Development of Bionic Air Cooler Used in High Temperature Coal Mine

Similar documents
Design of Humidity Monitoring System Based on Virtual Instrument

Experimental Research On Gas Injection High Temperature Heat Pump With An Economizer

Design of Gear Defect Detection System Based on Machine Vision

Design of the Fiber-optic Fence Warning System with Distributed Video Real-Time Display Function Qiang-yi YI and Zheng-hong YU *

The Low-Temperature Radiant Floor Heating System Design and Experimental Study on its Thermal Comfort

Experimental Study of Initial Process of Frost on Heat Exchanger Surface of Refrigerated Transport Vehicle

International Forum on Energy, Environment Science and Materials (IFEESM 2015)

Research on the Monitor and Control System of Granary Temperature and Humidity Based on ARM

Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland. Experimental study of a novel dew point indirect evaporative cooler

1st City Issues Tongji International Symposium City & Real Estate Risk Management 2010

SIMULATION ANALYSIS ON THE FRESH AIR HANDLING UNIT WITH LIQUID DESICCANT TOTAL HEAT RECOVERY

Two-Pipe Fiber Bragg grating Temperature Sensor Applied in Cable Trench and Cable Pit

Detection system for optic characteristics of automobile glasses

Open Access Operation Modes and Energy Analysis of a New Ice-Storage Air- Conditioning System

Design and Research of the Commercial Digital VRV Multi-Connected Units With Sub-Cooled Ice Storage System

A Method for Fire Detecting by Volume and Surface Area Concentration Based on Dual Wavelengths

Study of R-161 refrigerant as an Alternate Refrigerant to various other refrigerants

The Energy Consumption Investigation of the Hotel Central. Air-conditioning System and the Research of Energy Saving Measures

7th International Conference on Performance-based Fire and Fire Protection Engineering (ICPFFPE 2015)

Experimental Study and Analysis of Condenser Performance under Dual Backpressure Operation Mode

Subscripts 1-4 States of the given system Comp Compressor Cond Condenser E Evaporator vol Volumetric G Gas L Liquid

Experimental Research of Air Source Heat Pump Frosting and Defrosting in a. Double Stage-Coupling Heat Pump

Experimental Investigation of a Brazed Chevron Type Plate Heat Exchanger

HEAT TRANSFER COEFFICIENT ENHANCEMENT IN NATURAL CONVECTION FROM HORIZONTAL RECTANGULAR FIN ARRAYS WITH PERFORATIONS

Pressure drop analysis of evaporator using refrigerants R-22, R-404A and R-407C

Best Row Number Ratio Study of Surface Air Coolers for Segmented Handling Air-conditioning System

Experimental Study of Dual Heater Slider Touchdown Detectability

CFD Analysis of a 24 Hour Operating Solar Refrigeration Absorption Technology

NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A

Desiccant-enhanced evaporative (DEVap) cooler system introduction and its comparison with direct expansion (DX) system

RADIATION BLOCKAGE EFFECTS BY WATER CURTAIN

The effect of write current on thermal flying height control sliders with dual heater/insulator elements

Modeling and Simulation on Temperature Control System of Farm Products Baking Equipment. Liu Jun, Jia Zhenwei, Guo Rongxing

Development of Small-diameter Tube Heat Exchanger: Circuit Design and Performance Simulation

Study of Performance of Binary Mixture of R134a and R161 as a Substitution of R134a in a Domestic Refrigerator

Simulation of Full-scale Smoke Control in Atrium

Heat Transfer Enhancement using Herringbone wavy & Smooth Wavy fin Heat Exchanger for Hydraulic Oil Cooling

Analysis of the influence of open door size on fire smoke diffusion law in protective engineering

CFD Analysis of temperature dissipation from a hollow metallic pipe through circular fins using Ansys 14.5

Effects of Volute Tongue Clearance and Rotational Speed on Performance of Centrifugal Blower Nitin S. Jadhav *, S. R. Patil

The Design Of A New Generation Of Twin Screw Refrigeration Compressors

Role of Nano-technology for improving of thermal performances of vapour compression refrigeration system (VCRS): An Overview

Thermal Performance of a Loop Thermosyphon

Natural Convection Heat Transfer Augmentation from Heat Sinks using Perforated Fins: A Review

DESIGN AND FABRICATION OF A PORTABLE REFRIGERATOR BASED ON PELTIER EFFECT

Heat Transfer Analysis of Vapor Compression System Using Nano Cuo-R134a

A Study on the 2-D Temperature Distribution of the Strip due to Induction Heater

Design and Development of Water Cooled Condenser for Domestic Refrigerator

Simulation of Evacuation Process in a Supermarket with Cellular Automata

A Novel Approach for the Thermal Management. of PC Power Supply

Design and Realization for the Environmental Protection Type of Pig-Farm Model Based on the Sensor Technology

(ICPFFPE 2013) 2013 International Conference on Performance-based Fire and Fire Protection Engineering. Wuhan, China 16 November 2013

Thermal Performance Enhancement of Inclined Rib Roughness Solar Air Heater

Experimental Study on Performance of Double pipe Length on Instantaneous Air Source Heat Pump Water Heater. Yin Shaoyou 1, a

NUMERICAL SIMULATION OF VAPOUR COMPRESSION REFRIGERATION SYSTEM USING REFRIGERANT R152A, R404A AND R600A

Analysis of Oil Pumping in the Hermetic Reciprocating Compressor for Household Refrigerators

Analysis of Eccentric Wear of Sucker Rod and Design of Multi-Stage Flexibility Stabilizer

Experimental Study of Fouling Performance of Air Conditioning System with Microchannel Heat Exchanger

Implementation and testing of a model for the calculation of equilibrium between components of a refrigeration installation

Design of CO Concentration Detector Based on Infrared Absorption Method

Study on an environmental simulation system of low/high temperature. for great space

An Experiment of Heat Exchanger Produces Hot Water Using Waste Heat Recovery from Air Conditioning

The Experimental Study and Simplified Model of. Water Mist Absorbing Heat Radiation

International Journal of Engineering & Technology Sciences Volume 03, Issue 01, Pages 55-64, 2015

Experimental study of fan coil assisting radiant floor heating system

Performance of the Variable Refrigerant Volume Air-Conditioning System. with Heat Recovery

Experimental investigation of Hybrid Nanofluid on wickless heat pipe heat exchanger thermal performance

Performance Study of Triple Concentric Pipe Heat Exchanger

Design of Multi-Sensors Cooperation Control System for Intelligent Building

Experimental Investigation of the Padding Tower 1. for Air Dehumidifier

EFFECT OF PAG OIL CIRCULATION RATE ON THE HEAT TRANSFER PERFORMANCE OF AIR-COOLED HEAT EXCHANGER IN CARBON DIOXIDE HEAT PUMP SYSTEM

Case Studies of Master Planning for Sustainable Urban Underground Space Utilization

New Design for Energy Saving Water Dispensers

Air-conditioning condenser integrated with a spray system utilizing. condensate water

Performance Analysis of Electronic Expansion Valve in 1 TR Window Air Conditioner using Various Refrigerants

Performance Enhancement of Refrigeration Cycle by Employing a Heat Exchanger

Numerical Studies On The Performance Of Methanol Based Air To Air Heat Pipe Heat Exchanger

An Experimental Study on Variation of Shear Strength for Layered Soils

Performance Comparison of Ejector Expansion Refrigeration Cycle with Throttled Expansion Cycle Using R-170 as Refrigerant

Experimental Investigate on the Performance of High Temperature Heat Pump Using Scroll Compressor

Theoritical Analysis For Miniature Vapor Compression Cycle Performance Using Microchannel And Finned Tube Condenser

Study of Mid-Infrared Optical Properties of ZnS Thin Films by Spectroscopic Ellipsometry

Application of the VRV Air-Conditioning System Heat Recovery Series in. Interior Zone and Analysis of its Energy Saving

Capillary Tube and Thermostatic Expansion Valve Comparative Analysis in Water Chiller Air Conditioning

Effect of Water and Nitrogen Stresses on Correlation among Winter Wheat Organs

Development and Application of Micro Channel Heat Exchanger for Heat Pump

Improving Heating Performance of a MPS Heat Pump System With Consideration of Compressor Heating Effects in Heat Exchanger Design

Department of MCE, Islamic University of Technology 2. Abstract

A TRNSYS Simulation Case Study on Utilization of Heat Pump For both Heating and Cooling

2010 STUDENT LANDSCAPE ARCHITECTURE DESIGN COMPETITION PRIZE WINNERS

A study of Transient Performance of A Cascade Heat Pump System

Thermodynamic analysis of air cycle refrigeration system for Chinese train air conditioning

International Journal of Research in Engineering and Innovation Vol-1, Issue-5 (2017), 68-72

Research Progress on Plant Selection of Roof Greening. Shuang Liu+*, Chang-Cun Yuan +,Ting Xuan and Zi-Ya Chen

Research on Mobile Water Spray Device Reducing the Temperature of Metro Fire

Experimental Study on Match for Indoor and Outdoor Heat Exchanger of Residential Airconditioner

Experimental Study on the Effects of Compression Parameters on Molding Quality of Dried Fish Floss

Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones

University of New Mexico Mechanical Engineering Spring 2013 PhD qualifying examination Heat Transfer

Nanosurfaces. General Description. Program Objectives. Time Required. Organization: MRSEC University of Wisconsin. Contact person: Heidi Williamson

Transcription:

Advances in Natural Science Vol. 3, No. 2, 2010, pp. 206-212 www.cscanada.net ISSN 1715-7862 [PRINT] ISSN 1715-7870 [ONLINE] www.cscanada.org *The 3rd International Conference of Bionic Engineering* Development of Bionic Air Cooler Used in High Temperature Coal Mine MIAO De-jun 1 SUI Xiu-hua 2 XIAO Lin-jing 3 FENG Zheng-mao 4 Abstract: In high temperature coal mine, the surface air cooler heat exchange efficiency decreases greatly because of high humidity and dust. In order to improve the heat exchange efficiency, the surface of the air cooler needs to be designed to reduce the dust adhesion, and improve the heat exchange efficiency. Based on the self-cleaning effect of lotus leaf, the surface of air cooler is designed and fin and tube are processed into the constructure of lotus leaf surface. With Ansys, the cooling effect of air cooler is simulated, and the experiment is done to test the heat exchange effect of the common air cooler and bionic air cooler in lab. By analysis, it can be concluded that the surface of bionic air cooler has the function of self-cleaning, and the structure can increase the heat exchange efficiency, which is higher above 30% than that of common air cooler. Key words: High temperature coal mine; Air cooler; Self-cleaning; Heat exchange efficiency 1. INTRODUCTION With the increase of mine exploitation depth, the heat harm is more and more serious, machine cooling is applied in many coal mines, and air cooler is main equipment in cooling. The air cooler used in mine can be classified into surface air cooler and direct contact air cooler (spray air cooler). Although the direct contact air cooler has the advantage of high heat exchange efficiency, its volume is bigger and can not arrange freely, which limits its use. Because the structure of surface air cooler is compact, has small volume, does not pollute the environment and has strong adaptability, it is noted by more and more people. 1 Corresponding author, Key Laboratory of Mine Hazard Prevention and Control of China Ministry of Education. Shandong University of Science and Technology, China School of Architecture, Tsinghua University, China. Email: sdmiaodj@sina.com. 2 College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, China. 3 College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, China. 4 Apparatus Complete Company, Shandong Taikai Electric Group, China. *Received 10 May 2010; accepted 23 July 2010 206

In order to improve heat exchange efficiency of surface air cooler, fin is added to the tube to increase the area of heat exchange, but this kind of air cooler is hard to exert its heat exchange efficiency because of bad environment (high dust concentration), for example, one fin type air cooler with 200~300kW cooling capacity in cleaning environment will covered with dust in short time, the cooling capacity will reduce to 50%, and even to 15%. So some countries, such as Germany, applied the smooth tube air cooler with lower heat exchange efficiency to fit for the bad environment in coal mine, which is shown in Fig.1 and Fig.2. Although this kind of air cooler can fit for the bad environment to a certain extent, along with the time extending, the heat exchange efficiency is falling gradually. So air cooler used in coal mine with high temperature and high humidity and high dust concentration need to be designed reasonably to satisfy with mine cooling. The surface of tube and fin bionic designed is done by bionics theory in this paper, which can reduce the dust accumulation, increase the heat exchange efficiency, and can fit for the high temperature and high humidity and high dust concentration bad environment. Fig. 1: Appearance of Wat air cooler Fig. 2: Interior structure of Wat air cooler 2. LOTUS LEAF SELF-CLEANING EFFECT AND BIONIC STRUCTURE DESIGN OF AIR COOLER HEAT EXCHANGE SURFACE Two biologists from Bonn university of Germany discovered the secret of the surface of lotus leaf by long-term observation and study. By the imagines from scanning electron microscope (Fig.3), it can be seen that in the lotus leaf surface exits complicated multiple nanometer and micron ultra structure, covers with small hill one by one(the distance between hills is about 20-40μm), the hill is covered with villa and on the top of hill is steamed bread convexity, the whole surface is covered with tiny waxy crystal(about 200nm -2μm). So, it is filled with air at depression among the hill, when the dust, rain water drops on the surface, there is only several point contact, because of the holding effect together with air layer, hill convexity and waxy layer, the water drop cannot infiltrate, only roll freely. The rain drop forms sphere by the self surface tension, when the water sphere rolls, it absorb the dust and roll out the surface, this is the secret of self cleaning effect of lotus leaf. To the hydrophilic rough surface, the surface is rougher, and it is easier to be wetted, conversely, to the hydrophobic surface, it is hard to be wetted. The rough hydrophobic surface can reduce the friction because the contact area is only 2%-3% of the total bead area; the bead is easy to roll out of the lotus leaf. If there is dust in the surface, the dust can be wetted and can be roll out of the surface of lotus leaf with the bead. To the hydrophobic dirt, because the contact area is very small, the adhesive force between water and oil pollution is larger than that between water and waxy crystal, the dirt can easy to be removed. If the surface is smooth, the dust can strongly adhere to the smooth surface, not the surface of drip, the drip is only to remove the dust aside slightly, but, if it is rough surface, the dust will adhere to the drip surface, not the rough surface, and roll and fall with the drip from the lotus leaf. It is shown in Fig.4. 207

Based on the self-cleaning effect of lotus leaf, the tube and fin surface of air cooler is processed to bionic lotus leaf structure, which can self-clean, but the heat exchange efficiency needs to be further studied. Fig.3: Scanning electron microscope imagine of lotus leaf surface (from Dr.W.Barthlott,Bonn) Having dust on the lotus leaf Drip passing through the dust Fig. 4: Self-cleaning effect of lotus leaf 3. BIONIC FIN HEAT EXCHANGE EFFICIENCY CALCULATION AND NUMERICAL SIMULATION The numerical value of the fin heat exchange efficiency depends on the shape of fin, height, thickness, material, and heat exchange coefficient outside tube. It is difficult to get the accurate numerical solution in refrigeration, air-conditioning engineering. It can only be resolved by approximate method. At present, the experiment formula from Schmidt is commonly adopted, which is simple and practicality, the accuracy is higher. The key of the formula is to choose an equivalent round fin that radius is R 0 and equal heat flux. The fin efficiency is: tanh mr f (1) mr 2h Where m is fin parameter, m 0, is fin thermal conductivity and thickness, r is base tube external diameter, is fin height correct coefficient, R0 / r11 0.35ln R0 / r The choice of fin surface heat exchange coefficient depends on the cooling condition in formula (1). Condensation cooling condition: h h 0 k a 208

Where k is condensation moisture absorption coefficient, h a is dry condition heat exchange coefficient. When the fin efficiency f obtained, The fin surface efficiency s can be obtained, the fin heat transfer tube unit tube length heat transfer rate q concludes base tube surface heat transfer rate q b and the fin surface heat transfer rate q f, quantity of heat transfer in one meter fin tube heat transfer surface is, q qf qb (2) Under the assumption that two part heat transfer surface heat exchange coefficient is equal, it can be drawn that q h A t t (3) b a b a s = ha t t qf haaf f ta ts a Ts a s (4) A A A b f f 1 f s 1 f, A T is unit tube length total heat exchange area. A A Where T T From the above analysis, the fin surface efficiency is closely related with the heat exchange area. The lotus leaf surface constructure designed in the tube and fin increases the heat exchange surface area, improve the heat exchange efficiency. In order to further study the heat exchange effect of common air cooler and bionic air cooler, it is simulated with ANSYS. Under the condition of a high temperature working face in coal mine, the air cooler is in the inlet working. The cooling effect of common air cooler and bionic air cooler is shown in Fig.5 and Fig.6. From the above figure, it can be seen that the heat exchange efficiency of bionic air cooler is better than that of common air cooler. 4. COOLING EFFECT EXPERIMENT OF COMMON AIR COOLER AND BIONIC AIR COOLER The experiment is done in the ventilation simulation lab, which is shown in Fig.7 and Fig.8. Fins are made of aluminum metal. The test water temperature is 10, air temperature is 23, humidity ratio is 70%, the quantity of dust in air is 210mg/m 3, and six measuring point is set in different places. The temperature measuring result is shown in Fig.9 and Fig.10 for each measuring point after 1, 2,3,4,5 hours. 1 Y A Z X A 1 NODAL SOLUTION STEP=1 SUB =1 TEMP (AVG) RSYS=0 SMX =303 282 283.4 284.9 286.3 287.8 289.2 290.7 292.1 293.6 295 291 291.9 29278 293.7 294.6 291.4 292.3 293.2 294.1 295 Fig. 5: Temperature distributing of common air cooler 209

1 Y A Z X A 1 NODAL SOLUTION STEP=1 SUB =1 TEMP (AVG) RSYS=0 SMX =303 274.9 277.2 279.4 281.6 282.8 286.1 288.3 290.5 292.7 295.1 291 291.9 292.8 293.7 294.6 291.4 292.3 293.2 294.1 295 Fig. 6: Temperature distributing of bionic air cooler Fig.7: Cooling effect experiment equipment of common air cooler and bionic air cooler Fig. 8: Temperature sensor for test Temperature 20 18 16 14 12 10 8 6 4 2 0 One hour Two hour Three hour Four hour Five hour 1 2 3 4 5 6 Measuring point Fig. 9: The measuring effect of common air cooler 210

18 16 Temperature 14 12 10 8 6 4 2 0 One hour Two hour Three hour Four hour Five hour 1 2 3 4 5 6 Measuring point Fig. 10: The measuring effect of bionic air cooler From the above figure, the cooling effect after one hour of bionic air cooler is near to that of common air cooler, the heat exchange efficiency is higher along with the time prolonged, the amplitude of temperature increases is less, but temperature increases is more quick to the common air cooler, after 5 hours, the heat exchange efficiency were decreased by 38%. 5. CONCLUSIONS (1)The tube and fin surface of air cooler designed by bionic lotus leaf can reduce the dust accumulation greatly and prevent the reduction of heat exchange efficiency. (2)The tube and fin surface of air cooler designed by bionic lotus leaf can increase the heat exchange area, the heat exchange efficiency of bionic air cooler is better than that of common air cooler. (3)The experiment validates that bionic air cooler can keep higher heat exchange efficiency in high humidity and high dust concentration environment, the heat exchange efficiency of bionic air cooler is higher above 30% than that of common air cooler. REFERENCES GONG Shuguang. (2003). ANSYS operation command parametric programming. China machine press. LEI Jiang. (2005). Super-hydrophobic nanoscale interface materials: from nature to artificial, Science and technology review, (2),4-8. LIU Jin-ping, HUANG Xin-tang, LI Yuan-yuan, et. al. (2008). Formation of hierarchical CuO microcabbages as stable bionic superhydrophobic materials via a room-temperature solution-immersion process. Solid State Sciences 10: 1568-1576. MIAO De-jun. (2008). Study of thermal environment index and cooling quantity optimization methods in working face in high temperature coal mine (D), Shandong university of science and technology. Mcquiston.F.C. (1981). Heating and ventilation and air conditoning (analysis and design), China architecture and building press, 298. 211

REN Lu-quan, WANG Shu-jie, TIAN Xi-mei,et al. (2007). Non-Smooth Morphologies of -pica1 Plant Leaf Surfaces and Their Anti-Adhesion Effects. Journal of Bionic Engineering 4: 33-40. ZHOU Hong, SHAN Hong-yu, TONG Xin, et al. (2006). The adhesion of bionic non-smooth characteristics on sample surfaces against parts. Materials Science and Engineering A 417: 190 196. 212