <0.0001 Disease Development The vast majority (76 out of 77) of the geranium varieties supported lesion formation by a mixture of two isolates of P. pelargonii-zonalis (Tables 1 and 2). A total of 48.4% of the vegetative geraniums had lesions on > 20% of the total leaves. Five varieties had more than 10% of the leaves with 10 or more lesions per leaf (Table 1). A total of 89.1% of the seed geraniums had lesions on > 20% of the total leaves and 58.7% of the varieties had more than 10% of the leaves with 10 or more lesions per leaf (Table 2). Five vegetative and one seed geranium had less than 10% infected leaves. One vegetative variety (PAC Fox) did not become infected. Disease was more severe on the seed-propagated geranium with 57.8% of the varieties with more than ten lesions on > 10% of the leaves compared to 16.1% of the vegetative varieties. Conclusion The potential risk of widespread contamination from an accidental introduction of P. pelargonii-zonalis within a commercial operation is large. Lesions developed on the majority of the commercial varieties propagated by two major US geranium producers in 2004-2005. The geraniums tested in the present study represented approximately 72% and 88% of the total available in the 2005 or 2004-2005 catalogs of Oglevee Ltd. and Goldsmith Seeds, respectively. The potential for contamination within a greenhouse is very high even with the presence of few sporulating lesions (Fig. 1). Urediniosprore production of a related rust, Puccinia hemerocallidis on daylily, can range from 1,000 to 2,000 urediniospores per lesion in a 24-h period (Buck, unpublished). Urediniospores can be easily spread on workers, by watering, or by air movement from infected plants to non-contaminated stock. Compounding this is the time frame between infestation/infection to the development of discernable symptoms on the host. Yellow spots at the infection points were often not observed until 7 to 9 days post-infection and this varied with variety (Fig. 2). Until breeding programs for floriculture crops incorporate disease resistance as a desirable phenotype in variety selections disease problems will continue in commercial operations. The best defense against geranium rust continues to be avoidance of the pathogen by utilizing disease-free cuttings, minimizing leaf wetness, and maintaining clean stock.

Fig. 1. Sporulating lesions of P. pelargoniizonalis on the abaxial surface of a leaf. Note the formation of a whitish ring (arrow) around the initial central infection point that will form additional lesions as the disease progresses. Fig. 2. Yellow lesions (YL) and sporulating lesions (SL) of P. pelargonii-zonalis on geranium. Acknowledgments Thanks to J. Youmans for assistance with the trials and Oglevee Ltd. and Goldsmith Seeds for providing plant materials. Literature Cited 1. Daughtrey, M. L., and Benson, D. M. 2005. Principles of plant health management for ornamental plants. Annu. Rev. Phytopathol. 43:141-169. 2. Harwood, C. A., and Raabe, R. D. 1979. The disease cycle and control of geranium rust. Phytopathology 69:923-927. 3. Jeffers, S. N. 1998. Geranium rust: A potentially serious threat to the zonal geranium industry. Greenhouse Product News 8:20-23. 4. Mueller, D. S., Jeffers, S. N., and Buck, J. W. 2004. Effect of timing of fungicide applications on development of rusts on daylily, geranium, and sunflower. Plant Dis. 88:657-661. 5. Mueller, D. S., Martinez-Espinoza, A. D., and Buck, J. W. 2004. Evaluation of fungicides for management of geranium rust, 2003. Fung. Nemat. Tests 59:OT034. 6. Nichols, L. P., and Forer, L. B. 1972. Geranium rust discovered in Pennsylvania. Plant Dis. Rep. 56:759. 7. Ohio Department of Agriculture Division of Plant Industry. 2005. Ohio: Summary of plant protection regulations. Online. Div. of Plant Indust., Ohio Dept. of Agric., Reynoldsburg, OH. Hosted by National Plant Board. 8. Stephens, C. T. 1981. Geranium rust. Ext. bull. E-1493, Univ. of Missouri Coop. Ext., Columbia, MO. 9. United States Department of Agriculture, National Agricultural Statistics Service (USDA-NASS). 2006. Floriculture Crops 2005 summary. USDA-NASS, Washington, DC. 10. Wehlburg, C. 1970. Pelargonium rust (Puccinia pelargonii-zonalis) in Florida. Plant Dis. Rep. 54:827-828. 11. Wise, K. A., Mueller, D. S., and Buck, J. W. 2004. Quarantines and ornamental rusts. APSnet Features, February 2004. American Phytopathological Society, St. Paul, MN.