Proceedings Enhanced Characteristics of Nondispersive Infrared CO2 Gas Sensor by Deposition of Hydrophobic Thin Film

Similar documents
ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 7, Issue 12, June 2018

Design of a high accuracy non-dispersive Infrared gas sensor for continuous emission monitoring of carbon monoxide emitted from an industrial stack

Proceedings Design, Fabrication and Optimization of a Silicon MEMS Natural Gas Sensor

Challenges in industrial point sensing- NDIR John Saffell

Proceedings Cu Thin Film Polyimide Heater for Nerve-Net Tactile Sensor

The new generation of Multi-Gas measurement. Dipl.- Ing (FH) Andreas Hester, SIGAS Corp. Environment protection Personal safety Process control

PERFORMANCE EVALUATION OF THE MINIATRIZED CATALYTIC COMBUSTION TYPE HYDROGEN SENSOR

MODEL-BASED OPTIMIZATION OF AN INFRARED GAS SENSOR

Performance Analysis of Water-Water Heat Pump System of 100 kw Scale for Cooling Agricultural Facilities

On the Influence of Shade in Improving Thermal Comfort in Courtyards

Research Article Development of the Noncontact Temperature Sensor Using the Infrared Optical Fiber Coated with Antifog Solution

Infrared Carbon Dioxide Sensor Module CM1106SL

Temperature dependent Components within the Pyroelectric Detector

Application Note. Comparison of optical detection systems for Infrared (IR) Hydrocarbon gas detection

Air Quality Sensors. Particle Matter, CO 2, Humidity, Temperature and Dust Products. OEM Sensor Components for Air Quality and Environmental Control

An FT-NIR Primer. NR800-A-006

Infrared Carbon Dioxide Sensor Module CM1107-Dual Beam

-smartgas- A new low cost infrared gas sensor for domestic and automotive applications

Feasibility of a Liquid Desiccant Application in an Evaporative. Cooling Assisted 100% Outdoor Air System

Chemistry Instrumental Analysis Lecture 14. Chem 4631

Effects of Fan-Aspirated Radiation Shield for Temperature Measurement in Greenhouse Environment

Understanding total measurement uncertainty in power meters and detectors

Cassava Chip Drying by Using a Small-Scale Hot-Air Microwave Oven

Real-time Monitoring Technology for Preservation Environment of Archives

A Multi-Channel Gas Sensor Using Fabry-Perot Interferometer-Based Infrared Spectrometer

APN0064.P65 Issue 01-06/2000 COMPARISON OF OPTICAL DETECTION SYSTEMS FOR INFRARED HYDROCARBON GAS DETECTION

Fire Detection System: An Overview

A Numerical study of the Fire-extinguishing Performance of Water Mist in an Opening Machinery Space

THE NEXT GENERATION IN VISIBILITY SENSORS OUTPERFORM BOTH TRADITIONAL TRANSMISSOMETERS AND FORWARD SCATTER SENSORS

FABRICATION SOLAR REFRIGERATION SYSTEM BY PELTIER EFFECT

ISSN: [Agcaoili S. O., 7(3): March, 2018] Impact Factor: 5.164

A Study on the 2-D Temperature Distribution of the Strip due to Induction Heater

Passive cooling of telecommunication outdoor cabinets for mobile base station

to get there. together. Infrared Sources Swiss made

Instruction Manual. gray Mounted Detectors. for. greenteg AG Technoparkstrasse Zürich, Switzerland T: F:

STUDY ON THE CONTROL ALGORITHM OF THE HEAT PUMP SYSTEM FOR LOAD CHANGE

Compact Sensor Heads for In-situ and Non-Contact Standoff Gas Sensing using TDLAS in Harsh Environments

IR4000. Point Infrared Combustible Gas Detection System. The Reliable and Flexible Safety Solution That s Low Maintenance

Hot Air-Microwave Combined Drying Characteristics of Gypsum Board. Won-Pyo Chun, Sung-Il Kim, and Ki-Woo Lee 1

A study on performance improvement of corrugated type total heat exchanger considering the structure of flow passage on surface

Instruction Manual. gray Housed Detectors. for. greenteg AG Technoparkstrasse Zürich, Switzerland T: F:

A study of Transient Performance of A Cascade Heat Pump System

A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

SEC Millenium Carbon Dioxide Gas Detector

The Development Of High Efficiency Air Conditioner With Two Compressors Of Different Capacities

SIEMENS ULTRAMAT 6 IR CARBON MONOXIDE ANALYZER METHOD VALIDATION FOR TESTING CARBON MONOXIDE IN NITROGEN, NF

UL268 7 th challenge with single infrared smoke detector

The Effect of Quantity of Salt on the Drying Characteristics of Fresh Noodles

Experimental Study on the Performance and Oil Return Characteristics of Multi-Split Air- Conditioning System for Medium Size Building

Office of Nonproliferation and Verification Research and Development University and Industry Technical Interchange (UITI2011) Review Meeting

Key Features. General Description

Development of a Slope Stability Program for Transmission Towers

The effect of write current on thermal flying height control sliders with dual heater/insulator elements

Company facts. ! Photoacoustic Spectroscopy (PAS) and! Fourier Transform InfraRed (FTIR) principle

IR1xxx Series 1, IR2xxx Series 1 Miniature Infrared Gas Sensors for Hazardous Areas and Intrinsic Safety in Mining

Hygro Transducer / Hygrothermal Transducer and CO 2 Measuring Probe for Climate Monitoring

The Innovative Green Technology for Refrigerators Development of Innovative Linear Compressor

Fire Test Evaluation using the Kerosene and Aviation Fuel

Temperature and Gas. Sensing Solutions GAS SENSING SOLUTIONS OVERVIEW

Proceedings Sensor-Based Smart Oven System to Enhance Cooking Safety

Optec NGN-2 LED Ambient Integrating Nephelometer

Highly Near-Infrared-Sensitive, Printed Flexible Thermistors. Austin Shearin ext Brewer Science Inc.

Gas Analyzing System Based on Semiconductor Sensors for Providing Safety of Oil And Gas Pipeline Operations

Performance Characteristics and Optimization of a Dual-Loop Cycle for a Domestic Refrigerator- Freezer

Experimental Study on Compact Heat Pump System for Clothes Drying Using CO 2 as a Refrigerant. Abstract

Effects of Flash and Vapor Injection on the Air-to- Air Heat Pump System

Lamp Supply (Recommended)

FPI Detectors Pyroelectric Detectors with Spectrometer Functionality

seasons in regions with hot, humid climates. For this reason, a dehumidification system with a radiant panel system needs to be developed. In a former

PUV, PIR and PFO Series BROCHURE

INTERNATIONAL JOURNAL OF RESEARCH GRANTHAALAYAH A knowledge Repository

International Journal of Research in Engineering and Innovation Vol-1, Issue-5 (2017), 68-72

4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015)

Model 1000 H 2 S E-Chem/ CO 2 Process Analyzer

SEC SIGNATURE ETO MONITOR TRAINING SENSOR ELECTRONICS CORPORATION

Experimental study of hybrid loop heat pipe using pump assistance for high heat flux system

Design of CO Concentration Detector Based on Infrared Absorption Method

MicroTool. Not just a simple Measuring Instrument A complete Tool to support your daily activities FLUE GAS ANALYSERS

Operation and Maintenance Manual

Thick-Film Heater achieves Superior Performance in Thermal Response, Uniformity and Efficiency.

DAYLIGHTING PERFORMANCE ON VENETIAN BLIND FOR HEALTHY APARTMENT HOUSING

Analysis of freeze protection methods for recuperators used in energy recovery from exhaust air

Article Energy Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms

INDOOR CLIMATE IN HEATING CONDITION OF A LARGE GYMNASIUM WITH UNDER-FLOOR SUPPLY/RETURN SYSTEM

Introduction to the Fusion TOC Analyzer

Construction of An Automatic Power Switch using Infrared Motion Sensor

Hydrocarbon Gas Detector

DESIGN AND ANLYSIS OF MODIFIED HYBRID SOLAR SYSTEM USING NANO FLUIDS

COURSE 474 CONTINUOUS EMISSION MONITORING Extended Agenda

Design Procedure for a Liquid Dessicant and Evaporative Cooling Assisted 100% Outdoor Air System

To investigate the surface properties for increasing efficiency of solar water heater

A CEILING CONDENSING UNIT WITH PELTIER ELEMENTS FOR DRYING AND COOLING

Proceedings Soft Triboelectric Band for Sensing of and Energy Scavenging From Body Motion

Performance Characteristic and Optimization of a Simultaneous Heating and Cooling Multi Heat Pump

Analysis of Triangle Heating Technique using High Frequency Induction Heating in Forming Process of Steel Plate

EFFECT OF WATER RADIATOR ON AIR HEATING SOLAR COLLECTOR EFFICIENCY

Experimental Research On Gas Injection High Temperature Heat Pump With An Economizer

Long-Range Displacement Sensor Based on SMS Fiber Structure and OTDR

IMO Resolution MSC 61 (67) 1996; Annex 1, Part 2. Smoke & Toxicity Test. WF Report Number: Date: 13 th August Test Sponsor:

Purdue e-pubs. Purdue University

Transcription:

Proceedings Enhanced Characteristics of Nondispersive Infrared CO2 Gas Sensor by Deposition of Hydrophobic Thin Film Jinho Kim 1, Jayoung Lee 1, Keunheon Lee 2 and Seunghwan Yi 1, * 1 Department of Mechanical Engineering, Korea National University of Transportation (KNUT), 50 Daehakro, Chungjushi, Chungbuk 27469, Korea; wlsgh0614@naver.com (J.K.); lgc1812@naver.com (J.L.) 2 Humas Co., 59-6 Jang-Dong, YuSeong-Gu, DaeJeon 34113, Korea; humas1@humas.co.kr * Correspondence: isaac_yi@ut.ac.kr; Tel.: +82-43-841-5129 Presented at the Eurosensors 2017 Conference, Paris, France, 3 6 September 2017. Published: 17 August 2017 Abstract: This paper presents the NDIR CO2 gas sensor that has improved the sensitivity and also the accuracy by the deposition of thin hydrophobic film (Parylene-C film with 0.5 micrometer thick) onto the reflector surfaces of White-cell structure. After deposition of hydrophobic thin film, the sensitivity of sensor has been increased with averaged 10% and the estimated errors were reduced within 13 ppm to 143 ppm from 254 K to 324 K temperature ranges and from 0 ppm to 5000 ppm CO2 concentrations. Keywords: hydrophobic film; NDIR gas sensor; carbon dioxide gas sensor; White-cell structure; IR absorbance; temperature compensation 1. Introduction The carbon dioxide gas sensor is using in indoor air quality (IAQ) and water quality control currently. For IAQ control and controlling CO2 concentrations in greenhouse, electrochemical [1] and NDIR gas sensors [2] are used for their unique purposes: supplying fresh air without loss of internal energies in offices, controlling the concentrations of CO2 in order to cultivate the plants. In case of water quality control, the measurement of total carbon (TC) and total organic carbon (TOC) are getting important in order to manage the rivers and supply high quality drinkable water [3]. The analysis of TOC is currently executed by two sensing methods: permeable CO2 sensor system [4], NDIR CO2 sensor [5]. The NDIR carbon dioxide gas sensor has some advantages like compact size, seamless analysis, and long-term stability without compensation. However, TOC system generates water vapor, toxic gases during the procedures of measurement of carbon dioxide concentrations. So the mixed gases can damage the surfaces of optical components, then this might deteriorate the performance of NDIR gas sensor. This article tried to provide the method for protecting chemical reaction at the surface of optical components by deposition of hydrophobic thin film (0.5 micron thick Parylene-C film) and compare the performance of NDIR CO2 gas sensors; one has a hydrophobic thin film on the reflectors, the other used a normal reflector (SiOx/Au/Cr on fused-silica). 2. Theoretical Background and Fabrication 2.1. Theoretical Background The output voltage of thermopile detector is proportional to the received infrared (IR) energy at the IR detector as described by Beer-Lambert law in Equation (1), Proceedings 2017, 1, 410; doi:10.3390/proceedings1040410 www.mdpi.com/journal/proceedings

Proceedings 2017, 1, 410 2 of 5 (, ) = ( ) exp[ ( ) ], (1) where, ( ) is the initial energy that is radiated from the source, ( ) is the product of the gas absorption coefficient and optical path length, is the concentration of target gas [6]. Due to the non-absorbing wavelengths, the above equation could be rearranged as below [7], = ( ) + ( )(1 ) [( ( ) )] (2) where, S is the contribution to the energy density caused by non-absorbing wavelengths irradiated from IR source. In terms of absorbance of IR light at the detector [7], L. Jun et al. s suggestion regarding on absorbance of IR light can be modified as Equation (3), =1 =1 (3) where, is the ratio of the output of gas detector to the output of reference detector in the absence of target gas, and are the outputs of gas detector and of reference detector at a specific concentration of target gas. The output of reference detector remains a constant value at certain ambient temperature because the wavelengths of bandpass filter in reference sensor does not overlap to the absorption wavelengths of gases in atmosphere, however, the output voltages of gas detector can be described in Equation (4) as presented in previous article [8], (, ) = ( ) + ( ) [( ( ) )] (4) where, (, ) is the measured value at certain ambient temperature and CO2 gas concentrations. 2.2. Fabrication Figure 1 shows a top view of developed NDIR CO2 gas sensor for the application of TOC system. The simulation of optical waveguide structure is shown in Figure 1a, and it shows that the optical waveguide structure has two optical paths: for the output of gas detector with 4.26 µm center wavelength and the output of reference detector with 3.91 µm center wavelength. Two sensor modules were prepared for comparing the sensitivities and accuracies of sensors as photographed in Figure 1b; the one has normal reflectors (SiOx/Au/Cr on fused-silica), the other consists of the reflectors deposited with a hydrophobic film (Parylene-C) on the normal reflectors. The experimental setup and procedures are reported in previous article [8]. Figure 1. Developed NDIR CO2 gas sensor for the application of TOC system: brief optical path and structure; signal conditioning circuitry in sensor module.

Proceedings 2017, 1, 410 3 of 5 3. Results and Discussion After building two sensor modules, the amplified differential output voltages were acquired through RS485 and analyzed as a function of CO2 concentrations and ambient temperatures from 254 K to 324 K. Their experimental results are shown as a function of ethanol concentrations and ambient temperatures from 253 K to 333 K in Figure 2, and the output voltages of developed sensor modules follow the equation as described in Equation (4). The amplified-differential output voltages of two sensor modules show large voltage decrements as a function of CO2 concentration and ambient temperatures as shown in Figure 2. Even though the outputs follows similar tendency of decrement in both cases, however, the sensor module that has a hydrophobic film on the reflectors shows a distinctive ambient temperature dependency as can be seen in Figure 2. As the ambient temperature and concentration of CO2 gas increase, the decrements of amplified differential output voltage also increase in case of the sensor module that has a hydrophobic film on the reflectors. Figure 2. Amplified differential output voltages as a function of CO2 concentration from 254 K to 324 K: with normal reflectors; with reflectors having a hydrophobic thin film. Figure 3 shows the normalized absorbance of infrared light [7] as a function of CO2 concentrations at 298 K. As presented in Figure 3, the sensor module that has the reflectors deposited with a hydrophobic film shows a larger absorbance (high sensitivity) than the one built with the normal reflectors. By depositing a hydrophobic Parylene-C film onto the surfaces of reflectors, the sensitivity of CO2 sensor has been improved about 10 % in this research. Figure 3. Comparison of normalized absorbance of infrared light as a function of CO2 concentrations (@ 298 K). The concentrations of CO2 gas can be calculated from the Equation (5),

Proceedings 2017, 1, 410 4 of 5 = ( ) (, ) ( ) ( ) (5) where, ( ), ( ) and ( ) can be acquired from the regression analysis of experimental results as presented in Figure 2. After implementing the algorithm of temperature compensation from 254 K to 324 K [8], the estimated CO2 concentrations are shown in Figure 4. The estimated errors of normal structure were increased as the increment of ambient gas concentrations (20 ppm to 525 ppm in case of Figure 4a). However, when a hydrophobic film was deposited onto the normal reflectors, the errors of estimated CO2 concentrations were reduced significantly from 13 ppm to 143 ppm within the entire temperatures and concentrations ranges in this research. Figure 4. Estimated CO2 concentrations after adopting temperature compensation algorithm: with normal structure; with reflectors deposited a hydrophobic thin film. 4. Conclusions In this research, the effect of a hydrophobic thin film on the performance of NDIR CO2 gas sensor has been studied. When the reflectors in optical waveguide structure are coated with a hydrophobic thin film (Parylene-C film), the absorbance of IR light is increased about 10% compared to the normal structure from 254 K to 324 K ambient temperatures. Furthermore, the accuracy of concentration estimation is also improved significantly. The optical waveguide structure coated with a hydrophobic thin film improves the sensitivity and also accuracy; it might also improve the chemical instability of conventional reflector against mixed toxic gases. Acknowledgments: This research was supported by R&D Center for Green Patrol Technologies through the R&D for Global Top Environmental Technologies funded by Ministry of Environment, Republic of Korea (MOE) and the authors would like to thank SangHo Shin for 3-D modeling of optical structures. Conflicts of Interest: The authors declare no conflict of interest and the founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results. References 1. Kaneyasu, K.; Otsuka, K.; Setoguchi, Y.; Sonoda, S.; Nakahara, T.; Aso, I.; Nakagaichi, N. A carbon dioxide gas sensor based on solid electrolyte for air quality control. Sens. Actuators B Chem. 2000, 66, 56 58, doi:10.1016/s0925-4005(99)00411-6. 2. Yi, S.H.; Park, J.S.; Park, J.M. Temperature compensation of novel NDIR CO2 gas sensor. In Proceedings of the IEEE 5th Conference on Sensors, Daegu, Korea, 22 25 October 2006. 3. Visco, G.; Campanella, L.; Nobili, V. Organic carbons and TOC in waters: An overview of the international norm for its measurements. Microchem. J. 2005, 79, 185 191, doi:10.1016/j.microc.2004.10.018.

Proceedings 2017, 1, 410 5 of 5 4. Tian, K.; Dasgupta, P.K. A permeable memebrane capacitance sensor for ionorganic gases: Application to the measurement of total organic carbon. Anal. Chem. Acta 2009, 652, 245 250, doi:10.1016/j.aca.2009.04.028 5. Kawasaki, N.; Matsushige, K.; Komatsu, K.; Kohzu, A.; Watanabe Nara, F.; Ogishi, F.; Mikami, H.; Goto, T.; Imai, A. Fast and precise method for HLPC-size exclusion chromatography with UV and TOC(NDIR) detection: Importance of multiple detectors to evaluate the characteristics of dissolved organic matter. Water Res. 2011, 45, 6240 6248, doi:10.1016/j.watres.2011.09.021. 6. Yi, S.H. Temperature dependency of non-dispersive infrared carbon dioxide gas sensor by using infrared sensor for compensation. J. Sen. Sci. Technol. 2016, 25, 124 130, doi:10.5369/jsst.2016.25.2.124. (In Korea) 7. Jun, L.; Qiulin, T.; Wendong, Z.; Chengyang, X.; Tao, G.; Jijun, X. Miniature low-power IR monitor for methane detection. Measurement 2011, 44, 823 831, doi:10.1016/j.measurement.2011.01.021. 8. Yi, S.H. Temperature compensation methods of nondispersive infrared CO2 sensor with dual elliptical waveguide. Sens. Mater. 2017, 29, 243 252, doi:10.18494/sam.2017.1439. 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).