SCM. Micro. Streaming Current Monitor. Analyzer. Sensor/Sampler with light shield removed. The Analyzer. Instrument Overview

Similar documents
for Drinking Water Systems

WASTEWATER Online UV%Transmission Analyzer

MOVING FILTER AIR MONITOR ALPHA, BETA/GAMMA PARTICULATES

MOVING FILTER AIR MONITOR ALPHA, BETA/GAMMA

ROYCE SUSPENDED SOLIDS SYSTEM MODEL 7011A AND SENSORS MODELS 72A, 72P, 73B, 74A, 75A & 76A

Improve Performance and Reduce Maintenance Costs. Model Q45D. Dissolved Oxygen Monitor...

AIR or STACK MONITOR NOBLE GAS, GROSS BETA-GAMMA PARTICULATE, & IODINE. Optional Alpha, Tritium, Carbon-14

PRODUCT LINE. Highest Quality, Best Service

Introduction Portable Meters Transmitter Probes RELATIVE HUMIDITY

Ronan Model X96S Series Density System

OWNERS MANUAL. HF Oil Content Monitor (OCM)

Omniguard 4: Features

ß-Aerosolmonitor FHT 59 C

Ronan Model X96S Series Weighing System

Mark 25 Ultrapure Water Conductivity Analyzer

Model Q45P/R. ph/orp Monitor...

AS950 PORTABLE SAMPLERS

Wallace & Tiernan Liquid Feed System LVN-2000 Liquid V-Notch

OPERATIONS MANUAL. Streaming Current Monitor With DuraTrac Remote Sensor SCM 2000 XRW

SECTION Free/Available Chlorine Analysis System

AquaLynx 200 ADX. Monitoring and Control System. Background. Operation

Series 5000 Hydrazine Analyzer Model 60002

XLH210: controller for gas leak detectors

Advanced Autoclave Controller with Recording + 4 Channel Mapping + Pressure Indication with PC Software & Printer Module

UniGas Portable, Flue Gas Analysis Advanced Combustion Flue Gas Analyser

OVEN INDUSTRIES, INC.

Inductive. Range. S410/IND Electrodeless Conductivity Sensors

TYPE CM-2201 NELSON SINGLE POINT CIRCUIT MANAGEMENT SYSTEM

Model Q45P/R. ph/orp Monitor...

wireless. web-based. worthy of the name RACO.

Process Gas Chromatograph

AS950 REFRIGERATED SAMPLERS

Date SECTION MEASUREMENT AND CONTROL INSTRUMENTATION Project Name Page 1

Air Resource Specialists, Inc.

IMR Environmental Equipment, Inc Central Ave. St. Petersburg, FL Phone:

Series 3300 TELEDYNE ANALYTICAL INSTRUMENTS. The 3300 series of low cost, microprocessorbased

Use this Specification Template to develop a specification to be used for requesting a quote or defining a job work description.

HRX Technical Manual. Version 1.2

CO 2. Incubators. Incubator, the first microprocessor-based system, and the first menu-driven control system, but we offer the

PORTABLE ISOTOPE IDENTIFIER Search Tool / Sample Counting System

AS950 ALL-WEATHER REFRIGERATED SAMPLERS

Table of Contents 1. OVERVIEW SYSTEM LAYOUT SPECIFICATIONS FUNCTION... 11

MYRIAD TRIPLEX PUMP CONTROLLER INSTRUCTION MANUAL

OPERATING MANUAL. EchoTherm PROGRAMMABLE DIGITAL CHILLING INCUBATOR MODELS IN35, IN45 and IN55-12VDC. DOCUMENT NUMBER IN35-03 Revised 15 May 2015

DIESEL Engine Fire Pump Controllers Features

R.I.S. (Remote Intelligent Sensor)

Model DT109D Opacity Measurement System

The Intelligent Choice for Rapid, Accurate Microwave Moisture/Solids Analysis. Innovators in Microwave Technology. Chemicals & Coatings.

VM-3000 Mercury Vapor Monitor

HIGH CAPACITY PRODUCT LINE

CLARITY II TURBIDIMETER

LIQUIDATOR Electronic Ionization System

Transfer Switch Features

LAUNDRY MONITORING SYSTEM Model # LIM-64S

A New Standard of Excellence

Hydrazine Analyzer Series 2171 Specifications

Power Flame Incorporated

Automatic Isokinetic Sampler ST5

Transfer Switch Features

COBRIX3 multibev. Online Beverage Analyzer. ::: Unique Density & Concentration Meters

MICRO 200 BW TURBIDIMETER RANGE OPTION NTU

Table of Contents SECTION PAGE

PRESENTATION OVERVIEW OF THE DIFFERENT MODELS MONITORS

High Pressure Conductivity Monitor

OPERATING MANUAL MOLECULAR DIMENSIONS, INC. DIGITAL CHILLING INCUBATOR MODELS MD5-600, MD5-602, AND MD5-604

900MAX PORTABLE SAMPLERS

OPERATING MANUAL MOLECULAR DIMENSIONS, INC. PROGRAMMABLE DIGITAL CHILLING INCUBATOR MODELS MD5-601 AND MD5-603

Shop. Item Information. Interface I-100 For V-100/V-7x0. Send item information. Show item in shop. Add item to cart.

Advanced Test Equipment Rentals ATEC (2832)

Process Gas Chromatograph

MICROCAPSTAR End-Tidal CO 2 Analyzer Instruction Manual

PHOENIX L300i New Standards in Helium Leak Testing The next Generation

QUANTURA DISHWASH DOSING SYSTEMS. revolutionary dispensing solutions

HIGH CAPACITY PRODUCT LINE

FDF Foam Pump Controllers Features

Free Chlorine Measuring System

Controlled Environment Equipment Solutions for the Lab

931D Style B Process Gas Chromatograph

AnaLASER II Detector. Protection Systems. A UTC Fire & Security Company. High-Sensitivity Smoke Detector (HSSD ) FEATURES DESCRIPTION

Mercury Vapor Monitor VM-3000

Corporate Profile. needs and product demands. CON 08X /03 Rev 0

Manual v1 Page 1 of 19. Manual. Laboratory autoclave

Multiview Monitor / Controller

Steam and Water Analysers

E340 BOILER CONTROL INSTALLATION MANUAL

10A Micro-Ohmmeter Model 6250

S304 and S305 Dust Emission Monitors. User Manual. Distributor

Figure 1 DirectLine DL423 Sensor. Description, continued

Product Specifications

VM-3000 Mercury Vapor Monitor

OPTISENS TUR 2000 Technical Datasheet

Liquid Helium Level Instruments

Easy Dose Chemical Injection and Dispensing System DEMA Engineering Company

Advance Optima Module Magnos 17

Nov 08 PRODUCT SPECIFICATION SHEET

EasyLog Data Logger Series

Models 4623, 4628 & 5999/980 USP<645> Conductivity Analyzers

DGC-500 DIGITAL GENSET CONTROLLER

SAPCON SMART-SSI. Continuous Speed Indicator. Users Manual. . Introduction. . General Description. . Principle of Operation. .

Pressure measuring instruments

Transcription:

Micro SCM Streaming Current Monitor A Watts Water Technologies Company Instrument Overview The instrument consists of the Analyzer and the SCM sensor. Analyzer The Analyzer The monitor has a built in graphic recorder, which displays SCU (Streaming Current Unit) readings for the previous eight hour or 24 hour period. Calibration and set point values are stored in non-volatile memory so no loss is experienced in case of a power outage. The entire process is menu driven and intuitive. Using the optional printer and RS-232 output the can provide printouts showing date, time, alarm settings and current reading. Sensor/Sampler with light shield removed

SCM Detailed Sensor Description The works on the principle of generating a current by forcing a flow of charged particles between two electrodes. Figure 5. Shows a diagram of the Streaming Current Sensor. A continuous sample is directed into an annulus. Inside a displacement piston, or probe, oscillates at a fixed frequency. The oscillating movement of the piston causes the liquid sample to flow along the inner wall of the cell. Suspended particles are adsorbed onto the walls under the action of Van der Waal s and electrostatic forces. As the sample is moved rapidly back and forth, mobile counter ions, surrounding the charged particles, or colloids, are sheared near the surface of the particle and moved past the electrodes. A potential difference is induced between the two electrodes at the top and base of the cell. The resultant potential developed, proportional to charge is electronically processed to give a reading of the streaming current in micro-amps. Sample The streaming current detector has been calibrated to give a negative reading if the particles in suspension are negatively charged, and similarly a positive reading for a positively charged system. The greater the magnitude of the current, the higher the charge of the system being measured and consequently the greater the mutual repulsion between the particles in the suspension. This fact is fundamental to the use of the instrument, as it allows the measurement on line of the ionic charge of a water system, and from the value obtained, decisions can be made to optimize the dosage of coagulants used for water clarification. Cell Reciprocating Piston Probe Electrodes Signal Electronically Processed Typical Setup Page 2

3.3 Sensor Mounting & Plumbing Locate the sensor as close to the dosing point as possible, but far enough away to ensure adequate mixing. While a protected site is desirable, the sensor is rugged enough to withstand most outdoor conditions. The sample chamber is designed to be surface mounted using #10 bolts. The Sensor Electronics housing does not get mounted. The Probe is inserted through the hole in the top of the Sample Chamber and rests on top. There are 4 rubber Grommets that the Sensor Electronics rest on. Overflow holes in the back of the Sample chamber prevent water damage to the electronics if the drains become clogged. Note: Sensor requires a minimum of 6 and maximum of 10 liters per minute constant flow. The Light Shield is used to prevent algae growth inside the sample chamber 3/4 hose barb NOTE: Drain must flow freely (open drain). Backpressure on the drain can result in inadequate flow through the sample chamber. 3/4 hose barb 3/4 hose barb NOTE: The hose barbs may be removed for direct PVC pipe connections. Page 3

Analyzer Mounting Diagram For ease of calibration, it is recommended that the analyzer be located in close proximity to the sensor. The standard cable length between the sensor and analyzer is 25 ft. If necessary, the Analyzer can be located up to 250 ft from the sensor. The analyzer should be installed in a location that avoids direct water contact. Avoiding direct glare from windows and lights will make the reading the display easier. Be sure to mount the Analyzer at a comfortable height so that all adjustments can be accomplished with ease. TO SENSOR MICRO 200 SCM ANALYZER PC BOARD Page 4

SPECIFICATION Ranges: ± 10 SCU (Streaming Current Units) Method: Ion Charge Analysis through induced electrical potential Accuracy: ± 1% of full scale Repeatability: 1% Resolution: 0.01 ICu (SCU) Display: Graphical trending and LCD numeric Clock Graphics: Date and Time Response Time: 1 second Averaging Time (Electronic): 1, 15, 30 & 60 seconds, sliding average Microprocessor: Motorola MC68HC11 Keyboard data entry system: 8 interacting membrane switches with tactile feedback Built in diagnostics: Yes Analog Output, Isolated: 4-20 ma, 0-10 VDC Computer Interface Serial Port: Option - RS-232 & RS-485 (optional) Alarms: 1 System alarm, 2 User settable Hi/Lo/Off), 1 Flow Alarm (requires optional hardware) Alarm Contact rating: Max. 250 VAC @ 5.0 A Operating Temperature: 32-122 F (0-50 C) Flow rate: Up to 10 G/min Positive System Pressure: 60 psi maximum Wetted surfaces: HDPE, PTFE, Stainless Steel, Neoprene, ABS Standard Cable Length: 25 feet (7.62 meters) Maximum Sensor to analyzer distance: 250 feet (914.41 meters) - 3000 ft with optional amplifier. Dimensions Analyzer: 13 x 11½ x 8 (330 x 290 x 200 mm) SCM Sensor & Sample Chamber: 16 x 6.25 x 3.5 (406 x 159 x 89 mm) Analyzer Case: IP 65 Sensor Case: NEMA 4X Supply Voltage: 120/240 VAC + 10% 50/60 Hz Power Consumption: 40 VA Shipping Weight: Approximately 15 lbs. (6.8 kg.) Warranty: One year from date of shipment Written Specification (Sample) The instrument shall be a Streaming Current monitor that continuously monitors the particle charge in a sample stream and report the results in Ion Charge Units (ICu). In addition to displaying ICu the monitor shall have the ability to display graphical trending of readings over a user selectable time period of eight or 24 hours. Streaming current monitor shall have a flow-through sample chamber which enables heavy solids and light particulates to be removed before entering the sensor cell and probe. Unit must be able to handle continuous flows up to 10 GPM. The Controller shall have two independent alarms, an isolated, 4 20 ma output, optional addressable RS 232 port, and a full scale range ± 10 ICu. The outputs shall be adjustable to be bracketed to any portion of the range to within 0.01 ICu. All operations including calibration and alarm setpoints shall be accomplished using menu driven software. All operational data shall be stored in non volatile RAM, external battery backup will be required. The alarm set points and status of each alarm shall be continuously visible on the display. The controller shall include optional PI control software to allow it to directly control a dosing pump to a pre-set ICu value. The sensor will send a frequency-based signal to the analyzer to eliminate interference and allow the analyzer to be mounted as far as 250 feet away from the sensor. To ensure the integrity of the output and compensate for any standard wear and tear on the probe and electronics; the Streaming Current Monitor shall be calibrated using a cationic polymer solution with a known Ion Charge value. The Streaming Current Monitor shall be a as manufactured by HF scientific, inc. of Fort Myers, Florida. Page 5

Installation The first consideration is the sample point. You will be sampling the raw water after the introduction of coagulant. The sample point should be at least 10 pipe diameters away from the dosing point to ensure ample mixing time. Avoid getting too close to an elbow or tee in the pipe. The absolute minimum flow required is 6 liters per minute. You will want to locate the sensor as close to the sample point as possible. The shorter the distance between the sample point and the sensor, the faster the response time will be. Ordering Information Catalog No. Description 19549 I, 115V/240 VAC, 50/60 Hz 19550 II, with built-in PI Controller 19553 III, with built-in PI controller and RS232 19554 IV, with built-in PI Controller and RS485 Accessories 19886 Flow Alarm, provides a remote alarm for inadequate sample flow. 19922 Calibration Kit 19986 Nema 4X Housing for outdoor installation of monitor 19994 Spare Cell and Probe Set PRINTED IN USA DOCUMENT 3170 Metro Parkway Ft. Myers, FL 33916-7597 Phone: (239) 337-2116 Toll Free: 888-203-8-7248 Fax: (239) 332-7643 Email: hf.info@wattswater.com Page 6